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Abstract 

This work uses an alignment approach for clas­
sifying objects according to their shape similar­
ity. Previous alignment methods were mostly 
l imited to the recognition of specific rigid ob­
jects, allowing only for rigid transformations 
between the model and the viewed object. 
The current work extends previous alignment 
schemes in two main directions: extending 
the set of allowed transformations between the 
model and the viewed object, and using struc­
tural aspects of the internal models, namely, 
their part decomposition. 
The compensating transformation is divided 
into two parts. The first, rough alignment, 
compensates (approximately) for changes in 
viewpoint and is derived by matching tangen 
tial points on the silhouette of the model and 
the viewed object. The second, the adjustment 
transformation, is derived by matching local 
features — discontinuities of the contour ori-
entation and curvature. 
Principal aspects of the scheme suggested here 
are also relevant for the recognition of flexible 
objects. 

1 Introduction 

Object recognition is a process of establishing a corre­
spondence between a viewed object and an internal rep­
resentation of a previously known one. The recognition 
process can rely on different cues, and its results can be 
at different levels of specificity. The same object can 
be recognized, for instance, as a furniture, a chair, or 
the particular chair in my office. An adequate defini­
tion of the problem addressed by a recognition method 
must therefore include the cues the method relies on, and 
the specificity level at which the answer is expected. Re­
cent reviews of many of the methods proposed for object 
recognition can be found in [Besl and Jain 1985; Chin 
and Dyer 1986; Ullman 1989]. 
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In this paper we address several aspects of classifying 
objects at their so-called "basic object" level, relying on 
similarities of their visual shape. Basic object classifi­
cation is the name we normally use spontaneously to 
describe an object. A category at this level usually has 
a one word name with no one word subclasses, such as a 
"chair" as opposed to "furniture" and a "kitchen chair". 
Categorization at this level has been shown by several re­
searchers [Rosch ct.al 1976; Newport and Bellugi 1978] 
to be achieved faster than at other classification levels. 
Furthermore, Rosch and her collaborators [Rosch et.al. 
1976] have also shown that shape similarity among class 
members is more significant, at. the basic object level than 
at other possible levels [Rosch et.al 1976, pp. 398-405], 
indicating that this level is a natural domain for classifi­
cation methods based on shape similarity. These findings 
also suggest that the procedures used for classification 
should be relatively fast and simple compared to those 
used for a more detailed level of recognition. 

In the method proposed in this paper object, classes 
are represented by single prototypes [Rosch ct.al 1976; 
Bajcsy and Solina 1987]. The differences between class 
members are considered as deformations of the shape of 
the stored prototype. Therefore, the proposed classifi­
cation method applies in many respects also to objects 
that can actually undergo non-rigid deformations (e.g., 
animals, plants, etc.). 

The classification method belongs to the family of 
alignment methods, as presented recently by a num­
ber of researchers [e.g., Fischler and Holies 81; Lowe 85; 
Faugeras and Hebert 86; Ullman 1989]. Some of these 
methods employ pictorial models as the internal repre­
sentation of the objects that are to be recognized. The 
models can be, for instance, the edge map of an image 
of these objects, augmented with some depth informa­
tion [Basri and Ullman 1988]. The alignment method 
proceeds by compensating for the transformation sepa­
rating the viewed object and the stored model. A small 
number of special features can be extracted from the im­
age and used to derive the transformation required for 
aligning the model with the image. Since the identity of 
the viewed object is not known at this stage, this align­
ment transformation is deduced for, and applied to, all 
the relevant stored models. After this alignment stage, 
the correct model is expected to be significantly more 
similar to the image object than any of the competing 
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internal models. A simple comparison procedure in the 
subsequent stage, such as a simple correlation, will then 
be sufficient to indicate the correct model. 

The pictorial nature of the representation used in the 
alignment approach (as opposed to more abstract at­
tributes) and the exact alignment transformations that 
are derived, make the approach suitable for recognizing 
specific rigid objects. Alignment methods have been ap-
plied to recognize both flat and solid objects, yielding 
encouraging results [e.g., Fischler and Bolles 81; Lowe 
85; Faugeras and Hebert 86; Basri and Ullman 88]. 

1.1 An E x t e n d e d Sat o f C o m p e n s a t i n g 
T r a n s f o r m a t i o n s 

Alignment methods for object recognition have been ap­
plied in the past to rigid or almost rigid objects. To cope 
with shape changes associated with different members 
of a given class, two major extensions have been intro­
duced to the basic alignment method. The first is using a 
broader set of transformations than the rigid motion and 
uniform scaling used for rigid object recognition. Such 
a set should compensate for two types of differences be­
tween the viewed object and its stored model: changes 
in viewpoint, and possible shape differences between the 
stored prototype and another member of its class. 

The components of the compensating transforma­
tion associated with these two sources of variations are 
treated separately. A simplified procedure, called rough 
alignment, is used for compensating for viewpoint dif­
ferences between the internal models and the object in 
the image. The accuracy of this alignment is consider­
ably lower than the alignment used in recognizing rigid 
objects. This version is particularly adequate, however, 
when the alignment is followed by a second stage of com­
pensating transformation. Such a simple process of pre­
liminary alignment may also be useful for a variety of 
recognition schemes, other than the one presented be-
low. 

The role of the second stage of the compensating trans­
formation is to account for actual shape differences be­
tween the viewed object and the (prototype) model. This 
part is denoted as adjustment. In principle, it might have 
been useful to associate with each of the internal proto­
types a minimal set of allowed transformations. Such 
a minimal set would account for all possible members 
of the modeled class and at the same time exclude all 
non-member objects. However, it is difficult to prede­
fine such a minimal set of transformations. Although 
the set of transformations relating one position of, e.g., 
scissors to another is feasible, what would be the trans­
formations that relate all possible positions of a shirt, 
or different types of chairs? This suggests a different 
approach: allowing liberal and flexible general deforma­
tions, and then assessing the distortion that was required 
in order to bring each of the models and the image into 
correspondence. 

The general scheme for aligning a stored prototype 
with a viewed object is therefore the following. First, 
a rough alignment procedure is used to compensate ap­
proximately for changes in viewing position. In a second 
stage, more flexible and general distortions are used to 

bring each candidate model into correspondence with the 
image. The amount of distortion required at this stage 
wil l be used to asses the quality of match. 

1.2 T h e I n t e r n a l R e p r e s e n t a t i o n o f O b j e c t 
Classes 

Alignment schemes for rigid object recognition usually 
employ pictorial, unarticulated internal models. The 
current classification scheme has been extended, to spec­
ify explicitly the principal parts of the model. The pur­
pose of adding the object's part decomposition to the 
pictorial representation is to obtain a convenient and 
natural control of the deformations that are allowed for 
these models. Many of the allowed deformations are eas­
ier to specify in terms of relatively simple changes that 
may be applied to parts of the objects. The model used 
for the "car" class of objects, as well as its part decom­
position, are shown in Figure 1. 

Figure I: The "car" class model, (a) The model, (b) The 
different parts composing the model. 

Relying on the part decomposition of objects for their 
recognition is usually associated with methods that em-
ploy a more structural approach to recognition (eg., 
[Marr and Nishihara 1978, Biederrnan 1985; Bajesy and 
Solina 1987]). There are two major differences between 
these methods and the one presented here. The first is 
that parts are defined here only in the internal model and 
are not extracted from the image. This is advantageous 
since bottom-up processes for extracting object parts are 
often difficult and unreliable. The second difference con 
cerns the expressive power of the internal representation 
being used. We only use parts as means of controlling 
and restricting the applied deformations. The eventual 
comparison between the models and the viewed object 
relies on complete pictorial descriptions that are not re­
stricted by the use of any predetermined set of generic 
shapes or geometrical relations. 

Two dimensional models are used in our scheme to 
represent the object classes. Using a finite number of 
two dimensional models is not sufficient for representing 
all views of a general solid object (even when using an 
alignment transformation). Part of the inaccuracies re­
sulting from the "flatness" of the models are expected 
to be corrected by the second part of the compensating 
transformation, namely, the adjustment. 

Finally, we point out that a parametric line represen-
tation is used in the implemented scheme for describing 
both the viewed images and the internal models. The 
representation, consisting of straight line segments and 
circular arcs, is not obtained in an all-automatic proce­
dure; it involves at present some user interaction. 
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The subsequent sections are organized as follows. Sec­
tion 2 describes the process of rough alignment. In Sec­
tions 3 and 4 we describe a method used for establishing 
correspondence between points of orientation disconti-
nuity in the model and the image, and using this cor­
respondence for extracting the appropriate adjustment 
transformation. Finally, Section 5 discusses various pos­
sibilities for evaluating the overall degree of match be­
tween the models and the viewed object and examines 
one of them in detail. 

2 Rough A l i g n m e n t 

2.1 A p p r o x i m a t i n g 3 -D by 2 -D 
T r a n s f o r m a t i o n s 

The role of the rough alignment part of the compensat-
ing transformation is to account (approximately) for the 
viewpoint differences. Due to its simplicity and robust-
ness to partial occlusions, such a procedure is also ap­
propriate as a preliminary transformation stage for other 
recognition methods. 

Rough alignment is different from what would be a 
perfect alignment of the internal representation with the 
viewed object in two ways. The first difference is that 
the procedure can only be applied for a restricted range 
of in-depth rotations (i.e., about an axis in the image 
plane) of the particular internal model. Typically, this 
range is ±30° . L imit ing the value of the in-depth r-
tation avoids the need to eliminate hidden lines. As 
discussed bellow, it also allows to approximate the ac-
tual (3-D) rigid object transformation by a simpler, 2-D 
one. Such viewer centered models have also been used 
for rigid object recognition [e.g., Koenderingk and Van 
Doom 1979; Basri and Ullman 1987] and are supported 
by psychological evidence [e.g., Palmer et.al. 1982]. 

The second difference is conceptual in nature. For 
rigid objects viewed from different positions, the notion 
of correct alignment is well defined. For objects that 
undergo shape changes as well as changes in viewpoint, 
the "correct" alignment transformation is more difficult 
to define uniquely. In this case, the best 3-D alignment 
can be defined as the one that minimizes some global 
difference measure between all matched point pairs in 
the image and the model. Such an alignment transfor-
mation is difficult to compute and, due to possible shape 
changes, it also leaves many model points far apart from 
their image counterparts, preventing the immediate ap­
plication of a simple comparison between the model and 
the image. 

A different approach, using a simplified procedure for 
extracting and applying an approximate alignment to 2-
D object models, is therefore proposed. The main goal 
of this simplified procedure is to facilitate the second 
part of the compensating transformation, namely, the 
adjustment. 

To account for different types of shape changes, the 
adjustment transformation must be determined by many 
parameters. Extract ing these parameters requires that 
many features be matched in the model and the image. 
This matching can be facilitated if, following the rough 
alignment, the viewed object and the candidate models, 

as well as their corresponding parts, would substantially 
overlap in the image plane (obviously, the requirement 
for overlap of corresponding parts may be meaningless 
for wrong models). When such an overlap is accom­
plished, points in the transformed model are likely to be 
close to their counterpart in the image object. 

Figure 2: Applying rough alignment to a box-shaped ob­
ject, (a) The image used as the model, (b) An overlay of 
the model (in thicker lines) and the "viewed image" in an 
arbitrary positioning. Both are images of the same object in 
different positionings. The in-depth orientation is different 
by 15° about both the height and length of the box. (c) The 
results of applying the enhanced similarity transformation to 
the model. 

A two-dimensional "enhanced" similarity transforma­
tion is used for rough alignment. The transformation is 
determined by five parameters: two for translation, one 
for rotation, and two for scaling along two perpendicular 
axes —- all within the image plane. The results of roughly 
aligning a box-shaped object using the enhanced 2-D 
similarity transformation are shown in Figure 2. Quali­
tatively, the situation following rough alignment seem to 
enable the use of a distance measure in matching model 
and image anchor features. 

2.2 A n c h o r Features fo r R o u g h A l i g n m e n t 

The extraction of the rough alignment transformation 
can rely on partial information in the image using a 
small number of image features (called "anchors" for the 
transformation). Matching the center of mass and the 
two inertia moments of the model and the viewed ob­
ject, for instance, is sufficient for determining the five pa-
rameter of the enhanced similarity transformation. A l ­
ternative anchors for this purpose are any combination 
of two matched points and a direction. We use local 
feature points labeled by global properties as the an­
chor features. Such a combination provides robustness 
against partial occlusions (unlike the case of relying just 
on global moments of the shape, for instance) without 
imposing an extensive search on matching the anchor 
features (as matching local features often does). 

The global properties used to label the local anchor 
features are the bounding contour of the viewed object 
(also called the silhouette), and its prominent orienta­
tion. A simple algorithm is used to extract a rather 
primit ive version of the silhouette. This version consists 
in associating a "silhouette" binary label to each image 
line which has no neighbors on one of its sides, along 
some portion of its length. The existence of neighbors 
is verified by examining possible intersections of rays ex­
tending from each image line, perpendicular to it, with 
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other contours in the image. The silhouette found for an 
image of a car is shown in Figure 3(a). 

There are a number of ways to define the prominent 
orientation in an image of an object. One possibility is 
to use the global inertia moments of the object's area. 
Similarly to other moments of the shape, however, such 
a definition is sensitive to partial occlusions. Other pos­
sible definitions may rely on common direction of texture 
elements, the direction of symmetry axes, or the common 
direction of long lines in the image. 

Here we define the prominent orientation of the viewed 
object to be the most frequent orientation of the seg­
ments in its silhouette. Such a definition is both lo-
cal and, for many objects, it also agrees with the gen­
eral elongation direction. The prominent orientation ex­
tracted for a car image is shown in Figure 3(a). This di­
rection corresponds to the highest peak in an histogram 
of the orientations of the segments in the object's silhou­
ette (where each contribution is weighted by the length 
of the segment). 

Having a prominent orientation in the model and im­
age can be exploited by using orientation (relative to the 
prominent one) to label local features, such as end-points 
of long straight lines, orientation discontinuities, etc., 
and to facilitate their matching. We use the prominent 
orientation as reference for labeling tangential points on 
the silhouette according to their tangent orientation. To 
reduce the number of points that need be extracted in 
the image, they are marked on all of the internal models 
for a "standard" set of tangent orientations. 

The tangential points extracted for four tangent orien­
tations (0°, 45°, 90°, and 135°) are marked in Figure 3(a) 
by small 'T'-s. They are extracted by sorting extremum 
contour points in the direction perpendicular to the set 
of tangent orientations. As demonstrated below, using 
the tangential points for extracting the rough alignment 
parameters can be made fairly robust against partial oc­
clusions. The implications of other possible sources of 
sensitivity, namely, in-depth rotations and shape changes 
are discussed elsewhere [Shapira 90]. 

2.3 E x t r a c t i n g t he R o u g h A l i g n m e n t 
Pa ramete rs 

The difference between the prominent orientations of the 
viewed object and the internal model is used to deter-
mine the rotation parameter (within the image plane). 
Then, a one-to-one correspondence is established be­
tween tangential points of the same orientation. The 
scaling factors along the prominent orientation of the 
model and along the direction perpendicular to it are de­
termined by comparing the respective components of the 
distance between pairs of (matching) tangential points. 
Having applied the appropriate rotation and scaling, the 
translation is determined by comparing the location of 
corresponding tangential points. 

To avoid the effect of lateral displacement of the tan­
gential points (which may result from in-depth rotations, 
partial occlusions, and shape changes) both scaling and 
translation are determined only according to the per­
pendicular components of the tangential points. Pairs 
of tangential points contribute to a scaling factor only 

if the line joining them is roughly perpendicular to that 
of the tangent at both points. Similarly, each tangential 
point contributes only a translation component perpen­
dicular to its tangent orientation. The total translation 
vector is computed as the one that agrees best with all 
the perpendicular components that are contributed by 
the individual points. 

Figure 3: Rough alignment for real images, (a) The silhou-
ette of the viewed object (in thicker lines) with the prominent 
orientation (a short arrow inside the object) and the tangen­
tial points (thick 'T'-s on the silhouette) marked in it. (b) 
the model (an image of the same object rotated by 15° and 
30° about the image x and y axes), (c) An arbitrary config­
uration of the model (in thicker lines) and the viewed object, 
(d) The result of applying rough alignment to the model, (e) 
Overlaying the (roughly) aligned model and the image, (f) 
Rough alignment with partial occlusion a "naive" rough 
alignment relying on global shape moments, (g) The result 
of applying the proposed procedure in the occluded case. 

The result of applying the rough alignment algorithm 
to the different views of the same car is shown in Fig­
ure 3. One of the images 3(b) is taken as the internal 
model, while another image 3(a) is considered to be the 
viewed object. In the init ial configuration the overlap 
between the image and model is small (3c). Following 
the rough alignment it increases significantly (3e), facil­
itating the subsequent adjustment stage. Figures 3(f,g) 
demonstrate the insensitivity to partial occlusions. A 
demonstration of what may be denoted as a "naive rough 
alignment" for an occluded version of the object in Fig­
ure 3(a), is shown in 3(f) . It relies on global moments 
such as the center of mass and the area. Comparing 
the latter figure with Figure 3(g) demonstrates that the 
results obtained by the rough alignment algorithm are 
significantly more robust to occlusions. 

The procedure proposed here for rough alignment is 
thus simple and reliable. Applying it to the internal 
model yields an approximate, rather than a perfect align­
ment wi th the viewed object. This facilitates, however, 
the subsequent stage. In the next section we discuss the 
subsequent adjustment, assuming that the models are 
already roughly aligned with the viewed object. 
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3 Anchor Features for the Adjustment 
Transformation 

3.1 E x t r a c t i n g Corne rs 
The adjustment transformation (described in Section 4) 
is based on the extraction and matching of many fea-
tures (the anchors). In this section we describe briefly 
the extraction of one type of anchors, called "corners", 
which are points of discontinuity in orientation or curva­
ture. The significance of such points in image perception 
has been supported by a number of studies (e.g., [At-
tneave 1954; Biederman 1985; Link and Zucker 1988]). 
Other types of anchor points, such as inflections and 
small blobs are also possible, but wil l not be discussed 
here. 

Orientation and curvature discontinuities can be found 
by locating intersecting pairs of straight segments and 
circular arcs (by solving the appropriate equation sys­
tem). As lines in the parametric line representation often 
do not actually intersect, configurations in which lines 
"almost intersect" need also be considered. These in-
clude locations at which two co-terminating lines form a 
point of orientation discontinuity, as well as other con­
figurations such as points at which lines co terminate 
"almost" linearly, T-like junctions of contours, and con­
figurations in which a straight line is "almost" tangential 
to a circular arc. 

The extent by which a given line segment may be 
extended to the intersection point is determined by a 
threshold that measures the quality of the resulting cor­
ner. This measure, V, was taken to be: 

where li is the length of the i-th line segment, and ci 
is the length by which it had to be continued to the 
intersection point (i = 1,2). For "almost tangential" 
intersections, a third term, measuring the distance by 
which the straight line missed the circular arc, is added: 

where r is the radius of the arc, and d the distance to 
the straight segment. Intersection points are accepted 
only for V values smaller than 0.5. Using this threshold 
for 'v i r tual i ty ' , about 200 corners were extracted from 
a typical object image (such as Figures 3(a) and 4(b)). 
Each corner is represented internally using its location, 
the angle it formed, its bisector, pointers to the image 
lines that generate i t , and a silhouette label, reflecting 
the silhouette labels of its generating lines. 

3.2 M a t c h i n g Corne rs 
The next stage in the adjustment process involves the 
matching of model and image corners. A subset of the 
model corners used in the adjustment phase is shown 
in Figure 4a. The corners matching proceeds in two 
stages. In the first, all the image corners compatible 
wi th each model corner are marked. The compatibil i ty 
is determined by local parameters: distance between the 

corners, direction of bisectors, angle size, and silhouette 
labels. 

In the second stage, the best matching image corner 
is selected from the set of compatible ones. This is ob­
tained by examining the degree of match between the 
generating lines of the model and each of the compatible 
image corners. For each image corner, the model corner 
is displaced and rotated in the image plane so that its 
location and bisector orientation would be identical to 
those of the image corner. Then, the mismatch between 
the generating lines of the model and image corner is 
evaluated, based on the fraction of matched portions of 
the lines and their residual misalignment (for the exact 
formula, see [Shapira 1990]). 

Figure 4: Corresponding corners, (a) The corners selected as 
anchors for the adjustment in the car class model (marked by 
small dots), (b) The corrsponditig silhouette corners matched 
in the image. 

This procedure yields good matches for model and im-
age corners that lie on the silhouette of the object. The 
image counterparts found for the silhouette model cor­
ners in Figure 4(a) are shown in Figure 4(b). The results 
obtained for internal (non-silhouette) model corners are 
considerably inferior. The difference in performance for 
silhouette and internal corners is due to the nature of the 
silhouette label that cuts down significantly the number 
of compatible matches for silhouette, but not for inter­
nal, contours. 

4 The Adjustment Transformation 
Following the corner matching, an adjustment transfor-
mation is applied independently to each of the model 
parts. Each part is allowed to undergo an affine trans­
formation that wil l make it as similar as possible to a 
corresponding image part. The affine transformation is 
determined by six parameters, determining a displace­
ment and a linear transformation: 

where (x',y') are the coordinates of the transformed 
model point, originally located at (x,y), and (Dx,Dy) 
is the translation vector. This transformation may be 
interpreted as the image plane projections of a planar 
object undergoing a general rigid motion in 3-D space. 
In general, the number of matched anchor points of each 
model part wi l l be large enough to over-constrain the 
affine transformation parameters. In such a case, the 
affine transformation can be determined by computing 
the average displacements of the anchor points, and us-
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ing pseudo inverse to determine the linear transforma­
tion. 

The affine transformation is somewhat l imited, and 
may not be sufficient to account well for the observed dis­
tort ion. We have used instead a more flexible transfor­
mation, defined as follows. The part points that are close 
enough to a matched anchor point are translated in the 
image by the same displacement vector as the neighbor­
ing anchor. The remaining part points are transformed 
according to the affine transformation determined by all 
the matched anchors of that part. The resulting trans­
formation is more flexible, but its extent is sti l l easy to 
evaluate by examining the parameters of the affine trans­
formation involved. 

The result of applying this transformation to the 
model parts that lie on the silhouette is shown in Figures 
5(a-c). It should be noted that using the line represen­
tation avoids the need to transform all the points that 
comprise the contours of a given model part, since it is 
straightforward to compute the effect of the affine trans­
formation on straight segments and circular arcs. 

(a) (b) 

(c) (d) 

Figure 5: The adjustment transformation, (a) The silhou­
ette of the model, (b) The result of applying the combined 
transformation to model parts that he on the silhouette, (c) 
Overlay of the transformed model silhouette (in thicker lines) 
over the viewed object, (d) Overlay of the entire adjusted 
model and the object's image. The internal parts were trans­
formed relying on the transformations of the silhouette parts 
(in b) and the inter-part relations. 

The above procedure applies only to points along the 
silhouette. The transformation must then be extended 
to internal contours as well. A possible means to this 
aim is to impose certain relations between the parts de­
fined in the model. Since deformation modes are usually 
not exclusive to specific objects or classes, a finite set of 
prototypical relations between parts may be relevant for 
many objects and classes. We used four generic types of 
such relations and associated with them respective ways 
for extending the transformation, known for the silhou­
ette, onto the internal parts. The relevant details are 
discussed elsewhere [Shapira 1990]. 

The result of transforming the internal parts of the 
car class models according to the known transformation 
of the silhouette parts is shown in Figure 5(d). Similar 
results were also obtained for different car objects. The 
results of the entire adjustment phase for both silhou­
ette and internal parts appear to be promissing. The 

transformed silhouette parts, however, appear to match 
the corresponding parts of the viewed object better than 
the internal ones. One possibility of improving the re­
sults for the entire model is to use a more efficient global 
label than the silhouette. A particular proposal as to 
such a global label, as well as a working matching algo­
r i thm, are discussed elsewhere [Shapira 1990]. 

5 Evaluating the Distortions 
The alignment and adjustment bring the model into close 
agreement wi th the viewed object. This process can be 
applied wi th considerable success (i.e., obtaining good 
match between the model and the image contours), also 
in the case of matching the wrong model for the viewed 
object. In such a case, however, the distortion required 
in the process is expected to be large and unnatural. 
This is il lustrated in Figure 6 where the class model for 
cars has been matched to an image of a telephone. The 
final stage evaluates the amount of distortion that was 
required in the process. The final classification is ob­
tained by selecting the prototype that requires the small­
est, most natural, distortion. There are two possible 
strategies for evaluating the applied deformations: us­
ing general criteria that apply to many object classes, or 
using model-specific criteria for distinguishing between 
allowed and unreasonable distortions. Here we exam­
ine only a very simple scheme of the general type. The 
method is probably insufficient, but it does suggest that 
the model-invariant strategy merits further considera­
tion. 

Figure 6: Adjustment in the "wrong case", (a) The image of 
the telephone (with its receiver displaced). The corners that 
have been matched to the model anchor corners are marked. 
(b) The adjusted model (in thick lines) overlaid over the tele­
phone image (see text for discussion). 

To evaluate the induced distortions, we compare the 
parameters of the adjustment transformations applied to 
the different model parts. The distortion is considered 
larger as the parameters of the transformation applied 
to its parts become more different, 

A simple statistical analysis was applied to the param­
eters of the affine transformation extracted for the parts 
of the car class model. The scalar mean and the stan­
dard deviation of each of five parameters are computed 
for 11 parts (the linear coefficients of the affine transfr-
mation are replaced here by the more intuit ive rotation 
and scalings). We compare the results obtained for two 
cases: the 'correct' case of fitting the car model to an 
actual car image, and f i t t ing it to a telephone. The re­
sults are summarized in Table 1. An examination of the 
data reveals that a marked difference exists between the 
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Table 1: The mean values and standard deviations for 
the parameters of the combined transformation applied 
to the different car model parts in two cases: deforming 
that model into a car object, and into a telephone. 

standard deviations in the two cases. The criterion used 
can be extended in several ways. For example, one may 
use the spatial variance of these parameters, i.e., giving 
a larger weight to the difference between the parameters 
of two parts if they are closer together. Nevertheless, the 
results seem promising, considering the simplicity of the 
computation that is performed. 

6 Summary 
In this work we use the alignment approach to devise 
a scheme for classifying objects according to shape sim­
ilarity. While the complex classes such as "furniture" 
require more abstract, symbolic, information, it appears 
that basic level classification is often based on shape sim­
ilarity of the type used in this work. 

The central theme of the method is that objects can 
be classified by applying compensating transformations 
to simple pictorial descriptions (essentially two dimen­
sional), used as the internal models. The classification 
scheme proceeds through the following three steps. First, 
a rough alignment process compensates for overall shift, 
scaling, and rotation. An important aspect of this stage 
is that it does not rely on global parameters that are sen­
sitive to occlusion. Second, an adjustment transforma­
tion is applied by matching features (corners). Different 
parts (defined in the model only) may undergo differ-
ent transformations. Th i rd , the quality of the match is 
evaluated based on the variability of the transformations 
applied to different parts. Despite the simplicity of the 
implemented procedures, results of applying this scheme 
support the notion that applying compensating trans­
formations to pictorial models can play a useful role in 
detecting shape similarities among object, and in object 
classification. 
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