
Provably bounded o p t i m a l agents

Stuar t J. Russell Devika Subramanian Ronald Parr
University of California, Berkeley Cornell University University of California, Berkeley

CA 94720, USA Ithaca, NY 14853, USA CA 94720, USA
russel l©cs.berkeley.edu devika©cs.Cornell.edu parr©guard.berkeley.edu

Abstract
A program is bounded optimal for a given com­
putational device for a given environment, if
the expected uti l i ty of the program running
on the device in the environment is at least
as high as that of all other programs for the
device. Bounded optimality differs from the
decision-theoretic notion of rationality in that
it explicitly allows for the finite computational
resources of real agents. It is thus a central is­
sue in the foundations of artificial intelligence.
In this paper we consider a restricted class of
agent architectures, in which a program con­
sists of a sequence of decision procedures gen­
erated by a learning program or given a prion.
For this class of agents, we give an efficient con­
struction algorithm that generates a bounded
optimal program for any episodic environment,
given a set of training examples. The algo­
r i thm includes solutions to a new class of opti­
mization problems, namely scheduling compu­
tational processes for real-time environments.
This class appears to contain significant prac­
tical applications.

1 In t roduc t ion
Since before the beginning of artificial intelligence,
philosophers and economists have looked for a satisfac­
tory definition of rational behaviour. This is needed to
underpin theories of ethics, inductive learning, reason­
ing, decision-making and economic modelling. Doyle [7]
has proposed that AI itself be defined as the compu­
tational study of rational behaviour. The decision-
theoretic definition of rational behaviour as maximiza­
tion of expected uti l i ty, and analogous definitions in the
context of logical planning, have been extremely valu­
able in allowing AI research to be done at an abstract
level, independent of specific implementations. Several
systems can already be said to satisfy the required input-
output relations.

Unfortunately, these approaches are of l imited value
because they ignore the total impracticality of reaching
optimal decisions in realistic situations. In this paper,
we propose instead the concept of bounded optimality

in which the uti l i ty of a decision is a function of both
its quality and the time taken to choose it. We give a
formal definition below; informally, we say that an agent
exhibits bounded optimality if its program is a solution
to the constrained optimization problem presented by its
architecture.

We begin in section 2 with a necessarily brief dis­
cussion of the relationship between bounded optimality
and earlier notions of rationality. We note in particular
that some important distinctions can be missed with­
out precise definitions of terms. Thus in section 3 we
introduce formal definitions of agents1, their programs,
their behaviour and their rationality. Section 4 exam
ines a class of agent architectures for which the prob­
lem of generating bounded optimal configurations is ef­
ficiently soluble. The solution involves a new class of
interesting and practically-relevant optimization prob­
lems. We examine several types of episodic, real-time
environments and derive bounded optimal programs for
these regimes. Finally, we describe a set of open theo­
retical and experimental issues, including an asymptotic
version of bounded optimality that may be more robust
and tractable than the strict version.

2 Histor ical perspective
The classical idea of perfect rationality, which developed
from Mill's utilitarianism, was put on a formal footing in
von Neumann's decision theory [25]. It stipulates that a
rational agent always act so as to maximize its expected
utility. The expectation is taken according to the agent's
own beliefs; thus, perfect rationality does not require
omniscience.

In artificial intelligence, the logical definition of ra­
tionality, known in philosophy as the "practical syllo­
gism", was put forward by McCarthy [14], and reiterated
strongly by Newell [15]. Under this definition, an agent
should take any action that it believes is guaranteed to
achieve any of its goals. If AI can be said to have had a
theoretical foundation, then this definition of rationality
has provided it .2

1 We use the term ralph (rational agent with limited perfor­
mance hardware) to denote an agent that exhibits bounded
optimality.

2This is not to say that this was the wrong approach at the
time. McCarthy believed, probably correctly, in the halcyon

338 Distributed AI

Economists have used ra t iona l i t y as an abstract model
of economic ent i t ies, for the purposes of economic fore­
casting and designing market mechanisms. Un fo r t u ­
nately, as S imon [23] po in ted ou t , real economic ent i ­
ties have l i m i t e d t ime and l i m i t e d powers of delibera­
t i on . He proposed the s tudy of bounded rat ional i ty , i n ­
vest igat ing " . . . the shape of a system in which effec­
tiveness in compu ta t i on is one of the most impo r tan t
weapons of surv iva l . " Simon's work focussed ma in ly on
satisf icing designs, which del iberate un t i l reaching some
solut ion sat is fy ing a preset "aspi ra t ion level." The re­
sults have descript ive value for mode l l ing various actual
enti t ies and policies, bu t no prescript ive f ramework for
bounded ra t iona l i t y was developed.

I . J. Good [10] emphasized the conceptual dist inc­
t ion between classical or " type I" ra t iona l i ty , and what
he called " type I I " ra t iona l i t y , or the max im iza t ion of
expected u t i l i t y taking in to account deliberation costs.3

W h a t th is means is tha t an agent exhib i ts type I I ra­
t iona l i t y i f at the end of i ts del iberat ion and subsequent
act ion, i ts subject ive u t i l i t y is max imized compared to
al l possible de l iberate/act pairs in which i t could have
engaged. Good does not define the space of possible de­
l iberat ions, bu t f rom his i n fo rma l descriptions, i t is clear
tha t Type I I ra t i ona l i t y is intended to prescribe op t ima l
sequences of computa t iona l steps. Unfor tunate ly , these
may be even harder to select than actions themselves.

Recognizing these problems, Cherniak [4] suggested
a def in i t ion of " m i n i m a l r a t i ona l i t y " , specifying lower
bounds on the reasoning powers of any ra t iona l agent,
instead of upper bounds. A phi losophical proposal gen­
eral ly consistent w i t h the not ion of bounded op t ima l i t y
can be found in Dennett 's "Mo ra l F i rs t A i d Manua l " [6].

Many researchers in A I , some of whose work is dis­
cussed below, have worked on the problem of designing
agents w i t h l i m i t e d computa t iona l resources; the 1989
A A A I Sympos ium on A I and L i m i t e d Rat iona l i ty [9]
contains an interest ing variety of work on the topic.

Metareasoning — reasoning about reasoning — is an
i m p o r t a n t technique in this area, since i t enables an
agent to contro l i ts del iberat ions according to their costs
and benefits. Combined w i t h the idea of anyt ime [5] or
f lex ib le a lgor i thms [l l] , t ha t re turn better results as t ime
goes by, a s imple f o r m of metareasoning allows an agent
to behave well in a rea l - t ime env i ronment . Breese and
Fehl ing [2] apply s imi lar ideas to cont ro l l ing mu l t ip le de­
cision procedures. Russell and Wefa ld [18] give a general
me thod for precompi l ing certain aspects of metareason­
ing so tha t a system can efficiently est imate the effects
of i nd i v i dua l computa t ions on i ts intent ions, g iv ing fine-
grained contro l of reasoning. These techniques can all
be seen as app rox ima t i ng Type II ra t iona l i t y ; they pro­
vide useful insights i n to the general prob lem of control
of reasoning, bu t there is no reason to suppose that the

days before formal intractabil i ty results in computation were
known, that in the early stages of the field it was important to
concentrate on "epistemological adequacy" before "heuristic
adequacy".

3Simon [22] also says: "The global optimization problem
is to find the least-cost or best-return decision, net of com­
putational costs."

approximat ions used are op t ima l in any sense.
Horv i tz [11] uses the te rm bounded opt imal i ty to re­

fer to " the op t im iza t ion of computa t iona l u t i l i t y given
a set of assumptions about expected problems and con­
straints in reasoning resources." Russell and Wefa ld [19]
say tha t an agent exhibi ts bounded op t ima l i t y " i f i ts
program is a solut ion to the constrained op t im iza t ion
problem presented by i ts architecture." The phi losophi­
cal "move" , f rom op t im iz ing over actions or del iberat ion
sequences to opt imizat ion over programs, is the key to
our proposal.4 In real i ty, designers of intel l igent agents
do not have direct control over the agent's actions or
del iberat ions; these are generated by the operat ion of
the agent's p rogram. Prescript ive specif ication of ac­
t ions (Type I) or del iberations (Type I I) may produce
impossible constraints, if these specifications are not re­
alized by any program for the agent. Precise def in i t ion
of the space of agent programs is therefore an impo r tan t
par t of the study of bounded op t ima l i t y . 5 In the next
section, we bu i ld a suitable set of def ini t ions f r om the
ground up, so tha t we can begin to demonstrate exam­
ples of provably bounded op t ima l agents.

3 Agents, architectures and programs

In tu i t ive ly , an agent is jus t a physical ent i ty tha t we wish
to view in terms of i ts perceptions and actions. W h a t
counts in the first instance is what it does, not necessar­
i ly what i t th inks, or even whether i t th inks at a l l . Th i s
i n i t i a l refusal to consider fur ther constraints on the inter­
nal workings of the agent (such as tha t it should reason
logical ly, for example) helps in three ways: f irst, i t a l ­
lows us to view such 'cognit ive facult ies' as p lann ing and
reasoning as occurr ing in the service of f ind ing the r ight
th ing to do; second, i t makes room for those among us [1;
3] who take the posi t ion tha t systems can do the r igh t
th ing w i thou t such cognit ive facult ies; t h i r d , i t al lows
more freedom to consider various specifications, bound­
aries and interconnections of subsystems.

An agent can be described abstract ly as a mapp ing
(the agent funct ion) f rom percept sequences to actions;
this mapp ing is implemented by an agent program. The
design and evaluat ion of agents are based on the be­
haviour of the agent p rogram in an env i ronment .

Let P be the set of percepts tha t the agent can receive
at any instant , and A be the set of possible actions the
agent can carry out in the external wor ld . Then we have

D e f i n i t i o n 1 Agent f unc t i on : a mapping

where P* is the set of a l l possible percept sequences.
The agent funct ion is an ent irely abstract ent i ty , unl ike
the agent p rogram. Compu tab i l i t y theory relates these
abstract funct ions to their f inite representations as pro­
grams runn ing on a machine.

This move is analogous to the development of 'rule uti l­
itarianism ' from 'act utilitarianism*.

5 Recent work by Etzioni [8] and Russell and Zilber-
atein [20] can be seen as optimizing over a well-defined set
of agent designs.

Russell, Subramanian, and Parr 339

We wil l consider a physical agent as consisting of an
architecture and a program. The architecture is respon-
sible for interfacing between the program and the dis­
crete, deterministic environment, and for running the
program itself. Wi th each architecture M, we associate
a finite programming language which is just the set
of all programs runnable by the architecture. An agent
program is a program When a sequence of per­
cepts is provided by the architecture to the program, a
sequence of actions is generated: the action occurs
between percept i and percept i+ 1. Thus an architec­
ture maps a percept sequence of length k, for any k, to
an action sequence of the same length according to the
program it is running. The behaviour of an agent is the
sequence of actions it generates.

Definit ion 2 Architecture: a fixed interpreter M for
the agent 's program:

For the purposes of this paper, we will define the envi-
ronment as a set of world states together with mappings
defining the effects of actions and the generation of per-
cepts:

Definition 3 Environment: a set of world states W
and mappings

It is important to note that although every program
induces a mapping in the above sense, the action fol­
lowing a given percept is not necessarily the agent's "re­
sponse" to that percept; because of the delay incurred
by deliberation, it may only reflect percepts occurring
much earlier in the sequence, and it may not be possible
to associate each action with a particular prior percept
sequence.

3.1 Bounds on rationality
The expected uti l i ty of an action Ai that has possible
outcomes for an agent with prior evidence E about
the environment, is given by

where U is a real-valued uti l i ty function on states.

Definit ion 4 Perfect rationality: an agent is perfectly
rational iff it selects action so as to
maximize its expected utility.

This definition is a persuasive specification of the
agent function / and underlies several current projects
in intelligent agent design. A direct implementation of
this specification, which ignores the delay incurred by
deliberation, does not yield a reasonable solution to our
problem the calculation of expected utilities takes time
for any real agent.

By neglecting the fact of l imited resources for compu­
tation, classical decision theory fails to provide an ad­
equate theoretical basis for artificial intelligence. The
'finitary predicament' [4] arises because real agents have

only finite computational power and because they don't
have all the time in the world. In terms of our simple
formal description of agents introduced above, it is easy
to see where the difficulty has arisen. In designing the
agent program, logicists and decision theorists have con­
centrated on specifying an optimal agent function fopt
in order to guarantee the selection of the best possible
action A in each situation. The function fopt is indepen­
dent of the architecture M. Unfortunately, the behaviour
of any program that implements this function may not
be desirable. The delay in computing
means that the kth action may be optimal only with
respect to some much earlier subsequence, and is now
totally inappropriate.

3.2 Bounded optimality

To escape this quandary, we propose a machine-
dependent standard of rationality, in which optimality
constraints are imposed on programs rather than agent
functions, deliberations or behaviours. To formalize this
idea, it wil l be helpful to assume a real-valued uti l­
ity function U on histories, that is, sequences of world
states. Then we assign values to a program / based on
the sequence of states through which it "drives" the en­
vironment E when run on M starting in the world WO:

where result denotes the state sequence generated by
the execution of the program /, defined in the obvious
way using TA and Tp.

If the init ial state Wo and environment E are known,
then the optimal agent program is given by:

Definition 5 Optimal agent program:

If instead the "designer" has only a probability distribu­
tion over the init ial state and environment model, then
this wil l introduce a distribution over the state sequences
generated, and the optimal program has the highest ex­
pected value V(l, M, E) over this distribution.

4 Provably ralphs

In order to construct a provably rational agent with l im­
ited performance hardware (ralph), we must carry out
the following steps:

• Specify a class of machines on which programs are
to be run.

• Specify the properties of the environment in which
actions wil l be taken, and the uti l i ty function on the
behaviours.

• Propose a construction method.

• Prove that the construction method succeeds in
building ralphs.

340 Distributed Al

4.1 P r o d u c t i o n system arch i tec tures
We begin our study with a simple form of production
system, in which condition-action rules of the form "If

are applicable whenever their left-hand
sides become true. Even such a simple system can easily
overtax the resources of a real-time agent, if the rule base
becomes large and the conditions become complex. An
agent implemented as a production system wil l therefore
contain approximate rules, for which the action A, is not
guaranteed to be the best possible whenever condition

obtains in the world.
An illustrative example is provided by the image pro-

cessing algorithms in an automated mail sorter. These
machines scan handwritten or printed addresses on mail
pieces and dispatch them accordingly. The scanned im­
age is processed by any or all of several procedures de-
signed to read with varying degrees of accuracy and re
source expenditure; each procedure may have many pos­
sible variants — for example, we can vary the number of
hidden nodes in a neural network recognizer. To prevent
jams, the mail piece must be sorted appropriately, or
rejected, in time for the (stochastic) arrival of the next
piece. The object is to maximize the accuracy of sort­
ing while minimizing the reject percentage and avoiding
jams.

Here we consider only a special case of production
system, in which complete rules (or decision rules) are
matched in a fixed sequence. We call a sequence of pro­
duction rules a strategy. Each rule i has associated with
it a match time t, and a quality which corresponds
to the uti l i ty of the rule's recommended action if taken
at the beginning of the episode.

We assume that each rule is drawn from some rule
language (In keeping with the scheduling literature,
we wil l often use the term "job" to refer to a rule in a
sequence.) Let denote a production system archi­
tecture that can accommodate rules of maximum size n
from rule language For example, we might consider
feedforward neural networks with at most n nodes.

In executing a typical sequence the
agent matches each rule in turn against the current per­
cept, generating a recommended action. At some time t
after the beginning of the episode, it wil l decide to act,
selecting the highest-quality action recommended by any
of the rules it has previously matched. If the quality of
the rule chosen is qi, the value of the episode for the
agent wi l l be some function of qi, and t, according to the
regimes described below. Before the episode begins, the
agent may not know when it wil l act (for example, in
the stochastic deadline case), so generally speaking the
value of a given strategy wil l be an expectation.

4.2 Ep isod ic rea l - t ime env i ronments

First, we place some restrictions on the environment in
order to simplify our problem. We need C to learn ut i l ­
ity information, so in order to avoid (temporarily) the
credit assignment problem we assume an "episodic" en­
vironment, where after each non-null action by the agent,
a reward is received and the environment then reaches
an unknown state drawn from a probability distribution
that remains stationary over time. The init ial state Wo

is also drawn from this distribution. In the mail-sorting
example, the reward is 1 for a correct dispatch; 0 for an
incorrect dispatch; 0.2, say, for a reject; and for a
jam.

In order to talk about deadlines and time cost, it is
useful to have a notion of inaction. Let noopt denote a se­
quence of null actions lasting t time steps. Also, [A | W]
will denote the sequence of world states through which
the action sequence A drives the environment given an
initial state W. We use '•' to denote concatenation of
sequences.

Now we can define three typical real-time regimes:
fixed time cost, fixed deadline and stochastic deadline.

De f i n i t i on 6 Fixed time cost: for any action A, any
state W and any state sequences

for
some constant c.

Def i n i t i on 7 Fixed deadline: for any action A, any
state W, state sequences for some constant

Deadlines are thus represented by a uti l i ty "c l i f f occur­
ring at some time after the beginning of an episode.
In the case of a stochastic deadline, which describes the
mail sorter, the location of the uti l i ty cliff is not known
exactly. We assume that, for the designer, the value of
[noop1 | W] is a random variable, distributed in such a
way that an action following it has probability P(t) of
being of zero uti l i ty for the episode. This corresponds
to P being the cumulative distribution function for the
deadline arrival time.6

4.3 The cons t ruc t ion a l g o r i t h m
Our general scheme at present is to exhibit an algo­
r i thm that is capable of learning sets of individual de­
cision procedures, and arranging them in a sequence
such that the performance of an agent using the se­
quence is at least as good as that of any other such
agent. That is, the construction algorithm C, operat­
ing in E, returns a program / for architecture M such
that C wil l work by first ob­
serving a set e of training episodes in E, and then build­
ing an approximately optimal strategy using a learning
algorithm for learning rules of size k in the rule
language
procedure

In addition to constructing the decision rules, LJ,k
outputs estimates of the rule quality g,. For now, we
wil l assume that the rule match times ti and the dead-
line distribution P (for the stochastic case) are known.
Algorithm optimize extracts an optimal strategy from

6 We assume that some percept immediately precedes the
actual deadline, allowing the agent to respond at the next
step. Without this, the agent is walking blindfolded towards
the utility cliff (also an interesting problem).

Russell, Subramanian, and Parr 341

the rule set R. In the following subsections we describe
the three variants of optimize.

4.4 Resul ts fo r f i xed t i m e cost
This case is straightforward. The value of a strategy is
given by

(i)
Theo rem 1 The optimal strategy for fixed time cost
utility functions is the singleton

4.5 Resu l ts fo r f ixed deadl ine
This case is also straightforward. The value of a strategy
s is given by:

(2)

Theo rem 2 The optimal strategy is the singleton se­
quence i, where qi is the highest among all rules for which

4.6 Resul ts for stochast ic deadl ines

Wi th a stochastic deadline distributed according to P(t) ,
the value of a strategy s = s1 , . . . , sm is an expectation.
It is calculated as a summation, over the jobs that can
be interrupted, of the probability of interruption times
the quality of the best completed job:

(3)

where Mi = max(q 8 1 , . . . , qSi), and for convenience we
define tsm+1 = oo. We wil l use this formula to prove a
number of properties of optimal strategies.

A simple example serves to illustrate the value func­
tion. Consider R = {r1,r2,r3}}. The rule r1 has a
quality of 0.2 and needs 2 seconds to run: we will
represent this by r1 = (0.2,2). The other rules are
r2 = (0.5, 5), r3 = (0.7,7). The deadline density func­
tion is a uniform distribution over 0 to 10
seconds. The value of the sequence r1r2r3 is

A geometric intuit ion is given by the notion of a perfor­
mance profile shown in Figure 1. For a uniform deadline
density function, the value of a sequence is proportional
to the area under the performance profile up to the last
possible interrupt time. Note that the height of the pro­
file during the interval of length ti while job i is running
is the quality of the best of the previous jobs.

The following lemma gives an extremely useful prop­
erty of optimal sequences:

L e m m a 1 There exists an optimal sequence that is
sorted in increasing order of q i .

Henceforth we need consider only q-ordered strategies.
This means that M, in equation (3) can be replaced by

The following lemma establishes that a strategy can
always be improved by the addition of a better job at
the end:

Figure 1: Performance profile for r1 r2r3, with p super-
imposed.

Lemma 2 For every sequence s = s 1 , . . . , sm sorted in
increasing order of quality, and single step z with

Coro l la ry 1 There exists an optimal strategy ending
with the highest-quality job in R.

Proofs of all the above results appear in [17].

4.6.1 A Dynam ic P r o g r a m m i n g A l g o r i t h m
The dynamic programming method can be used to ob­

tain an optimal sequence of decision rules in pseudo-
polynomial time. We assume that the time ti associated
with each rule is an integer (this is almost without loss
of generality, using standard rounding and scaling meth­
ods). In keeping with the lemma above, we assume that
optimal strategies are ordered by qi,.

The algorithm constructs the table S(i , T) , where each
entry in the table is the highest value of any sequence
that ends with rule i at time T. We assume the rule
indices are arranged in increasing order of quality, and
T ranges from the start time 0 to the end time L =

. The update rule is:

From Corollary 1, we can read off the best sequence from
the highest value in row n of the matrix M.

Theorem 3 The DP algorithm computes the optimal
sequence m time 0 (n 2 L) where n is the number of deci-sion procedures in R.

U n i f o r m d is t r ibu t ions If the deadline is uniformly
distributed over some init ial interval, we can obtain an
optimal sequence in strongly polynomial time. Initially,
we assume an interval longer than any possible sequence.
Then the probability that the deadline arrives during job
Si of sequence s is just Hence we have a simple
recursive specification of the value V(as) of a sequence
beginning with job a:

(4)
A dynamic programming algorithm can then use the
state function S f (i) , which is the highest value of any
rule sequence ending in / and beginning with rule i.
From lemma 1 and equation 4, the update rule for S f (i)
is

with boundary condition For any
given can therefore be tabulated for i = 1 . .. n

342 Distributed Al

in time 0 (n 2) , from which we can obtain the optimal
sequence.

If all the rules can fit before the end of the deadline
distribution, then from Corollary 1 above the last rule
/ must be the rule with highest quality. Otherwise, any
rule might be the last rule with a non-zero chance of
completing, so we check each candidate:

Theo rem 4 The optimal sequence of decision proce-
dures for a uniformly distributed stochastic deadline can
be determined in 0 (n 3) time where n is the number of
decision procedures in R.

4.7 Agnos t i c Lea rn ing of Decis ion Rules

Our learning algorithm searches for the best rule
in In order to work in any environment, it must
be agnostic [13] in that it makes no assumptions about
the target function, that is, the form of the correct de­
cision rule. It searches for the best subject to a com­
plexity parameter k that bounds the size of the rules.
Kearns, Schapire and Sellie have shown (Theorems 4 and
5 in [13]) that, for some languages , the error in the
learned approximation can be bounded to within e of the
best rule in that fits the examples, with probability

The sample size needed to guarantee these bounds
is polynomial in the complexity parameter k, as well as

and Once an approximate rule with a certain com­
plexity is learned, we statistically estimate
its quality q. Standard Chernoff-Hoeffding bounds can
be used to l imit the error in the quality estimate to be
within eq with probability The sample size needed
is also polynomial in and

Thus the error in the agnostically learned rules is
bounded to within of the best rule in its complexity
class with probability The error in the quality es
timation of these rules is bounded by with probability

. We can show that the policy selection methods
for the three real-time regimes will incur a deficit of at
most in the choice of the optimal sequence of
rules.

4.8 The b o t t o m l ine
We can now state the bounded optimality theorem for
our construction procedure.

Theo rem 5 Assume a production system architecture
operating in any episodic environment. For each

of the three real-time regimes defined above, with proba­
bility greater than the construction procedure
C returns a program I such that
after seeing a number of episodes that is polynomial in

Furthermore, the computation time
of C is (at worst) polynomial in the above quantities and
in L, the sum of the rule execution times.

Although the theorem has practical applications, it is
mainly intended as an illustration of the derivation of
a bounded optimal agent. Wi th some additional work,
more general error bounds can be derived for the case in
which the rule execution times ti and the real-time util ity
variation (time cost, fixed deadline or deadline distribu­
tion) are all estimated from the training episodes.

5 Further work

We plan to extend this work in several directions, as
follows.
1. Foundational issues:
Learning agents: When the agent, whose design is to be
optimized, includes a learning component, the notion of
bounded optimality becomes even more interesting be­
cause we must take into account how the agent's config­
uration wil l evolve over time, reflecting its own expected
obsolescence.
Asymptotic bounded optimality: The strict notion of
bounded optimality may be a useful philosophical land­
mark from which to explore artificial intelligence, but it
may be too strong to allow many interesting, general re­
sults to be obtained. Just as in complexity theory, where
absolute efficiency is the aim but asymptotic efficiency is
the game (so to speak), in studying bounded optimality
an asymptotic version might help. First, we need a class
of environments, E, which is unbounded in a complexity
measure on environments n(E). Then we wil l say that
an agent program / is timewise asymptotically bounded
optimal iff

where kM denotes a version of the machine M speeded
up by a factor k. In English, this means that the pro­
gram is basically along the right lines if it just needs a
faster machine to be as good as the best program on all
problems above a certain level of difficulty.

Asymptotic bounded optimality generalizes the stan­
dard definition of asymptotic complexity. Let E be a
class of environments in which a problem is input to the
machine at time t = 0, where n(E) is the input size
measure. Let V return (or any decreasing function
of t) for a program that outputs the correct solution at
time t, and 0 for all other programs. Then a program is
bounded optimal iff it has asymptotic complexity equal
to the tight lower bound for the class E. Note that in
standard complexity, we allow any constant factor c in
the execution time of the program, whereas our defini­
tion uses a constant factor in the speed of the machine.
In the standard setting these are equivalent, but with
more general time-dependent utilities only the latter is
appropriate.
2. Scheduling issues:
The existence of polynomial-time algorithms and ap­
proximation schemes for variants of the computation
scheduling problem; scheduling algorithms for situations
in which the solution qualities of individual processes are
interdependent (such as when one can use the results of
another); scheduling combinations of computational and
physical (e.g., job-shop and flow-shop) processes, where
objective functions are a combination of summation and
maximization; and computation scheduling for parallel
machines or multiple agents.
3. Learning issues:
Relaxing the stationarity requirement on the environ­
ment — this entails generalizing the PAC model to han­
dle the case in which the fact that the agent learns
may have some effect on the distribution of future

Russell, Subramanian, and Parr 343

episodes; re laxing the episodic requirement to al low non-
immedia te rewards — this entai ls addressing the credit
assignment p rob lem; examin ing var iants of the agnostic
learning model to f ind the most pract ica l ly useful theo­
ret ical scenario.
4- Appl icat ions:
Despite the del iberate s imp l i c i t y of the architecture,
our construct ion a lgo r i t hm can be appl ied direct ly to
the problems such as scheduling image-processing algo-
r i t hms for a m a i l sorter. Scheduling of m ixed computa­
t iona l and physical processes, ment ioned above, broad­
ens the scope of appl icat ions considerably. An indust r ia l
process, such as designing and manufac tu r ing a car, con­
sists of bo th computa t iona l steps (design, logistics, fac­
to ry schedul ing, inspect ion etc.) and physical processes
(s tamping, assembling, pa in t ing etc.) . One can easily
imagine many other appl icat ions in real - t ime f inancia l ,
indus t r ia l and m i l i t a r y contexts.

6 Conclusions

In short , we are proposing a new l ine of inqu i ry in to
bounded o p t i m a l agents in which the value of a deci­
sion is judged in terms of the effect i t has on the actions
per formed by the agent, no t ing tha t bo th actions and
computat ions have t ime value. Bounded op t ima l i t y may
provide a sui table basis for theoret ical research in ar­
t i f ic ia l intel l igence. Asymp to t i c bounded op t ima l i t y in
par t icu lar promises to y ie ld useful results on composite
agent designs, using the opt imal i ty -preserv ing composi-
t ion methods in [20]. As a robust measure of ra t ional i ty ,
i t 's possible t ha t i t could do for AI what "b ig -O" de­
scr ipt ions d id for complex i ty theory.

Bounded o p t i m a l i t y also has phi losophical ly interest­
ing imp l ica t ions . For example, l ike the ru le-ut i l i ta r ians
we no longer ta lk about ra t iona l actions, because ind i ­
v idua l actions, and even del iberat ions, by a bounded op­
t i m a l agent may be a rb i t ra r i l y i r ra t iona l in the classical
sense.

Fur thermore, th is theoret ical research should, by de­
sign, apply to the pract ice of ar t i f ic ia l intel l igence in
a way tha t ideal ized, inf inite-resource models may not .
We have g iven, by way of i l l us t ra t i ng th is def in i t ion, a
bounded o p t i m a l agent: the design of a s imple condi t ion-
act ion rule system tha t , given a learning mechanism,
provably and eff iciently converges to a ra t iona l config­
u ra t ion .

References
[1] Agre, P., and Chapman, D. (1987) Pengi: An imple­

mentation of a theory of activity. In Proc. 6th National
Conference on Ar t i f ic ia l Intelligence, Seattle, WA: Mor­
gan Kaufmann.

[2] Breese, J. S., and Fehling, M. R. (1990) Control
of problem-solving: Principles and architecture. In
Shachter, R. D., Levit t , T. , Kanal, L., and Lemmer,
J. (Eds.) Uncertainty in Ar t i f ic ia l Intelligence 4- Ams-
terdam: North Holland.

[3] Brooks, R. A. (1986) A robust, layered control system
for a mobile robot. I E E E Journal of Robotics and Au­
tomation, 2(1), 14-23.

[4] Cherniak, C. (1986) Min imal rationality. Cambridge:
M I T Press.

[5] Dean, T. and Boddy, M. (1988) An analysis of time-
dependent planning. In AAAI-88, 49-54.

[6] Dennett, D. (1986) The moral first aid manual. Tanner
lectures on human values, University of Michigan.

[7] Doyle, J. (1983) What is rational psychology? Toward
a modern mental philosophy. AI Magazine 4 (3), 50-53.

[8] O. Etzioni. Tractable decision-analytic control. Proc. of
1st International Conference on Knowledge Representa­
tion and Reasoning, 114-125, 1989.

[9] Fehling, M., and Russell, S. J. (Eds.) (1989) Proceedings
of the A A A I Spring Symposium on Limited Rationality.
Stanford, CA.

[10] Good, I. J. (1971) Twenty-seven principles of rationality.
In Godambe, V. P., and Sprott, D. A. (Eds.) Founda­
tions of Statistical Inference. Toronto: Holt, Rinehart,
Winston.

[11] Horvitz, E. J. (1988) Reasoning about beliefs and
actions under computational resource constraints. In
Levitt , T. , Lemmer, J., and Kanal, L. (Eds.) Uncertainty
in Art i f ic ia l Intelligence S. Amsterdam: North Holland.

[12] Horvitz, E., Cooper, G., and Heckerman, D. (1989) Re­
flection and action under scarce resources: Theoretical
principles and empirical study. In Proceedings of the
Eleventh International Joint Conference on Ar t i f ic ia l I n ­
telligence, Detroit, M I : Morgan Kaufmann.

[13] Kearns, M., Schapire, R., and Sellie, L. (1992) Toward
efficient agnostic learning. In Proc. 5th Ann. Workshop
on Computational Learning Theory. Pittsburgh, PA:
Morgan Kaufmann.

[14] McCarthy, J. (1958) Programs with common sense. In
Proceedings of the Symposium on the Mechanization of
Thought Processes, Teddington, England: HMSO.

[15] Newell, A. (1981) The knowledge level. AI Magazine 2,
1-20.

[16] Nilsson, N. J. (1991) Logic and artificial intelligence.
Ar t i f ic ia l Intelligence 45, 31-56.

[17] Russell, S. J., and Subramanian, D. (1992) On provably
rational agents with limited performance hardware. In
Baum, E. (Ed.) Computational learning and cognition:
Proceedings of the Third NEC Symposium, SIAM Press.

[18] Russell, S. J., and Wefald, E. H. (1989) Principles of
metareasoning. In Proc. KR-89.

[19] Russell, S. J. , and Wefald, E. H. (1991) Do the right
thing: Studies in l imited rationality. Cambridge, MA:
M I T Press.

[20] Russell, S. J., and Zilberstein, S (1991) Composing real-
time systems. In Proc. I JCAI -91 , Sydney.

[21] Savage, L. J. (1972) The foundations of statistics, 2nd
rev. ed. New York: Dover.

[22] Simon, H. A. (1976) On how to decide what to do.
In [23].

[23] Simon, H. A. (1982) Models of bounded rationality, Vol­
ume 2. Cambridge: M I T Press.

[24] Valiant, L. G. (1984) A theory of the Iearnable. Com­
munications of the A C M 18(11), 1134-42.

[25] von Neumann, J., and Morgenstern, O. (1947) Theory
of games and economic behavior. Princeton: Princeton
University Press.

344 Distributed AI

