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Abstract

Terminological Knowledge Representation Sys-
tems (TKRSs) are tools for designing and us-
ing knowledge bases that make use of termino-
logical languages (or concept languages). The
TKRS we consider in this paper is of practi-
cal interest since it goes beyond the capabil-
ities of presently available TKRSs. First, our
TKRS is equipped with a highly expressive con-
cept, language, called ALCNR, including gen-
eral complements of concepts, number restric-
tions and role conjunction. Second, it allows
one to express inclusion statements between
general concepts, in particular to express ter-
minological cycles. We provide a sound, com-
plete and terminating calculus for reasoning in
ALCNR-knowledge bases based on the general
technique of constraint systems.

1 Introduction

A general characteristic of many proposed Terminolog-
ical Knowledge Representation Systems (TKRSs) such
as BACK, LOOM, CLASSIC, KRIS, [Rich, 1991: Woods
and Schmolze, 1992] is that they are made up of two
different components. Informally speaking, the first is
a general schema concerning the classes of individuals
to be represented, their general properties and mutual
relationships, while the second is a (partial) instantia-
tion of this schema, containing assertions relating either
individuals to classes, or individuals to each other.

Retrieving information in actual knowledge bases
(KBs) built up using one of these systems is a deduc-
tive process involving both the schema (TBox) and its
instantiation (ABox).

During the realization and use of a KB. a TKRS
should provide a mechanical solution for at least the fol-
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lowing problems (from now on, we use the word concepts
to refer to classes):

1. Concept Satisfiability: given a KB and a concept
C, does there exist at least one model of the KB
assigning a nonempty extension to C?

2 Subsumption. given a KB and two concepts C and
D, is C more general than D in any model of the
KB?

3. KB-saiisftability, are an ABox and a TBox consis-
tent with each other?

4. Instance Checking: given a KB, an individual a and
a concept C, is a an instance of C in any model of
the KB’

Up to now, all the proposed systems (except for
KRIS) give incomplete procedures for solving the above
problems 1 4. That is, some inferences are missed, in
some cases without a precise semantical characteriza-
tion of which ones are. If the designer or the user needs
a (more) complete reasoning, she/he must either write
programs in a suitable programming language, or de-
fine appropriate inference rules completing the inference
capabilities of the system (as in BACK, LOOM, and CLAS-
SIC).

In our opinion incomplete procedures are just a pro-
visional answer to the problem—the best possible up to
now. In order to improve on such an answer, a theoret-
ical analysis of the general problems 1-4 must be done.
But most importantly, theoretical analysis is needed for
making cyclic definitions of concepts (see [Nebel, 1990,
Chapter 5]) fully available in TKRSs. Such a feature
is of undoubtable practical interest, yet present TKRSs
can only approximate cycles, by using forward inference
rules.

Previous results do not deal with the problems 1-
4 in their full generality. The problems are studied
in [Nebel, 1990, Chapter 4], but only incomplete pro-
cedures are given, and cycles are not considered. In
[Donini et a/., 1992] the complexity of instance check-
ing has been analyzed, but only KBs without a TBox
are treated. Previous theoretical work on cycles was
done in [Baader, 1990b; Baader, 1990a; Nebel, 1990;
Nebel, 1991; Schild, 1991], but only KBs formed by the
| Box alone are considered. Moreover, these approaches
do not deal with number restrictions (except for [Nebel,



1990, Section 5.3.5]), which constitute a basic feature
already provided by many TKRSs, and the techniques
used do not seem easily extensible to reasoning with
A Boxes.

In this paper, we propose a TKRS equipped with a
highly expressive language of practical significance, and
prove the decidability of problems 1-4. In particular, our
system makes use of the language ALCNR., which sup-
ports general complements of concepts, number restric-
tions and role conjunction. Moreover, the system allows
one to express inclusion statements between general con-
cepts and, as a particular case, terminological cycles We
prove decidability by means of a suitable calculus, which
is developed within the quite well established frame-
work of constraint systems (see [Donini et al, 1991a:
Schmidt-SchauB and Smolka, 1991]) thus exploiting a
uniform approach to reasoning in TKRSs. Moreover, our
calculus can easily be turned into a decision procedure.

The paper is organized as follows. In Section 2 we in-
troduce the language, and we give it a Tarski-style exten-
sional semantics, which is the most commonly used In
Section 3 we provide a calculus, and show its correctness
and termination. In Section 4 we consider a refinement
of our calculus, working in exponential space. In See
tion 5 we establish the equivalence of general inclusion
statements and general concept definitions using the de-
scriptive semantics. Finally, we discuss in detail several
practical impacts of our results in Section 6 For the
sake of brevity proofs are omitted. They can be found
in [Buchheit et al., 1993].

2 Preliminaries

In concept languages, concepts represent the classes of
objects in the domain of interest, while roles represent
binary relations between objects. Complex concepts and
roles can be defined by means of suitable constructors ap-
plied to primitive concepts and primitive roles. In par-
ticular, concepts and roles in ALCN'R can be formed
by means of the following syntax (A denotes a primi-
tive concept, P; (i=1,..., m) denotes a primitive role.
C and D denote arbitrary concepts and R an arbitrary
role).

cD - g {primitive conceply
T {top)
L] {bottam}
(Crnpy {conjunction)
(CubDy| {disjunction)
- (complement }
VRO {universal gquantification)
AR.C | {extstential quantification
(>aR)|(<nR) (number restrictions)

R — AMN---Nk, {role conjunction)

We interpret concepts as subsets of a domain and roles
as binary relations over a domain. More precisely, an on-
terprefation T = (A%, -T) consists of a nonempty set a7
(the domain of IT) and a function I (the extension func
tion of 7) that maps every concept to a subset of AL ad
every role 1o a subset of AZ x A such that the following
equations are satisfied (}{} denotes the cardinaiity of a
set):

T'=aT ti=8 (CNDY¥ =CTnD?,
(Cuby =Ctup, (=) =a*\ (Tt
(YR.CV: = {dec AT |Ve:(d,e) € R — e€ CT}
(ARC) ={de€ A% |3e:(de)e RT rne e CT)
(2nRE ={dea?| pel(de)€e R} 2n]
(€aR ={de A" | #e]|(d.e)€RT} <n}
(/M- NPy =PIn...nPE

A KB built by means of concept languages is formed
by two components: The intenstonal one, called the
TBox, and the extensional one, called the ABox.

We first turn our attention to the TBox. As we said
before, the intensional level specifies the properties of the
concepts of interest in a particular application. Syntacti-
cally, such properties are expressed in terms of so-called
inclusion statements (see [Nebel, 1990, Chapter 3]). An
inclusion statement (or simply inclusion) has the form

ccbh

where (' and D are two arbitrary concepts. Intuitively,
the sfatement specifies that every instance of C is also
an instance of L. More precisely, an interpretation I
sabisfies the inclusion CC DifCT C D ATBox T is
a fimite set of inclusions. An interpretation I is a model
for a TBox T if T satisfies all inclusions in T .

Many TKRSs provide the user with mechanisms for
stating concep! defintions (e.g. [Nebel, 1990, Section
32D of the form A = D (interpreted as set equality),
ar A< 1) (primitive concept definition, interpreted as set
inclusion], with the restrictions that the left-hand side
concept A must be a concept name, that for each concept
name at most one definition is allowed, and that no so-
citlled fermmalegreal cycles are allowed, i.e. no concept
nawe may oceur---neither directly nor indirectly-—within
s own definition.

We do not impose any of these restrictions to the form
ol inclusions, obtaining statements that are syntactically
more expressive than concept definitions. In particular,
a definition of the form A = D can be expressed in our
system using the pair of inclusions A C D and D £ A,
whereas an inclusion of the form € C D, where C and D
are arbitrary concepts, cannot be expressed with concept
definitions. Moreover, cyclic inclusions are allowed in our
stateuwents, realizing terminological cycles.

As shown in [Nebel. 1991], there are at least three
1vpes of semantics for terminological cycles, namely the
lvast fixed point, the greatest fixed point, and the de-
seriptive semantics. However, fixed point semantics ap-
iy only to fixed point statements, which are much less
general than onr inclusion statements. Instead, the de-
seTiplive seinantics interprets statements as just restrict-
ing the set of possible models, with no definitional im-
port. Hence, it can be suitably extended to our case,
and 1s exactly the oue we adopt.

We can now turn our attention to the extensional level
ol the KB. i.e. the ABox. The ABox essentially allows
one to spraify instance-of relations between individuals
and concepts, and hetween pairs of individuals and roles.

Let €2 be an alphabet of symbols, called individuals.
Instance-of relationships are expressed in terms of mem-
bership assertions of the form:
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C(a), Rla.b)

where a and b are individuals, C is a concept. and H
is a role. Intuitively, the first form states that a is an
instance of (C, whereas the second form states that e is
related to b by means of the role K.

In order to assign a meaning to membership asser-
tions, the extension function - of an interpretation 7 is
extended to individuals b; magping them to elements of
A% in such a way that af # 57 if a # b (Unique Name
Assumption). An interpretation I saiisfies Lhe assertion
C(a) if o € C?, and satisfies R{a,b) if (a?. %) € RY.
An ABox A is a finite set of membership assertions. 7
is a model for an ABox A if T satisfies all the assertions
in A

An ALCNR-knowledge base £ is a pair & = (T, A}
where 7 is a TBox, and 4 1s an ABox. An interpretation
T 18 a model for ¥ if it is both a model for 7 and a model
for 4. We can now formally define the problems 1-4
mentioned in the introduction, w.r.t. a given KB ©:

1. Concep! Satisfiability: C is satisfiable wart T if
there exists a model 7 of £ such that ©F £ @

2. Subsumption: C is subsumedby D w.rt. ¥ if (7 C
D? for every model T of T;

3. KB-satisfiabilily: T itself is satisfiable, if it has a
model;

4. Instance Checking: a is an instance of (', wrilten
Y & Cla), if the assertion (*{a} is satisfied in every
mode] of T.

Example 2.1 Consider the following KB T = {T . A}:

T = { 3TEACHES.Course T (Student M AIDEGREE.BS) Lt Prof.
Prof T JDEGREE.NMS, JOEGREE,MS C JDEGREE.BS.
MSPBSC L}

A = {TEACKES{john,ca1), {< |1 DEGREE){john). Course{csl]}

It is easy to see that ¥ is satisfiable. Notice also 1ha
it is possible to draw several non-trivial conclusions from
¥. For example, we can infer that & | Student(john).
Intuitively this can be shown as follows: john teaches
a course, thus he is either a student with a BS or a
professor. But he can't be a professor sice professors
have at least two degrees (BS and MS) and lLie has at
most one, therefore he is a student. |

Given the above semantics, the problems -4 can all
be reduced to KB-satisfiability (or to its compiement)
linear time. In fact, given a KB = {T, A}. a concept
C is satisfiable wr.t & iff the KB (7.4 U {('(B)}} is
satisfiable, and C’ is subsumed by D w.r.t. X iff the KB
(T, AU {(C N -D)b)}) is not satisfiable, where b 1« a
new individual not appearing in X. Finally, £ £ ('(a)
iff the KB {7, AU {{=C)(a)}} is not satisfiable. Heuce.
we can concentrate just on I(B-satisfiability in the next
section.

3 Decidability Result

In this section we present a calculus for deciding KB-

satisfiabilily and state its correctness and termination,
Our method makes use of the notion of constraint svs-

tems [Donini ef al., 1991a; Schmidt-SchauB and Smolka,
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1991: Donini et al., 1991b), and is based on a tableanx-
like calculus that tries to build a model for the logical
fortnula corresponding to a KB.

Consider an alphabet of variable symbols V. The el-
ements of V are denoted by the leiters z,y, z, w. In the
sequel we use the term object as an abstraction for indi-
vidual and variable (i.e. an object is an element of QUV).
Objects are denoted by the symbols 5,1 and, as in Sec-
tion 2, individuals are denoted by e, b. In the rest of this
section. R denotes the role R=P O... NP (k> 1).

A constraind is a syntactic entity of one of the forms:

s:C, sPt, VYez:C, s#i,

where C is a concept and P is a primitive role. Con-
cepts are assumed to be simple, i.e. they contain only
complements of the form -A, where A is a primitive
concept. Arbitrary ALCNR-concepts can be rewritten
into equivalent simple concepts in linear time [Donini et
al., 1991a]. A constraint system is a finite nonempty set
ol constraints.

CGiiven an interpretation Z, we define an 7-assignment
i as a function that maps every variable in V to an
element of AT (not necessarily injectively), and every
individual ¢ to a¥ (ie. a(a) =af for all 2 € O).

A pair (Z,a) satisfies the constraint s: C if a(s) € C¥,
the constraint sPt il (a(s), a(t)) € P¥, the constraint
s £ 1 1f a(s) # a(t), and finally, the constraint ¥Yz.r:C
if (T = AT A constraint system S is satisfiable if there
i~ a puir {I.a) that satisfies every constraint in S.

An ACCNR-knowledge base £ = (T, A) can be trans-
iated 1nto a constraint system Sy by replacing every in-
clusion (" C D € T with the constraint Yz.z: =C U D,
every membership assertion C(e) with a: O, R{a, b) with
atqb. . . aPib, and including the constraint a # & for
every pair (a.b) of individuals appearing in 4. 1t is easy
o see that T is satisfiable if and only if Sg 18 satisfiable,

In order to check a constraint system S {or satisfiabil-
ity, our technique adds constraints to S until either an
evident contradiction is generated or an interpretation
satisfying it can he obtained from the resulting system.
Coustraints are added on the basis of a suitable set of
so-called propagation rules.

Before providing the rules, we need some additional
definitions. Let S be a constraint system. We say that ¢
15 an R-suceessor of s m Sif sPt,... sPet arein §. We
=iy that ? 1s a I-successor of s tn S if for some role A, ¢
i an f-successor of 5. If § is clear from the context we
simply say that ¢ is an R-successor or a 1-successor of 5.
Moreover, we denote by successor the transitive closure
of the relation 1-successor, and we denote by predecessor
= inverse.

We denote by S[z/s] the constraint system obtained
{rom S by replacing each occurrence of the variable z by
s. Wesay that s and # are separafed su S if the constraint
sEHisin S

Ciiven a constraint system S we say that two vari-
ables » and y are S-equivalent, written z =, y, if
{C{+:C € 8} = {C}|y:C € S} Intuitively, two
S-equivalent variables could represent the same element
in the potential interpretation built by the rules, unless
they were separated.

The propagetion rules are:



§ —=n (s, 2:Ch}US
if 2CNCisin S, 5:C) and & Cy are not hoth
in s
S5 —-u {=D}us
i s:CiUCyisin §, neither &:Cy nor s: €% isin 5
ad D=C, 0t D=,
S — {t: C} J S
if &¥YR.Cisin S, tis a B-successor of s, +:¢" is
not in §
§ —3 {sPiy,....8Fy, p:CluS
if s:3R.Cisin 5, yis a new variable, there is no ¢
such that t is a R-successor of sin 5 and #: (' 1s
m 5 if sis a variable there ix no variable w in
5 such that w is a predecessor of a and s =,
§ —u {sPige,..., 0P |i€ L.} U
{oo #3917 €Lai#jjus
if :(> nR)is in 5, y1,...,yn are new vaii-
ables, there do not exist n pairwise separated

R-successors of 3 in §; if 5 is a variable there is
no variable w such that wis a predecessar of «

and s E, w
5 —< S[y,“f]
if wi{< nf)is in S, g has mote than » M-

suUCCessors in 9. gt are two f-successors ol «
that are not separated
S —gr {1 Cus
if Yoe.or:Clisin S, s appearsin 5. «:C i not in 5.

We call the rules —;,, —¢ nondetermmmsiic rules,
since they can be applied in different ways to the same
constraint system. All the other rules are called driee-
manaslec rules. Moreover, we call the rules —3. —+ gen-
erating rules, since they introduce new variables in the
constraint systemn. All other rules are called nongener-
aitng ones,

The use of the condition based on the S-equivalence
relation in the generating rules is related to the goal of
keeping the constraint system finite even in presence of
potentially infinite chains of applications of generating,
rules.

Oune can verify that rules are always applied to a sys-
tem S either because of the presence in 5 of a given
constraint s: " or, in the case of the —y, -rule. hecause
of the presence of an object s in §. When no confusion
arises, we will say that a rule is apphed fo the object 5.

Proposition 3.1 {Invariance) Lef S and & b con-
siraint systems. Then:

1. If 8 s oblained from S by applicetion of o defer-
ministec rule, then S is satisfiable if and only &
is salwsfiable.

2. If S s obtained from 5 by application of v nondr-
terminisitc rule, then S is satisfiable of 57 s satis
fiable. Furthermore, if a nondetermmistic rale ap-
plies {6 S, thew 1f can be applied in such a way that
it yields a constraint system S’ which 15 satispable
tf and only if § 1s satisfiable.

Given a constraint system, more than one rule might
be applicable to it. We define the following stretegy for
the application of rules:

1. apply a rule to a variable only if no rule is applicable
to individuals;

2. apply generating rules only if no nongenerating rule
is applicable;

3. apply a generating rule to a variable z only if no
rule is applicable Lo a predecessor of x.

A constraint systen is complete if no propagation rule
applies to it. A complete system derived from a system
S is also called a completion of S. A clash is a constraint
system having one of the following formas:

e {51}
¢ {s:A. s:-A}, where A is a primitive concept.

o {s:(<nR)}U{sPiti,... . sPL licl.n+1)})
U{ti #t |15 € L.n+ i #j).

I order to obtain an interpretation from a complete
constraint system we need some additional definitions.
i.et 5 be a constraint system and z, w be variables in
5. We call w a witness of z in S if the three following
conditions hold:

. r=, w
2. wis a predecessor of £ in §
4. no rule is applicable to any predecessor of z.

Notice that the third condition ensures that no new
constraint will be imposed on z. We say z is blocked (by
w) if w has a wituess (w) in S. In a constraint system
obtained from an Sz by applying the rules according to
the <trategy, a blocked variable has exactly one witness
aml 10 SHCCESsSOTSs.

Let & be a constraint system. We define the canonical
tnterprefation I for § and the canonicel ITg-assignment
ay for 5 as follows:

I. A%~ := {s| 5 is an object in 5}
2. nuls) = s
3ose A ifs: 4isin 8
4 {s.ye P
(a) sPtisin 5 ot

(h) s tx a blocked variable, w is the witness of 5 in
S and wPfismn 5.

The canonical interpretation of complex concepte and
roles can be uniquely reconstructed from the interpreta-
tions of the primitive ones imposing the equations stated
1 Section 2.

Thieorem 3.2 {Correctness) Let S be ¢ compleie con-
shramnt system. S 15 satisfiable iff it contains no clash.

Proof. (Sketeh) If S contains a clash, it is clearly unsat-
isfiable. If S contains no clash, it can be shown that the
pair (T« a5} satisfies every constraint in §. |

The termination of the calculus is based on the follow-
ing property: In any constraint system obtained from an
Se by applying the rules according to the strategy, every
variable can have at most 2" variables among its prede-
cessors, where n is the size of E. The technique we use is
similar to the standard filtration technique used in modal
logics. with the main difference that we must take into
acecount separated variables,
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Theorem 3.3 (Termination) Let & b « constrad
sysiem. Every complefron of 5 s finife.

Notice that, since the domain of the canonical inter-
pretation AZS is always finite, we have also implicitly
proved that ALCNR-knowledge bases have the finife
model property, i.e. any satisfiable knowledge base has
a finite model.

Theorem 3.4 {Decidability) Checking whether an
ALCNR-KNB 1s satisfiable 15 o decidabdle probicm.

4 A Calculus Working in Exponential
Space

The calculus proposed in the previous section requires
to compute all the completions of the constraint system
Sg. Unfortunately, such completions may be of Jouble
exponential size w.r.t. the size of L.

For an exponential space algorithm it is therefore cru-
cial not to keep an entire complete constraint systen
memory, but to store only sinall portions at a tine.

We give propagation rules, called frace rales. tha
build up enly a portion of comnplete constraint systems.

The trace rules consist of the —n-, —y-, —v-. —v,-
and the —c-rule (the nongenerating rules) 1rogether with
the two generating rules —ry and —75. which are
obtained respectively from the —3- and the —-rule
adding the following condition of application:

for all constraints Pz in S, either f is a predecessor
of sort=s.

Let T° be a constraint system obtamed from Sy in
application of the trace rules. We call T a fraee of Sl
no trace ruke applies to T

If the trace rules are apphed according to the steai-
egy they show the following behavior: Given an olject
s, if at least one generating rule is applicable. ali ns
1-successors y1. ..., yn are introduced. Then. after non-
generating rules are applied, one variable y; 1s (nonde-
terministically) chosen, and all 1-successors of y, are -
troduced. Unlike normal propagation rules, trace rues
introduce no successor for any object different from y,.
Then, one variable is chosen among the 1-successors of
¥, only its 1-successors are added to the constraint sys.
tern, and so on.

The reason why we introduce all the 1-successors of e
“chosen” ohject is the following. For every chosen object
s all 1-successors of 5§ must be present simultaneously al
some stage of the computation, since only the interplas
of role conjunction and number restrictions forces us to
identify certain successors. This is important hecause,
when identifying variables, the constraints nnposed on
them are combined, which may lead to clashes that oth-
erwise would not have occurred.

A calculus based on trace rules, for deciding satisfia-
bility and subsumption of ALCN R-concepts, was pre-
viously defined in [Donini et al., 1991al. Algorithims
exploiting traces have been given in [Hollunder «f «l..
1990). However. all these works do not deal with KDs.
but only with concept expressions.
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Proposition 4.1 Let & be an ALCNR-KB, Sg il as-
socuated constrait system, and let n be the size of L.
Then:

{. The length of a irace rule dertvation issuing from
Se 15 bounded by 27,

L Every complele consiraint sysiem extending Sy can
be oblained as the union of finitely many traces.

3. Nuppose S is ¢ complele consiraint system exiending
Sy and T s a fintle sei of traces such that § =
Uper T- Then § contains o clash if and only if
seme T €T contains a clash.

Since an ALCNR-KB L is satisfiable if and only if
there exists a complete constraint system derivable from
Sy without a clash, it follows from Proposition 4.1 that
satisfiability of an ACCAR-KB can be decided with ex-
ponential space. A possible algorithm using space 2P(%)
where p(») is a polynomial in the size of S¢ may be the
following: compute one complete constraint system, one
trace at a time, trying all possible applications of the
nonseterministic rules —~<, —, and finding the choices
leadling, to traces without a clash.

Theovem 4.2 Satisfiability of an ACCNR-KB can be

deceded with exponential space.

Thanks to an unpublished manuscript by D. McAlle-
ster. and {independentiy} from an observation by W.
Nutt. we know that deciding the satisfiability of an
ALCNR-KB is an EXPTIME-hard problem. Hence, we
do not expect to find any algorithm solving the prob-
{em in polynomial space, uniess PSPACE=EXPTIME.
Nevertheless. the algorithm outlined above may require
double exponential time. [t is still open whether there
exists an algoritlun working in {simple} exponential time.

5 Inclusions versus Concept Definitions

lu this section we campare the expressive power of
Y Boxes defined as a set of inclusions (as done in this
paper} and TBoxes defined as a set of (pessibly cyclic)
concept definitions of the form A<D and A = D.

Unlike {Baader, 1990a} and [Schild, 1991], we con-
sider reasoning problems dealing with TBox and ABox
together. Moreover, we use the descriptive semantics
for the concept definitions, as we do for the inclusions.
The resull. we have obtained is that inclusion statements
and concept definitions actually have the same expres-
sive power. In delails, we show that the satisfiability of
a knowledge base © = (A, T}, where T is a set of inclu-
sioh statements, can be reduced to the satisfiability of
a knowledge hase &' = (&', 7'} such that 7' is a set of
eoncept definitions. The other direction—{rom concept
definitions to inclusions—is trivial since definitions can
he expressed by patrs of inclusions (see Section 2).

As a notation, given s TBox 7 = {C, E Dy,...,Ch C
D, }. we define the concept Cr as Cr = (~Cy U D)0
M= U D,). As pointed out in [Baader, 1990a)] for
AL, an interpretation satisfies a TBox T iff it satisfies
the equation (7 = T. This result easily extends to
ACCNR.

(iiven a knowledge hase £ = {4, 7} and a concept A
not appearing in T, we define the knowledge base £’ =



{A", T} as follows:

A" = AU{A(b) | bis an individual in S}
T' = {A<CrDVPLAN...NVE,. 4}
where Pt, Ps. ..., P, are all the primitive roles appearing

in L. Interpreting the primitive concept definition (<)
as an inclusion, and exploiting canonical interpretations,
we are able to prove the following result.

Theorem 5.1 Y s satisfiable iff T/ 1s satisfinble.

6 Discussion

In this paper we have proved the decidability of the main
inference services of a TKRS based on the concept lan-
guage ALCNR. We believe that this result is not only
of theoretical importance, but has the following impacts
on existing TKRSs.

First of all, a complete procedure working in expo-
nential space can be easily devised from the calculus
provided in Sections 3 and 4. From this procedure, one
can build more efficient (but still complete) ones by rip-
plying optimization techniques. Such procedures might
work well in practical cases, despite their worst case in-
tractability.

Secondly, a complete procedure (possibly optimized)
offers a benchmark for comparing incomplete prore-
dures, not only in terms of performance, but also in
terms of missed inferences. In fact, incomplete proce-
dures can be meaningfully compared only if missed in-
ferences are considered. However, to recognize missed
inferences over large examples, one needs exactly a com-
plete procedure—even if not an efficient one like ours

Thirdly, new incomplete procedures can be obtained
from the calculus by modifying some of the propagation
rules. Since the rules build up a model, modifications to
them have a semantical counterpart which give* a pre-
cise account, of the incomplete procedures obtained. For
instance, define the depth of a variable x as the num-
ber of variables which are predecessors of x Then, an
incomplete calculus could be devised, which generates
variables only to a given depth—say, linear depth in the
size of the KB. This calculus would miss contradictions
(and hence inferences, by refutation) occurring in vari-
ables which are "far away" from the known individuals
of the KB, and this is a meaningful explanation of the
incompleteness, even for a non-expert user. From a com
putational point of view, an immediate consequence of
the complexity analysis carried over in this paper is that
such an incomplete procedure would run in polynomial
space.
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