
A r e M a n y React ive Agents B e t t e r T h a n a Few De l ibera t i ve Ones?

K e v i n K n i g h t
USC/Informat ion Sciences Inst i tute

4676 Admira l ty Way
Marina del Rey, CA 90292

knight@isi.edu
(310) 822-1511

A b s t r a c t
Problem solvers fa l l along a wide spectrum
ranging f r om highly del iberat ive to h igh ly re-
active. H igh ly del iberat ive systems are able
to design op t ima l l y efficient solut ions to prob
lems, bu t they require complete wor ld mod
els and consume inord inate computa t iona l re
sources. Reactive systems move in real t ime
but cannot guarantee efficient solut ions. They
are also subject to looping behavior. One way
to generate incremental ly more efficient solu
t ions is to be incremental ly more del iberat ive,
e.g., to increase the amount of menta l search
between actions. Th is paper presents an al
ternat ive method for generat ing more efficient
solut ions: increasing the number of reactive
agents simultaneously a t tack ing a given prob
lem. Th is method provides a second, orthogo
nal degree of f reedom. We f ind tha t in many
domains, increasing agents is dramat ica l ly su
perior to increasing single-agent del iberat ive-
ness. Th is is because solut ion qual i ty improves
rap id ly as more reactive agents are added, but
search t ime only increases l inearly. Th is con
trasts w i t h add ing more deliberativeness, which
incurs exponent ia l ly increasing t ime costs. A m
ple empir ical evidence is presented to support
our conclusions.

1 I n t r o d u c t i o n
Th is paper considers two aspects of computa t iona l prob
lem solv ing:

(1) search t i m e - h o w long i t takes to come up w i t h a
so lut ion.

(2) solut ion qua l i t y—how good tha t solut ion is, in
terms of resources needed to execute i t .

There is an in tu i t i ve trade-off between (1) and (2) . The
longer we th ink about a prob lem, the better chance we
have of f ind ing a good so lut ion. Wh i le search a lgor i thms
like A* [Har t et al . , 1968] str ive to l i m i t (1) whi le op t i
miz ing (2) , t ime l im i ta t ions often force us to settle for
subopt ima l , or "sat isf ic ing" [Simon, 1957], solut ions.

Different s i tuat ions w i l l place different emphases on
(1) and (2). Consider the problem of sending an inter
planetary probe to Neptune. In this case, i t may be

wo r th spending days or weeks to p lo t an op t ima l trajec
tory, since such calculat ions could save months of travel
t ime. On the other hand, consider the case of Hernan
Cortes, the Spanish conqueror of Mexico. Wh i l e s t i l l a
teenager in Spain, f inding himself on the wrong end of
a jealous husband's musket, Cortes immedia te ly devised
a plan to travel to the New W o r l d . The efficiency of his
p lan was not c r i t i ca l . W h a t was impo r tan t was tha t he
get started r ight away.

Th is paper studies search t ime versus solut ion qual i ty
in the context o f the Rea l -T ime-A* (R T A *) a lgo r i thm
devised by [Korf , 1990]. The next section reviews how
R T A * interleaves p lann ing and execut ion, and how this
leads to a flexible t i m e / q u a l i t y trade-off. Subsequent
sections introduce new a lgor i thms and empir ica l results.

2 R e a l - T i m e H e u r i s t i c Search

Mot iva ted by research on two-player games, [Korf , 1990]
investigated single-agent search under the constraints of
having to take act ion w i t h i n a given t ime l i m i t and /o r
having l im i ted in fo rmat ion about the envi ronment . Sam
ple single-agent search tasks include robot nav igat ion,
the blocks wor ld , and the 8-puzzle (F igure 1). Kor f ' s
a lgo r i thm, called Rea l -T ime-A* (R T A *) , alternates be
tween two phases: p lan and execute. Du r i ng each plan
n ing phase, R T A * makes a decision about which act ion
to take, based on the current s i tua t ion . I t then executes
the act ion in the wor ld , and starts p lann ing again. Th is
continues un t i l i t reaches i ts goal. R T A * can vary the
amount of p lann ing versus execut ing it does by changing
how deeply i t looks in to the fu ture dur ing the p lanning
phases. Here is the a lgo r i t hm:

1. Set variable N to the star t state.

2. Generate al l of the successor states of N. If any of
the successors is the goal state, then move to the
goal and qu i t .

3. Est imate the heurist ic value of each successor S by
per forming a fixed-depth tree search rooted at S.

4. Let S1 be the successor w i t h the best backed-up
value. Let V2 be the value of the second-best succes
sor. Take whatever act ion corresponds in the wor ld
to mov ing to state S1. Store state N in a hash table
as a key w i t h value V 2 . If the state N is ever gen
erated again in step 2, use the value stored in the
table instead of per fo rming the search of step 3.

432 Distributed Al

5. Set N to S I , and go to step 2.

A l t h o u g h R T A * may enter the same state several
t imes, the values of previously vis i ted states (stored in
the hash table) prevent R T A * f r o m enter ing a f ixed loop.
The dep th of the tree search in step 3 determines how
much t ime R T A * spends p lann ing instead of execut ing
actions.

R T A * is useful in bo th complete- and incomplete-
i n fo rma t ion domains. When in fo rmat ion about the
wor ld is incomplete, i t is impossible to plan out an entire
so lu t ion ahead of t ime . In such a case, inter leaving p lan
n ing and execut ion is necessary. The a lgor i thm's u t i l i t y
in comple te- in format ion domains comes because large
search spaces impose practical l im i ta t ions to lookahead
search. W h i l e the op t ima l so lut ion to a 24-puzzle prob
lem may contain 100 moves, current computers would
take months or years to exhaustively search a tree to
tha t dep th . R T A * solves such problems by mak ing the
move tha t seems local ly best, recording tha t move in
i ts hash table, and repeat ing un t i l the goal is reached.
No current techniques based on heuristic search can find
op t ima l solut ions to the 24-puzzle, yet R T A * returns a
so lu t ion in seconds. T h e catch is tha t the solut ion is not
o p t i m a l .

K o r f demonstrated tha t by increasing the lookahead
hor izon, he could induce R T A * to come up w i t h shorter
solut ions to the 8-puzzle (using the standard Manhat
tan distance heurist ic func t ion) . Figure 2 i l lustrates th is
phenomenon. The top curve is the one reported by Kor f :
i t is the actual number of steps "executed" by R T A * .
The lower curve represents the number of steps left after
we have removed the cycles f r om the solut ion pa th . 1 Of
course, i f we were using R T A * in a real- t ime app l ica t ion ,
we would not be able to remove those cycles—the cost
would have already been incurred. For the remainder of
th is paper, "so lu t ion qua l i t y " refers to the length of a
so lut ion w i t h cycles deleted.

Of course, h igh qua l i t y plans come at a cost. As we i n
crease the lookahead hor izon, we produce better moves,
bu t i nd i v i dua l moves require more t ime to contemplate.
Figure 3 shows the wel l -known exponent ia l nature of tree
search.2

1We have found that a slight modification to the RTA*
algorithm allows it to delete cycles during the search.

2 In this and subsequent figures, time means user time, in
seconds, of a C implementation of RTA* running on an I B M -
PC/RT. Due to the large number of runs, most experiments
in this paper were performed on the 8-puzzle rather than
larger puzzle sizes, but see Section 5 for results from the 15-
puzzle.

Lookahead horizon (h)

Figure 2: Solut ion Qua l i t y as a Funct ion of Lookahead
Hor izon in the 8-puzzle. P lo t ted points are average val
ues of R T A * runn ing on 500 randomly generated prob
lems. (Do t ted l ine = op t ima l solut ion qua l i t y) .

The next step is to compare solut ion qual i ty and
search t ime , as shown in Figure 4. Each po in t along
the curve marks a par t icu lar choice of lookahead hor i
zon. Th i s data conf irms one of the surpr is ing results of
[Korf , 1990]: i f our goal is s imply to f ind a so lu t ion—any
so lu t ion—to the 8-puzzle, the fastest way to do it is to
set the lookahead hor izon to 1. T h a t is: don ' t p lan, j us t
move. Be reactive.

One way to in terpret the data in Figure 4 is as fol lows:
if you have t seconds to spend look ing for a so lu t ion,
expect to f ind a so lu t ion w i t h qua l i ty q — f(t). Likewise,
if you desire a so lu t ion of qua l i ty q, expect to spend

(q) seconds look ing for i t . Thus , Figure 4 gives
us a whole range of deliberativeness and react iv i ty to
choose f rom.

3 M u l t i p l e Agent Search
The prob lem w i t h re ly ing on Figure 4 is tha t R T A * ' s be-
havior is h igh ly errat ic . The data points in Figure 4 are
averages of 500 t r ia ls each. Figure 5 shows a 5000-tr ia i
h is togram of so lut ion qua l i t y for a reactive agent (looka
head horizon of 1). W h y the unpred ic tab i l i t y? Since
R T A * makes decisions based on l im i ted lookahead, var
ious al ternat ives often look equal ly good. In tha t case
R T A * must make a random choice. Of course, i t may end
up f ind ing a ter r ib le so lu t ion , and tak ing a long t ime to
boo t . 3

How can we fix th is problem? Tak ing a clue f r om
Figure 4, we m i g h t r un 500 independent agents to com
p le t ion , then consult the agent tha t found an average-

3Actual ly, there are two sources of variation: one is
RTA*'s random choice mechanism, and the other is the fact
that some instances of the 8-puzzle are harder that others.
The latter source of variation has a minimal effect, however:
no instances require 100-move solutions, but RTA* routinely
returns such solutions.

Knight 433

Figure 4: So lu t ion Qua l i t y vs. Search T i m e in the 8-
Puzzle. O p t i m a l Solu t ion qual i ty is represented by
dashed l ine. Smal l numbers indicate different values of
the lookahead hor izon (h). Points p lo t ted are averages
of 500 t r ia ls each.

F igure 5: Variance in Solu t ion Qua l i t y over 5000 8-
Puzzle Problems (lookahead hor izon h = 1).

F igure 6: Solut ion Qua l i t y as a Funct ion of the Number
of Reactive Agents Solv ing Instances of the 8-Puzzle.
Compare w i t h F igure 2 .

length so lu t ion. B u t then, we m i g h t as well take the best
solu t ion instead of the average one. W h a t k ind of solu
t ion qua l i ty can we expect to see if we take the best of
n agents a t tack ing a single problem?

Figure 6 shows how the number of agents affects so
lu t i on qual i ty . T h e f igure depicts max ima l l y reactive
agents (lookahead hor izon of 1). Note t ha t solut ion qual
i t y improves w i t h each add i t iona l agent, j us t as i t i m
proved when we increased the lookahead horizon of a
single agent.

4 Increasing Deliberativeness versus
Increasing the Number of Agents

At th is po in t , we have two d is t inc t methods for improv
ing so lut ion qual i ty . We already know the exponent ia l
t ime costs associated w i t h increasing the lookahead hor i
zon. The next step is to investigate the cost of increasing
the number of agents. T h e n we w i l l be able to construct
a new t ime versus qua l i t y curve.

T h e cost depends cruc ia l ly on how the mu l t i p le agents
are implemented. There are at least three possibi l i t ies:

(1) End to end—run several agents, one after another,
on a sequential machine.

(2) Para l le l—run a l l agents simultaneously, each on i ts
own processor.

(3) Doveta i l—simula te para l le l ism on a sequential ma
chine by repeatedly g i v ing each agent a t ime slice.

In case (1) , search t ime increases l inear ly w i t h the
number of agents Here, k1 is s imply the av
erage so lut ion t ime of a single t r i a l . In case (2) , search
t ime decreases w i t h number of agents. T h i s is because
when one processor f inds a so lu t ion , a l l processors can
ha l t . The more processors we have, the more l ikely i t
is tha t one of them w i l l f ind a very good solut ion very
quickly. In the l i m i t , we w i l l f ind o p t i m a l solut ions. A t
tha t po in t , add ing more processors w i l l cease to improve
either so lu t ion qua l i t y or search t ime .

Case (3) is a very pract ica l method for sequential ma
chines. L ike paral le l search, doveta i l ing terminates when
any one of the independent agents succeeds. In the case
of large n, t ime increases l inear ly w i t h n . If n is

434 Distributed Al

Figure 3: Search T i m e per Move as a Funct ion of Looka
head Hor izon in the 8-Puzzle

Figure 7: Search Time as a Function of Number of
Agents in the 8-Puzzle. (Total steps taken is propor
tional search time here, since h is fixed at 1). Compare
with Figure 3.

so large tha t near -opt imal solut ions are being generated,
then doub l ing n w i l l s imp ly double the search t ime. B u t
the slope constant is much smaller than case (1) . Instead
of the average so lu t ion t ime , k3 is the near-opt imal solu
t ion t ime . At smaller values of n, there are two opposing
forces at work. Increasing n improves solut ion qua l i ty ,
so fewer steps are needed. B u t since there are mu l t i p l e
agents to dovetai l among, search t ime w i l l suffer. Ex
per imenta l results are summarized in Figure 7. In th is
f igure, lookahead hor izon (h) is held constant at 1. W i t h
the hor izon constant, search t ime is a (l inear) func t ion
of the number of steps taken by al l agents. (Since steps
can be measured more accurately than search t ime, the
figure uses steps.)

St i l l ho ld ing the lookahead hor izon constant at 1, we
can compute a search t ime versus so lut ion qual i ty curve
for dovetai led agents. Each da ta po in t in Figure 8 rep
resents a different value of n.

Now we can compare the two methods of improv ing
solut ion qua l i t y : increasing h (F igure 4) and increasing
n (F igure 8) . T h e fo l low ing table includes average search
t ime and solut ion qua l i t y for three possible combinat ions
of h and n.

Figure 8: Solution Quality versus Search Time for Re
active Agents in the 8-Puzzle. Small numbers indicate
varying numbers of agents. Execution is dovetailed on a
sequential machine. Compare with Figure 4, especially
the x-axis.

The f i rst two lines in the table represent single-agent
search, reactive and del iberat ive. T h e t h i r d l ine rep
resents mul t iagent search. T h e dramat ic result here is
t ha t eight reactive agents—dovetai led on a sequential
machine—can match the so lu t ion qua l i t y of a single de
l iberat ive agent, and do so spending only a f ract ion of
the t ime . Th i s demonstrates the super ior i ty of adding
more reactive agents over increasing the deliberativeness
of a single agent.

T h e benefit of mu l t iagent search derives f r o m the wide
var ia t ion in so lu t ion qua l i t y for a single agent. The t ime
cost is only linear in the number of agents. On the other
hand , the benefit o f de l iberat ion derives f r om the knowl
edge gained by look ing ahead. Bu t the t ime cost is expo
nential in the lookahead hor izon. The benefits are com
parable, bu t the costs are not .

We can now state our results in terms of paral lel
speedup, i.e., uniprocessor t ime d iv ided by mult iproces
sor (mu l t iagent) t ime . To make a fair comparison, i t is
necessary to fix the desired so lut ion qual i ty , as has been
done in the above table. It shows 8 agents achieving the
same result as 1, bu t do ing it faster by a factor of 27,
dovetai led on a sequential machine, and by a factor of
225 tn parallel. Th i s is a superl inear speedup, and it
holds for a l l f ixed values for so lu t ion qual i ty . Super l in
ear speedups offer t remendous savings and have been re-
por ted most notab ly in [Mehro t ra and Gehringer, 1985;
Janak i ram et a/., 1988; Rao and K u m a r , 1988]. Of
course, our speedup is re lat ive to R T A * , not to the best
sequential a l go r i t hm for generat ing solut ions of f ixed
qual i ty . Superl inear speedups are s t r i c t l y impossible in
such cases, since the dovetai led a lgo r i t hm can be run on
a sequential machine. By doveta i l ing agents, we have
created a new uniprocessor a lgo r i t hm against which new
paral le l a lgor i thms must be measured.

T h e preceding discussion applies to the offl ine use of
R T A * . In rea l - t ime, incomple te- in format ion domains,
theoret ical superl inear speedups over the best single-
agent a lgo r i t hm are possible.

Knight 435

5 Other Domains
The fo l lowing table shows some results for the 15-puzzle,
the 4x4 version of the 8-puzzle:

Here, the lookahead hor izon (h) is held constant at 1,
whi le the number of agents (n) varies. Notice tha t mov
ing f r o m 1 to 3 agents yields a large improvement in
solut ion qua l i ty at v i r tua l l y no cost in search t ime.

We have also obta ined a fu l l set of empir ica l results
for the (8-block) Blocks Wor ld domain . The results are
j us t as compel l ing as those for the N-puzzle. It is far
more advisable to tackle a blocks-world problem w i t h
many reactive agents than a few del iberat ive ones. For
example:

Work on app ly ing our ideas to p lann ing systems is cur
rent ly under way. Planners l ike P R O D I G Y [M in ton e t
a/., 1989] solve hard problems, but do not guarantee good
qua l i ty solut ions; other planners provide near-opt imal
solut ions bu t do not scale up. We are explor ing ways to
bridge th is gap by randomiz ing the arb i t ra ry decisions
made by a planner and employ ing mu l t ip le agents.

6 Agent Communicat ion and Dispersal
The results of the previous sections indicate that where
substant ia l var ia t ion in solut ion t ime and qual i ty exists,
many reactive agents should be employed instead of a
few del iberat ive ones. In th is section, we consider two
issues tha t na tura l ly arise: (1) if the agents are allowed
to communicate and coordinate, can their performance
be improved, and (2) how can agents disperse themselves
in the absence of random t ie-breaking?

We consider one rud imentary communicat ion scheme-
Agents communicate by sharing a single hash table,
which records the states visi ted by a l l . Thus , one agent
can benefit f r om the experience of another, who may
have already mapped out a por t ion of the search space.
Empi r i ca l experiments show tha t communicat ing reac
t ive agents yielded solut ions about 10% shorter than
non-communica t ing agents. Search t ime savings vary
w i t h the number of agents: for 2 agents, there is a 2.6%
improvement ; for 10 agents a 6 . 1 % improvement ; for
23 agents, a 7.7% improvement . Th is communicat ion
scheme is easy to imp lement , and there is clearly room
for more inte l l igent schemes.

The second issue is dispersal. Domains l ike the 8-
puzzle use a smal l set of effectively discrete heurist ic es
t imators . Th is leads R T A * to per fo rm a large number
of random tie-breaks, since a l ternat ive moves often look
equal ly good. For tunate ly , these t ie-breaks also serve to
disperse mu l t i p le agents. B u t domains l ike pa th p lann ing
th rough obstacles [Russell and Wefa ld , 1991] involve an
in f in i te number of real-valued est imators. In such do
mains, our reactive agents s imp ly move about in a single
c lump, since what looks best to one agent also looks best
to another.

We have investigated one a lgo r i t hm for effectively dis
persing agents. Th is a lgo r i t hm treats heurist ic estimates
as probabi l i t ies. We obta ined probabi l i t ies by solving
100 sample problems using R T A * , and recording at each
act ion cycle: (1) what the backed-up estimates were for
various al ternat ives, and (2) wha t the best a l ternat ive
real ly was. Here, "best" means "on an op t ima l pa th to
the goa l " (op t ima l paths were computed at each po in t
w i t h I D A * [Kor f , 1985]). We define Stochastic R T A * as
an a lgor i thm tha t uses such probabi l i t ies to occasionally
make what R T A * would consider a bad move. Agents us
ing Stochastic R T A * disperse themselves automat ica l ly .
In our in i t i a l experiments, a single (reactive) stochastic
agent returned solut ions of equal qua l i ty compared to
a normal R T A * agent, bu t consumed 12%) more t ime.
Th is sl ight decrease in single-agent performance washes
out when mu l t ip le agents are employed.

7 Related Work
[Korf , 1988] is the only other work to address m u l t i
ple agents in the context of real - t ime heurist ic search.
I t reports in i t i a l exper imental results, but i t does not
compare mu l t i p le agents w i t h increased del iberat ion, nor
does it measure solut ion qual i ty . A lso, i t does not ana
lyze the results in terms of superl inear speedup.

Beam search is another closely related a lgor i thm.
Roughly, mu l t i p le agent R T A * is to beam search as sin
gle agent R T A * is to beam search w i t h a beam of w id th
one. R T A * is guaranteed to f ind a so lu t ion , by looping
back if necessary, whi le beam search may prune solu
t ions completely. R T A * can also be used in reactive or
del iberat ive mode, and in real - t ime or offl ine domains.
Fur thermore, mu l t i p le agent R T A * can be implemented
s t ra ight forward ly on a general-purpose mult iprocessor,
whereas beam search involves large overhead costs due
to synchronizat ion [Bis iani , 1989].

Previous work in paral le l processing has pioneered
the use of mu l t i p le processors for re l iab i l i t y and perfor
mance enhancement. [Mehro t ra and Gehringer, 1985]
report superl inear speedups when ind iv idua l processors
have vary ing runt imes due to randomiza t ion . [Smith
and Magui re , 1989b] investigate using paral le l ism and
randomizat ion to tackle OR-para l le l i sm in P R O L O G .
[Janaki ram ei a/., 1988] also tackle th is b l i nd search
prob lem and remark tha t i t wou ld be interest ing to pur
sue randomiz ing heurist ic search. They also analyze the
expected speedup for various runn ing t ime probab i l i t y
d is t r ibu t ions (bu t un for tunate ly not for the log-normal
d i s t r ibu t ion of the type seen in our exper iments) . [Smi th
and Magui re , 1989a] and [Goldberg and Jefferson, 1987]

436 Distributed Al

present s imi lar work ; none of these papers addresses
heurist ic search or so lut ion qual i ty .

AI has seen work in paral le l heurist ic search. [Kumar
and Rao, 1987] and [Rao and K u m a r , 1988] report su
per l inear speedups in depth-f i rst I D A * . [Rao and K u
mar, 1992J s tudy speedup under vary ing assumptions
about the the d i s t r i bu t ion of so lut ion states. [Saletore
and Kale, 1990] investigate how to achieve a rel iable,
consistent l inear speedup. These a lgor i thms concen
trate on op t ima l or near op t ima l solut ions, whereas we
are concerned a flexible tradeoff between so lut ion qual
i ty and search t ime. Also, these a lgor i thms do not i n
terleave p lann ing and execut ion, which is necessary in
incomplete- in format ion domains. Other paral le l work
can be found in [Powley and Kor f , 1991], [Huang and
Davis, 1989], and [L i and W a h , 1991].

8 Conclusions and Future Work
The R T A * a lgo r i t hm yields a tradeoff between search
t ime and solut ion qual i ty . Increasing R T A * ' s lookahead
horizon yields better solut ions, but the search t ime in
creases exponent ia l ly . Th is paper has investigated an
other method for improv ing solut ion qual i ty . It uses n
agents, each of which is repeatedly given a t ime slice.
Search t ime only increases l inear ly w i t h n, but solut ion
qual i ty improves very rapid ly . When solut ion qual i ty is
held constant, employ ing n paral lel agents yields super-
linear speedups.

There are several direct ions in which to expand this
work: (1) investigate new a lgor i thms for agent dispersal
and communica t ion , bu i ld ing on work described in Sec
t ion 6; (2) investigate the behavior of heterogeneous col
lections of agents, e.g., agents tha t use different heurist ic
evaluat ion funct ions, or agents w i t h vary ing levels of de-
liberativeness; and (3) apply the method to a wide range
of search and p lann ing domains, e.g., ones w i t h different
solut ion densities, act ion costs, and heurist ic value dis
t r ibu t ions .

9 Acknowledgements
This work was supported in par t by the Nat iona l Sci
ence Foundat ion under contract IRI-8858085. Thanks to
Yolanda G i l , M i l i n d Tambe, and Gary Kn igh t for sug
gestions and assistance.

References
[Bis iani , 1989] R. B is ian i . Beam: An accelerator for

speech recogni t ion. In Proc. I E E E Conf. on Acous
tics, Speech and Signal Processing, 1989.

[Goldberg and Jefferson, 1987] A. Goldberg and D. Jef
ferson. Transparent process c loning: A too l for load
management o f d is t r ibu ted programs. In In te rna t iona l
Conference on Para l le l Processing, 1987.

[Har t et a/., 1968] P. E. Ha r t , N. J. Ni lsson, and
B. Raphael . A fo rma l basis for the heurist ic deter
m ina t i on o f m i n i m u m cost paths. I E E E Transactions
on SSC, 4, 1968.

[Huang and Davis, 1989] S. Huang and L. Davis. Par
allel i terat ive A* search: An admissible d is t r ibuted
heurist ic search a lgor i thm. In Proc. I J C A I , 1989.

[Janaki ram et a l , 1988] V. Janak i ram, D. Agrawa l , and
R. Mehro t ra . A randomized paral lel backtracking al
go r i t hm . I E E E Trans, on Computers, 37(12), 1988.

[Korf , 1985] R. Kor f . Depth-f i rst i terat ive-deepening:
An op t ima l admissible tree search. A r t i f i c i a l I n te l -
ligence, 27(1), 1985.

[Korf , 1988] R. Kor f . Mul t i -agent heuristic search. In
Proc. of the Workshop on Distr ibuted A I , Lake Ar
rowhead, CA, 1988.

[Korf , 1990] R. Kor f . Real- t ime heurist ic search. A r t i f i
c ia l Intel l igence, 42(2-3), 1990.

[Kumar and Rao, 1987] V. K u m a r and V. N. Rao. Par
allel depth f i rst search. In te rna t iona l Journa l of Par -
al lel Programming, 1987.

[L i and W a h , 1991] G. L i and B. W a h . Paral lel i terat ive
ref ining A* search. In In te rna t iona l Conference on
Paral le l Processing, 1991.

[Mehrot ra and Gehringer, 1985] R. Mehro
t ra and E. Gehringer. Superl inear speedup through
randomized a lgor i thms. In In te rna t iona l Conference
on Para l le l Processing, 1985.

[M in ton et al . , 1989] S. M i n t o n , J. G. Carbonel l , C. A.
Knoblock, D. R. Kuokka, O. E tz ion i , and Y. G i l .
Explanat ion-based learning: A prob lem solv ing per
spective. A r t i f i c i a l Intel l igence, 40(1-3) , 1989.

[Powley and Korf , 1991] C. Powley and R. Kor f . Single-
agent paral le l window search. I E E E P A M I , 13(5),
1991.

[Rao and Kumar , 1988] V. N. Rao and V. Kumar . Su
perl inear speedup in state-space search. In Proc.
Foundat ion of Software Technology and Theoretical
Computer Science, 1988.

[Rao and K u m a r , 1992] V. Rao and V. Kumar . On the
efficiency of paral le l backt rack ing. I E E E Trans, on
Paral le l and Dist . Systems, (To appear), 1992.

[Russell and Wefa ld , 1991] S. Russell and E. Wefa ld . Do
the Right Th ing : Studies in L im i ted Rat ional i ty . M I T
Press /Cambr idge, M A , 1991.

[Saletore and Kale, 1990] V. Saletore and L. Kale. Con
sistent l inear speedups to a first so lut ion in paral lel
state-space search. In Proc. A A A I , 1990.

[Simon, 1957] H. A. S imon. Models of M a n . Wi ley , New
York , 1957.

[Smi th and Magui re , 1989a] J . Sm i th and G. Maguire.
Exp lo r ing 'mu l t i p l e wor lds ' in paral le l . In In terna
t iona l Conference on Para l le l Processing, 1989.

[Smith and Magu i re , 1989b] J . Sm i th and G. Maguire.
Transparent concurrent executions of mu tua l l y exclu
sive al ternat ives. In 9th I E E E In te rna t iona l Confer
ence on Dis t r ibuted Comput ing Systems, 1989.

Knight 437

