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Abstract 
A program is bounded optimal for a given com­
putational device for a given environment, if 
the expected uti l i ty of the program running 
on the device in the environment is at least 
as high as that of all other programs for the 
device. Bounded optimality differs from the 
decision-theoretic notion of rationality in that 
it explicitly allows for the finite computational 
resources of real agents. It is thus a central is­
sue in the foundations of artificial intelligence. 
In this paper we consider a restricted class of 
agent architectures, in which a program con­
sists of a sequence of decision procedures gen­
erated by a learning program or given a prion. 
For this class of agents, we give an efficient con­
struction algorithm that generates a bounded 
optimal program for any episodic environment, 
given a set of training examples. The algo­
r i thm includes solutions to a new class of opti­
mization problems, namely scheduling compu­
tational processes for real-time environments. 
This class appears to contain significant prac­
tical applications. 

1 In t roduc t ion 
Since before the beginning of artificial intelligence, 
philosophers and economists have looked for a satisfac­
tory definition of rational behaviour. This is needed to 
underpin theories of ethics, inductive learning, reason­
ing, decision-making and economic modelling. Doyle [7] 
has proposed that AI itself be defined as the compu­
tational study of rational behaviour. The decision-
theoretic definition of rational behaviour as maximiza­
tion of expected uti l i ty, and analogous definitions in the 
context of logical planning, have been extremely valu­
able in allowing AI research to be done at an abstract 
level, independent of specific implementations. Several 
systems can already be said to satisfy the required input-
output relations. 

Unfortunately, these approaches are of l imited value 
because they ignore the total impracticality of reaching 
optimal decisions in realistic situations. In this paper, 
we propose instead the concept of bounded optimality 

in which the uti l i ty of a decision is a function of both 
its quality and the time taken to choose it. We give a 
formal definition below; informally, we say that an agent 
exhibits bounded optimality if its program is a solution 
to the constrained optimization problem presented by its 
architecture. 

We begin in section 2 with a necessarily brief dis­
cussion of the relationship between bounded optimality 
and earlier notions of rationality. We note in particular 
that some important distinctions can be missed with­
out precise definitions of terms. Thus in section 3 we 
introduce formal definitions of agents1, their programs, 
their behaviour and their rationality. Section 4 exam 
ines a class of agent architectures for which the prob­
lem of generating bounded optimal configurations is ef­
ficiently soluble. The solution involves a new class of 
interesting and practically-relevant optimization prob­
lems. We examine several types of episodic, real-time 
environments and derive bounded optimal programs for 
these regimes. Finally, we describe a set of open theo­
retical and experimental issues, including an asymptotic 
version of bounded optimality that may be more robust 
and tractable than the strict version. 

2 Histor ical perspective 
The classical idea of perfect rationality, which developed 
from Mill's utilitarianism, was put on a formal footing in 
von Neumann's decision theory [25]. It stipulates that a 
rational agent always act so as to maximize its expected 
utility. The expectation is taken according to the agent's 
own beliefs; thus, perfect rationality does not require 
omniscience. 

In artificial intelligence, the logical definition of ra­
tionality, known in philosophy as the "practical syllo­
gism", was put forward by McCarthy [14], and reiterated 
strongly by Newell [15]. Under this definition, an agent 
should take any action that it believes is guaranteed to 
achieve any of its goals. If AI can be said to have had a 
theoretical foundation, then this definition of rationality 
has provided it .2 

1 We use the term ralph (rational agent with limited perfor­
mance hardware) to denote an agent that exhibits bounded 
optimality. 

2This is not to say that this was the wrong approach at the 
time. McCarthy believed, probably correctly, in the halcyon 
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Economists have used ra t iona l i t y as an abstract model 
of economic ent i t ies, for the purposes of economic fore­
casting and designing market mechanisms. Un fo r t u ­
nately, as S imon [23] po in ted ou t , real economic ent i ­
ties have l i m i t e d t ime and l i m i t e d powers of delibera­
t i on . He proposed the s tudy of bounded rat ional i ty , i n ­
vest igat ing " . . . the shape of a system in which effec­
tiveness in compu ta t i on is one of the most impo r tan t 
weapons of surv iva l . " Simon's work focussed ma in ly on 
satisf icing designs, which del iberate un t i l reaching some 
solut ion sat is fy ing a preset "aspi ra t ion level." The re­
sults have descript ive value for mode l l ing various actual 
enti t ies and policies, bu t no prescript ive f ramework for 
bounded ra t iona l i t y was developed. 

I . J. Good [10] emphasized the conceptual dist inc­
t ion between classical or " type I" ra t iona l i ty , and what 
he called " type I I " ra t iona l i t y , or the max im iza t ion of 
expected u t i l i t y taking in to account deliberation costs.3 

W h a t th is means is tha t an agent exhib i ts type I I ra­
t iona l i t y i f at the end of i ts del iberat ion and subsequent 
act ion, i ts subject ive u t i l i t y is max imized compared to 
al l possible de l iberate/act pairs in which i t could have 
engaged. Good does not define the space of possible de­
l iberat ions, bu t f rom his i n fo rma l descriptions, i t is clear 
tha t Type I I ra t i ona l i t y is intended to prescribe op t ima l 
sequences of computa t iona l steps. Unfor tunate ly , these 
may be even harder to select than actions themselves. 

Recognizing these problems, Cherniak [4] suggested 
a def in i t ion of " m i n i m a l r a t i ona l i t y " , specifying lower 
bounds on the reasoning powers of any ra t iona l agent, 
instead of upper bounds. A phi losophical proposal gen­
eral ly consistent w i t h the not ion of bounded op t ima l i t y 
can be found in Dennett 's "Mo ra l F i rs t A i d Manua l " [6]. 

Many researchers in A I , some of whose work is dis­
cussed below, have worked on the problem of designing 
agents w i t h l i m i t e d computa t iona l resources; the 1989 
A A A I Sympos ium on A I and L i m i t e d Rat iona l i ty [9] 
contains an interest ing variety of work on the topic. 

Metareasoning — reasoning about reasoning — is an 
i m p o r t a n t technique in this area, since i t enables an 
agent to contro l i ts del iberat ions according to their costs 
and benefits. Combined w i t h the idea of anyt ime [5] or 
f lex ib le a lgor i thms [ l l ] , t ha t re turn better results as t ime 
goes by, a s imple f o r m of metareasoning allows an agent 
to behave well in a rea l - t ime env i ronment . Breese and 
Fehl ing [2] apply s imi lar ideas to cont ro l l ing mu l t ip le de­
cision procedures. Russell and Wefa ld [18] give a general 
me thod for precompi l ing certain aspects of metareason­
ing so tha t a system can efficiently est imate the effects 
of i nd i v i dua l computa t ions on i ts intent ions, g iv ing fine-
grained contro l of reasoning. These techniques can all 
be seen as app rox ima t i ng Type II ra t iona l i t y ; they pro­
vide useful insights i n to the general prob lem of control 
of reasoning, bu t there is no reason to suppose that the 

days before formal intractabil i ty results in computation were 
known, that in the early stages of the field it was important to 
concentrate on "epistemological adequacy" before "heuristic 
adequacy". 

3Simon [22] also says: "The global optimization problem 
is to find the least-cost or best-return decision, net of com­
putational costs." 

approximat ions used are op t ima l in any sense. 
Horv i tz [11] uses the te rm bounded opt imal i ty to re­

fer to " the op t im iza t ion of computa t iona l u t i l i t y given 
a set of assumptions about expected problems and con­
straints in reasoning resources." Russell and Wefa ld [19] 
say tha t an agent exhibi ts bounded op t ima l i t y " i f i ts 
program is a solut ion to the constrained op t im iza t ion 
problem presented by i ts architecture." The phi losophi­
cal "move" , f rom op t im iz ing over actions or del iberat ion 
sequences to opt imizat ion over programs, is the key to 
our proposal.4 In real i ty, designers of intel l igent agents 
do not have direct control over the agent's actions or 
del iberat ions; these are generated by the operat ion of 
the agent's p rogram. Prescript ive specif ication of ac­
t ions (Type I) or del iberations (Type I I ) may produce 
impossible constraints, if these specifications are not re­
alized by any program for the agent. Precise def in i t ion 
of the space of agent programs is therefore an impo r tan t 
par t of the study of bounded op t ima l i t y . 5 In the next 
section, we bu i ld a suitable set of def ini t ions f r om the 
ground up, so tha t we can begin to demonstrate exam­
ples of provably bounded op t ima l agents. 

3 Agents, architectures and programs 

In tu i t ive ly , an agent is jus t a physical ent i ty tha t we wish 
to view in terms of i ts perceptions and actions. W h a t 
counts in the first instance is what it does, not necessar­
i ly what i t th inks, or even whether i t th inks at a l l . Th i s 
i n i t i a l refusal to consider fur ther constraints on the inter­
nal workings of the agent (such as tha t it should reason 
logical ly, for example) helps in three ways: f irst, i t a l ­
lows us to view such 'cognit ive facult ies' as p lann ing and 
reasoning as occurr ing in the service of f ind ing the r ight 
th ing to do; second, i t makes room for those among us [1; 
3] who take the posi t ion tha t systems can do the r igh t 
th ing w i thou t such cognit ive facult ies; t h i r d , i t al lows 
more freedom to consider various specifications, bound­
aries and interconnections of subsystems. 

An agent can be described abstract ly as a mapp ing 
(the agent funct ion) f rom percept sequences to actions; 
this mapp ing is implemented by an agent program. The 
design and evaluat ion of agents are based on the be­
haviour of the agent p rogram in an env i ronment . 

Let P be the set of percepts tha t the agent can receive 
at any instant , and A be the set of possible actions the 
agent can carry out in the external wor ld . Then we have 

D e f i n i t i o n 1 Agent f unc t i on : a mapping 

where P* is the set of a l l possible percept sequences. 
The agent funct ion is an ent irely abstract ent i ty , unl ike 
the agent p rogram. Compu tab i l i t y theory relates these 
abstract funct ions to their f inite representations as pro­
grams runn ing on a machine. 

This move is analogous to the development of 'rule uti l­
itarianism ' from 'act utilitarianism*. 

5 Recent work by Etzioni [8] and Russell and Zilber-
atein [20] can be seen as optimizing over a well-defined set 
of agent designs. 
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We wil l consider a physical agent as consisting of an 
architecture and a program. The architecture is respon-
sible for interfacing between the program and the dis­
crete, deterministic environment, and for running the 
program itself. Wi th each architecture M, we associate 
a finite programming language which is just the set 
of all programs runnable by the architecture. An agent 
program is a program When a sequence of per­
cepts is provided by the architecture to the program, a 
sequence of actions is generated: the action occurs 
between percept i and percept i+ 1. Thus an architec­
ture maps a percept sequence of length k, for any k, to 
an action sequence of the same length according to the 
program it is running. The behaviour of an agent is the 
sequence of actions it generates. 

Definit ion 2 Architecture: a fixed interpreter M for 
the agent 's program: 

For the purposes of this paper, we will define the envi-
ronment as a set of world states together with mappings 
defining the effects of actions and the generation of per-
cepts: 

Definition 3 Environment: a set of world states W 
and mappings 

It is important to note that although every program 
induces a mapping in the above sense, the action fol­
lowing a given percept is not necessarily the agent's "re­
sponse" to that percept; because of the delay incurred 
by deliberation, it may only reflect percepts occurring 
much earlier in the sequence, and it may not be possible 
to associate each action with a particular prior percept 
sequence. 

3.1 Bounds on rationality 
The expected uti l i ty of an action Ai that has possible 
outcomes for an agent with prior evidence E about 
the environment, is given by 

where U is a real-valued uti l i ty function on states. 

Definit ion 4 Perfect rationality: an agent is perfectly 
rational iff it selects action so as to 
maximize its expected utility. 

This definition is a persuasive specification of the 
agent function / and underlies several current projects 
in intelligent agent design. A direct implementation of 
this specification, which ignores the delay incurred by 
deliberation, does not yield a reasonable solution to our 
problem the calculation of expected utilities takes time 
for any real agent. 

By neglecting the fact of l imited resources for compu­
tation, classical decision theory fails to provide an ad­
equate theoretical basis for artificial intelligence. The 
'finitary predicament' [4] arises because real agents have 

only finite computational power and because they don't 
have all the time in the world. In terms of our simple 
formal description of agents introduced above, it is easy 
to see where the difficulty has arisen. In designing the 
agent program, logicists and decision theorists have con­
centrated on specifying an optimal agent function fopt 
in order to guarantee the selection of the best possible 
action A in each situation. The function fopt is indepen­
dent of the architecture M. Unfortunately, the behaviour 
of any program that implements this function may not 
be desirable. The delay in computing 
means that the kth action may be optimal only with 
respect to some much earlier subsequence, and is now 
totally inappropriate. 

3.2 Bounded optimality 

To escape this quandary, we propose a machine-
dependent standard of rationality, in which optimality 
constraints are imposed on programs rather than agent 
functions, deliberations or behaviours. To formalize this 
idea, it wil l be helpful to assume a real-valued uti l­
ity function U on histories, that is, sequences of world 
states. Then we assign values to a program / based on 
the sequence of states through which it "drives" the en­
vironment E when run on M starting in the world WO: 

where result denotes the state sequence generated by 
the execution of the program /, defined in the obvious 
way using TA and Tp. 

If the init ial state Wo and environment E are known, 
then the optimal agent program is given by: 

Definition 5 Optimal agent program: 

If instead the "designer" has only a probability distribu­
tion over the init ial state and environment model, then 
this wil l introduce a distribution over the state sequences 
generated, and the optimal program has the highest ex­
pected value V(l, M, E) over this distribution. 

4 Provably ralphs 

In order to construct a provably rational agent with l im­
ited performance hardware (ralph), we must carry out 
the following steps: 

• Specify a class of machines on which programs are 
to be run. 

• Specify the properties of the environment in which 
actions wil l be taken, and the uti l i ty function on the 
behaviours. 

• Propose a construction method. 

• Prove that the construction method succeeds in 
building ralphs. 
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4.1 P r o d u c t i o n system arch i tec tures 
We begin our study with a simple form of production 
system, in which condition-action rules of the form "If 

are applicable whenever their left-hand 
sides become true. Even such a simple system can easily 
overtax the resources of a real-time agent, if the rule base 
becomes large and the conditions become complex. An 
agent implemented as a production system wil l therefore 
contain approximate rules, for which the action A, is not 
guaranteed to be the best possible whenever condition 

obtains in the world. 
An illustrative example is provided by the image pro-

cessing algorithms in an automated mail sorter. These 
machines scan handwritten or printed addresses on mail 
pieces and dispatch them accordingly. The scanned im­
age is processed by any or all of several procedures de-
signed to read with varying degrees of accuracy and re 
source expenditure; each procedure may have many pos­
sible variants — for example, we can vary the number of 
hidden nodes in a neural network recognizer. To prevent 
jams, the mail piece must be sorted appropriately, or 
rejected, in time for the (stochastic) arrival of the next 
piece. The object is to maximize the accuracy of sort­
ing while minimizing the reject percentage and avoiding 
jams. 

Here we consider only a special case of production 
system, in which complete rules (or decision rules) are 
matched in a fixed sequence. We call a sequence of pro­
duction rules a strategy. Each rule i has associated with 
it a match time t, and a quality which corresponds 
to the uti l i ty of the rule's recommended action if taken 
at the beginning of the episode. 

We assume that each rule is drawn from some rule 
language (In keeping with the scheduling literature, 
we wil l often use the term "job" to refer to a rule in a 
sequence.) Let denote a production system archi­
tecture that can accommodate rules of maximum size n 
from rule language For example, we might consider 
feedforward neural networks with at most n nodes. 

In executing a typical sequence the 
agent matches each rule in turn against the current per­
cept, generating a recommended action. At some time t 
after the beginning of the episode, it wil l decide to act, 
selecting the highest-quality action recommended by any 
of the rules it has previously matched. If the quality of 
the rule chosen is qi, the value of the episode for the 
agent wi l l be some function of qi, and t, according to the 
regimes described below. Before the episode begins, the 
agent may not know when it wil l act (for example, in 
the stochastic deadline case), so generally speaking the 
value of a given strategy wil l be an expectation. 

4.2 Ep isod ic rea l - t ime env i ronments 

First, we place some restrictions on the environment in 
order to simplify our problem. We need C to learn ut i l ­
ity information, so in order to avoid (temporarily) the 
credit assignment problem we assume an "episodic" en­
vironment, where after each non-null action by the agent, 
a reward is received and the environment then reaches 
an unknown state drawn from a probability distribution 
that remains stationary over time. The init ial state Wo 

is also drawn from this distribution. In the mail-sorting 
example, the reward is 1 for a correct dispatch; 0 for an 
incorrect dispatch; 0.2, say, for a reject; and for a 
jam. 

In order to talk about deadlines and time cost, it is 
useful to have a notion of inaction. Let noopt denote a se­
quence of null actions lasting t time steps. Also, [A | W] 
will denote the sequence of world states through which 
the action sequence A drives the environment given an 
initial state W. We use '•' to denote concatenation of 
sequences. 

Now we can define three typical real-time regimes: 
fixed time cost, fixed deadline and stochastic deadline. 

De f i n i t i on 6 Fixed time cost: for any action A, any 
state W and any state sequences 

for 
some constant c. 

Def i n i t i on 7 Fixed deadline: for any action A, any 
state W, state sequences for some constant 

Deadlines are thus represented by a uti l i ty "c l i f f occur­
ring at some time after the beginning of an episode. 
In the case of a stochastic deadline, which describes the 
mail sorter, the location of the uti l i ty cliff is not known 
exactly. We assume that, for the designer, the value of 
[noop1 | W] is a random variable, distributed in such a 
way that an action following it has probability P(t) of 
being of zero uti l i ty for the episode. This corresponds 
to P being the cumulative distribution function for the 
deadline arrival time.6 

4.3 The cons t ruc t ion a l g o r i t h m 
Our general scheme at present is to exhibit an algo­
r i thm that is capable of learning sets of individual de­
cision procedures, and arranging them in a sequence 
such that the performance of an agent using the se­
quence is at least as good as that of any other such 
agent. That is, the construction algorithm C, operat­
ing in E, returns a program / for architecture M such 
that C wil l work by first ob­
serving a set e of training episodes in E, and then build­
ing an approximately optimal strategy using a learning 
algorithm for learning rules of size k in the rule 
language 
procedure 

In addition to constructing the decision rules, LJ,k 
outputs estimates of the rule quality g,. For now, we 
wil l assume that the rule match times ti and the dead-
line distribution P (for the stochastic case) are known. 
Algorithm optimize extracts an optimal strategy from 

6 We assume that some percept immediately precedes the 
actual deadline, allowing the agent to respond at the next 
step. Without this, the agent is walking blindfolded towards 
the utility cliff (also an interesting problem). 
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the rule set R. In the following subsections we describe 
the three variants of optimize. 

4.4 Resul ts fo r f i xed t i m e cost 
This case is straightforward. The value of a strategy is 
given by 

(i) 
Theo rem 1 The optimal strategy for fixed time cost 
utility functions is the singleton 

4.5 Resu l ts fo r f ixed deadl ine 
This case is also straightforward. The value of a strategy 
s is given by: 

(2) 

Theo rem 2 The optimal strategy is the singleton se­
quence i, where qi is the highest among all rules for which 

4.6 Resul ts for stochast ic deadl ines 

Wi th a stochastic deadline distributed according to P(t) , 
the value of a strategy s = s1 , . . . , sm is an expectation. 
It is calculated as a summation, over the jobs that can 
be interrupted, of the probability of interruption times 
the quality of the best completed job: 

(3) 

where Mi = max(q 8 1 , . . . , qSi), and for convenience we 
define tsm+1 = oo. We wil l use this formula to prove a 
number of properties of optimal strategies. 

A simple example serves to illustrate the value func­
tion. Consider R = {r1,r2,r3}}. The rule r1 has a 
quality of 0.2 and needs 2 seconds to run: we will 
represent this by r1 = (0.2,2). The other rules are 
r2 = (0.5, 5), r3 = (0.7,7). The deadline density func­
tion is a uniform distribution over 0 to 10 
seconds. The value of the sequence r1r2r3 is 

A geometric intuit ion is given by the notion of a perfor­
mance profile shown in Figure 1. For a uniform deadline 
density function, the value of a sequence is proportional 
to the area under the performance profile up to the last 
possible interrupt time. Note that the height of the pro­
file during the interval of length ti while job i is running 
is the quality of the best of the previous jobs. 

The following lemma gives an extremely useful prop­
erty of optimal sequences: 

L e m m a 1 There exists an optimal sequence that is 
sorted in increasing order of q i . 

Henceforth we need consider only q-ordered strategies. 
This means that M, in equation (3) can be replaced by 

The following lemma establishes that a strategy can 
always be improved by the addition of a better job at 
the end: 

Figure 1: Performance profile for r1 r2r3, with p super-
imposed. 

Lemma 2 For every sequence s = s 1 , . . . , sm sorted in 
increasing order of quality, and single step z with 

Coro l la ry 1 There exists an optimal strategy ending 
with the highest-quality job in R. 

Proofs of all the above results appear in [17]. 

4.6.1 A Dynam ic P r o g r a m m i n g A l g o r i t h m 
The dynamic programming method can be used to ob­

tain an optimal sequence of decision rules in pseudo-
polynomial time. We assume that the time ti associated 
with each rule is an integer (this is almost without loss 
of generality, using standard rounding and scaling meth­
ods). In keeping with the lemma above, we assume that 
optimal strategies are ordered by qi,. 

The algorithm constructs the table S(i , T) , where each 
entry in the table is the highest value of any sequence 
that ends with rule i at time T. We assume the rule 
indices are arranged in increasing order of quality, and 
T ranges from the start time 0 to the end time L = 

. The update rule is: 

From Corollary 1, we can read off the best sequence from 
the highest value in row n of the matrix M. 

Theorem 3 The DP algorithm computes the optimal 
sequence m time 0 (n 2 L ) where n is the number of deci-sion procedures in R. 

U n i f o r m d is t r ibu t ions If the deadline is uniformly 
distributed over some init ial interval, we can obtain an 
optimal sequence in strongly polynomial time. Initially, 
we assume an interval longer than any possible sequence. 
Then the probability that the deadline arrives during job 
Si of sequence s is just Hence we have a simple 
recursive specification of the value V(as) of a sequence 
beginning with job a: 

(4) 
A dynamic programming algorithm can then use the 
state function S f ( i ) , which is the highest value of any 
rule sequence ending in / and beginning with rule i. 
From lemma 1 and equation 4, the update rule for S f ( i ) 
is 

with boundary condition For any 
given can therefore be tabulated for i = 1 . .. n 
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in time 0 (n 2 ) , from which we can obtain the optimal 
sequence. 

If all the rules can fit before the end of the deadline 
distribution, then from Corollary 1 above the last rule 
/ must be the rule with highest quality. Otherwise, any 
rule might be the last rule with a non-zero chance of 
completing, so we check each candidate: 

Theo rem 4 The optimal sequence of decision proce-
dures for a uniformly distributed stochastic deadline can 
be determined in 0 (n 3 ) time where n is the number of 
decision procedures in R. 

4.7 Agnos t i c Lea rn ing of Decis ion Rules 

Our learning algorithm searches for the best rule 
in In order to work in any environment, it must 
be agnostic [13] in that it makes no assumptions about 
the target function, that is, the form of the correct de­
cision rule. It searches for the best subject to a com­
plexity parameter k that bounds the size of the rules. 
Kearns, Schapire and Sellie have shown (Theorems 4 and 
5 in [13]) that, for some languages , the error in the 
learned approximation can be bounded to within e of the 
best rule in that fits the examples, with probability 

The sample size needed to guarantee these bounds 
is polynomial in the complexity parameter k, as well as 

and Once an approximate rule with a certain com­
plexity is learned, we statistically estimate 
its quality q. Standard Chernoff-Hoeffding bounds can 
be used to l imit the error in the quality estimate to be 
within eq with probability The sample size needed 
is also polynomial in and 

Thus the error in the agnostically learned rules is 
bounded to within of the best rule in its complexity 
class with probability The error in the quality es 
timation of these rules is bounded by with probability 

. We can show that the policy selection methods 
for the three real-time regimes will incur a deficit of at 
most in the choice of the optimal sequence of 
rules. 

4.8 The b o t t o m l ine 
We can now state the bounded optimality theorem for 
our construction procedure. 

Theo rem 5 Assume a production system architecture 
operating in any episodic environment. For each 

of the three real-time regimes defined above, with proba­
bility greater than the construction procedure 
C returns a program I such that 
after seeing a number of episodes that is polynomial in 

Furthermore, the computation time 
of C is (at worst) polynomial in the above quantities and 
in L, the sum of the rule execution times. 

Although the theorem has practical applications, it is 
mainly intended as an illustration of the derivation of 
a bounded optimal agent. Wi th some additional work, 
more general error bounds can be derived for the case in 
which the rule execution times ti and the real-time util ity 
variation (time cost, fixed deadline or deadline distribu­
tion) are all estimated from the training episodes. 

5 Further work 

We plan to extend this work in several directions, as 
follows. 
1. Foundational issues: 
Learning agents: When the agent, whose design is to be 
optimized, includes a learning component, the notion of 
bounded optimality becomes even more interesting be­
cause we must take into account how the agent's config­
uration wil l evolve over time, reflecting its own expected 
obsolescence. 
Asymptotic bounded optimality: The strict notion of 
bounded optimality may be a useful philosophical land­
mark from which to explore artificial intelligence, but it 
may be too strong to allow many interesting, general re­
sults to be obtained. Just as in complexity theory, where 
absolute efficiency is the aim but asymptotic efficiency is 
the game (so to speak), in studying bounded optimality 
an asymptotic version might help. First, we need a class 
of environments, E, which is unbounded in a complexity 
measure on environments n(E). Then we wil l say that 
an agent program / is timewise asymptotically bounded 
optimal iff 

where kM denotes a version of the machine M speeded 
up by a factor k. In English, this means that the pro­
gram is basically along the right lines if it just needs a 
faster machine to be as good as the best program on all 
problems above a certain level of difficulty. 

Asymptotic bounded optimality generalizes the stan­
dard definition of asymptotic complexity. Let E be a 
class of environments in which a problem is input to the 
machine at time t = 0, where n(E) is the input size 
measure. Let V return (or any decreasing function 
of t) for a program that outputs the correct solution at 
time t, and 0 for all other programs. Then a program is 
bounded optimal iff it has asymptotic complexity equal 
to the tight lower bound for the class E. Note that in 
standard complexity, we allow any constant factor c in 
the execution time of the program, whereas our defini­
tion uses a constant factor in the speed of the machine. 
In the standard setting these are equivalent, but with 
more general time-dependent utilities only the latter is 
appropriate. 
2. Scheduling issues: 
The existence of polynomial-time algorithms and ap­
proximation schemes for variants of the computation 
scheduling problem; scheduling algorithms for situations 
in which the solution qualities of individual processes are 
interdependent (such as when one can use the results of 
another); scheduling combinations of computational and 
physical (e.g., job-shop and flow-shop) processes, where 
objective functions are a combination of summation and 
maximization; and computation scheduling for parallel 
machines or multiple agents. 
3. Learning issues: 
Relaxing the stationarity requirement on the environ­
ment — this entails generalizing the PAC model to han­
dle the case in which the fact that the agent learns 
may have some effect on the distribution of future 
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episodes; re laxing the episodic requirement to al low non-
immedia te rewards — this entai ls addressing the credit 
assignment p rob lem; examin ing var iants of the agnostic 
learning model to f ind the most pract ica l ly useful theo­
ret ical scenario. 
4- Appl icat ions: 
Despite the del iberate s imp l i c i t y of the architecture, 
our construct ion a lgo r i t hm can be appl ied direct ly to 
the problems such as scheduling image-processing algo-
r i t hms for a m a i l sorter. Scheduling of m ixed computa­
t iona l and physical processes, ment ioned above, broad­
ens the scope of appl icat ions considerably. An indust r ia l 
process, such as designing and manufac tu r ing a car, con­
sists of bo th computa t iona l steps (design, logistics, fac­
to ry schedul ing, inspect ion etc.) and physical processes 
(s tamping, assembling, pa in t ing etc.) . One can easily 
imagine many other appl icat ions in real - t ime f inancia l , 
indus t r ia l and m i l i t a r y contexts. 

6 Conclusions 

In short , we are proposing a new l ine of inqu i ry in to 
bounded o p t i m a l agents in which the value of a deci­
sion is judged in terms of the effect i t has on the actions 
per formed by the agent, no t ing tha t bo th actions and 
computat ions have t ime value. Bounded op t ima l i t y may 
provide a sui table basis for theoret ical research in ar­
t i f ic ia l intel l igence. Asymp to t i c bounded op t ima l i t y in 
par t icu lar promises to y ie ld useful results on composite 
agent designs, using the opt imal i ty -preserv ing composi-
t ion methods in [20]. As a robust measure of ra t ional i ty , 
i t 's possible t ha t i t could do for AI what "b ig -O" de­
scr ipt ions d id for complex i ty theory. 

Bounded o p t i m a l i t y also has phi losophical ly interest­
ing imp l ica t ions . For example, l ike the ru le-ut i l i ta r ians 
we no longer ta lk about ra t iona l actions, because ind i ­
v idua l actions, and even del iberat ions, by a bounded op­
t i m a l agent may be a rb i t ra r i l y i r ra t iona l in the classical 
sense. 

Fur thermore, th is theoret ical research should, by de­
sign, apply to the pract ice of ar t i f ic ia l intel l igence in 
a way tha t ideal ized, inf inite-resource models may not . 
We have g iven, by way of i l l us t ra t i ng th is def in i t ion, a 
bounded o p t i m a l agent: the design of a s imple condi t ion-
act ion rule system tha t , given a learning mechanism, 
provably and eff iciently converges to a ra t iona l config­
u ra t ion . 
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