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Abst rac t 

Conventional envisioners proposed in qualita­
tive physics have two difficulties in common: 
ambiguities in prediction and inability of rea-
soning about global behaviors. We take a ge­
ometric approach to overcome these difficul­
ties and have implemented a program PSX2NL 
which can reason about global behaviors by 
analyzing geometry and topology of solution 
curves of ordinary differential equations in the 
phase space. 
In this paper, we highlight a flow grammar 
which specifies possible patterns of solution 
curves one may see in the phase space. The 
role of a flow grammar in PSX2NL is twofold: 
firstly, it allows PSX2NL to reason about com­
plex patterns in a uniform manner; secondly, 
it allows PSX2NL to switch to an approximate, 
top-down algorithm when complete geometric 
clues are not available due to the difficulty of 
mathematical problems encountered. 

1 In t roduc t i on 
One of the core issues in qualitative physics is to develop 
an envisioner for deriving the behavior from the struc­
ture of given dynamical systems. The intended advan­
tage of total envisioners (hereafter, simply "envisioners" ) 
over numerical simulators is an ability of automatically 
deriving an abstract, qualitative description of behaviors 
of a given dynamical system under various initial condi­
tions. Constraint propagation and satisfaction on sym­
bolically represented quantity space have been a com­
mon technique of implementing envisioners [Weld and 
de Kleer, 1989]. 

However, as is often pointed out, envisioners based on 
constraint propagation and satisfaction have two prob­
lems: ambiguity in prediction and inadequate global 
analysis. Both of these problems are attributed to the 
local nature of constraint propagation and satisfaction. 

A promising direction would be to take a geometric 
approach. In fact, mathematicians have long been using 
geometric methods to study complex behaviors of nonlin­
ear differential equations. Why not build an envisioner 
on a firm ground? 

In this paper and related work [Nishida and Doshita, 
1990; Nishida d ai. 1991], we propose a geometric 
method of reasoning about phase portraits, collections 
of all solution curves of ordinary differential equations 
in the phase space. The outline of the method is this: 

• collect geometric features of solution curves using 
varieties of quantitative techniques, 

• infer topology of the phase portrait from geometric 
cues, and 

• reason about the global behavior by analyzing 
topology of the phase portrait. 

This method solves the problems raised above in the fol­
lowing way: firstly, the problem of ambiguity is much 
reduced because the geometry and topology of phase 
portraits are determined based on quantitative informa­
tion; and secondly, global analysis based on geometric 
and topological analysis of phase portraits is theoret­
ically supported by dynamical systems theories [Hirsch 
and Smale, 1974; Cuckenheimer and Holmes, 1983], Yet, 
the method satisfies a general requirement to envision­
ers, for it produces symbolic description of total behav­
ior. The method is incorporated in a program PSX2NL 
which works on ordinary differential equations defined 
on a two-dimensional phase space. 

In developing PSX2NL, we have argued the importance 
of representation and accordingly we have introduced 
flow patterns to represent the geometric and topologi­
cal features of phase portraits. Notion of flow patterns, 
algorithm for deriving flow patterns, and algorithm for 
reasoning about global behavior are presented elsewhere 
[Nishida and Doshita, 1990; Nishida et ai, 199l]. 

In this paper, we highlight a flow grammar, which 
specifies all possible flow patterns one may see in the 
phase space. The role of a flow grammar in PSX2NL is 
twofold: firstly, it allows PSX2NL to reason about com-
plex patterns in a uniform and systematic manner; sec­
ondly, it allows PSX2NL to switch to an approximate, 
top-down algorithm when complete geometric clues are 
not available dne to the difficulty of mathematical prob­
lems encountered. 

We begin with the background of this work, introduc­
ing mathematical notions and flow patterns. Next, we 
describe a flow grammar and related issues in some de­
tai l . Finally, we compare our work with related work 
and show the future direction. 
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Figure 1: the Vector Field (arrows) and Phase* Portraits 
(curves) of (2) (partly drawn) 

2 Qua l i ta t i ve Theory of Di f ferent ia l 
Equat ions 

In this paper, we consider planar ordinary differential 
equations (planar ODEs for short) 

( 1 ) 

on stale variables x(t) and y(+) that vary with time 
The right-hand side of (1) specifies the velocity of state 
change at each point in the phase space. In other words, 
formula (1) introduces a rt ctor field in the planar phast 
space spanned by x and y. In normal situations, a vector 
field implicit ly specifies a phase port mils, a collection of 
non-intersecting directed curves such that each directed 
curve is tangent to the vector field. Each directed curve-
is called an orbit or a solution caret or a trajeitory. and 
corresponds to a solution under a certain initial condi 
tion. 

For example, figure 1 shows (a) the vector field and 
(b) the p 11 a se portrait of an ODE: 

(2) 

State change of a dynamical system occurs along with 
orbits. To put it another way, each orbit can be identi­
fied with a function from the phase space to the phase 
space. In this sense, the phase portrait is said to de­
fine a flow in the phase space. Dynamical systems theo-
ries suggest that understanding the behavior begins with 
qualitative analysis by identifying regions in the phase 
space which orbits approach as , and classifying 
orbits by the regions they tend towards (or by asymp­
totic behavior). As for two-dimensional planar ODEs, it 
is proved that orbits may either diverge to place at in­
finity, or tend towards a fixed point (an orbit consisting 
of a point which makes the right-hand side of (1) zero) 
or a limit cycle (a cyclic orbit which attracts or repells 
nearby orbits).1 Methods of dynamical systems theo­
ries are powerful enough to provide useful information 

Figure 2: Key Orbits Characterizing the Behavior of (2) 
in  

about the behavior even when nonlinear ODEs cannot 
be solved analytically and it is not possible to represent 
orbits as an explicit analytical function of f. 

3 F low Pat terns and Global Analys is 
In order to derive global behavior, we partit ion the phase 
space into regions, and characterize the local flow in each 
region, and put together the results of local analysis to 
reason about global behavior.2 

We use flow mappings to represent local flow. For 
example, the local flow of (2) in region ABC D — {(x, y) \ 

can be characterized by fixed 
points and several other key orbits as shown in figure 2. 
Flow mappings corresponding to this characterization is 

The first term of the above says that orbits transverse 
to boundary edge A a continuously maps points there 
onto boundary edge a' A. Either side of the arrow may 
as well be a fixed point as in the fifth term above, or a 
limit cycle. 

Flow mappings can be obtained by searching for points 
of contact, such as a'. b'. c, ,4, C. D, where the orienta­
tion of flow flips from inward to outward or vice versa. 
We further classify points of contact into concave nodes. 
such as a', b', c where the orbits passing on these points 
lie inside the region immediately before and after the 
contact, and convex nodes, such as A, C. D, where the 
orbits lies outside the region before and after the contact. 

Global analysis requires only topological aspects of 
flow. We use flotv patterns to represent the topology 
of flow. Figure 3(a) shows a symbolic representation of 
the flow in region ABCD in figure 2 and (b) gives a 
schematic representation. 

*It follows from Poincare-Bendixson theorem. See p. 218 
of [Hirsch and Smale, 1974] for more details. 

2Currently, our technique cannot handle flow in open re­
gions. This means that, our method of global analysis is lim­
ited to flow in a bounded region. 
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(b) schemat ic representat ion of (a) 

F igure 3: A F low P a t t e r n Represent ing the Loca l F l o w 
in Region ABCD in figure 2 

T h e c o m p u t a b i l i t y and comp lex i t y o f generat ing f low 
pa t te rns depend on the class of O D E s . For two -
d imens iona l piece wise l inear d i f fe rent ia l equat ions, w h i c h 
resul t f r o m a p p r o x i m a t i n g each occurrence of nonl inear 
te rms in a nonl inear d i f ferent ia l equat ion by a set of con­
nected pieces of l inear func t ions , the a lmost a l l process 
is computab le [N ish ida and Dosh i ta , 1990]. For more 
complex classes of O D E s , di f f icul t ies arise ma in ly be­
cause complete i n f o rma t i on may not be avai lable due to 
the comp lex i t y o f m a t h e m a t i c a l prob lems encountered 
[N ish ida et a/., 1991]. T h i s impl ies t h a t the procedure 
may fa i l when i t tr ies to d iv ide the phase space in to 
u n i f o r m regions or to anno ta te f low a t the bounda ry o f 
regions. Moreover , handc ra f t i ng procedures wh i ch can 
deal w i t h these s i tua t ions wou ld be qu i te pa ins tak ing 
because of unmanageab ly m a n y comb ina t i on o f poss ib i l ­
i t ies. To overcome these d i f f icu l t ies , we take a g ram­
ma t i ca l approach, wh i ch w i l l be presented in the next 
sect ion. 

T h e m a i n s t ream of g lobal analysis is to merge f low 
pa t te rns in t u r n and examine topo log ica l proper t ies o f 
resu l t ing f low pa t te rns for larger regions. L i m i t cycles, 
i f any, can be detected in f inite steps as far as it is no t 
t o t a l l y conta ined in a single region as a result of phase 
space p a r t i t i o n and the local f lows in re lated regions are 
proper ly analyzed [N ish ida et a/., 1991]. We use several 
heur ist ics to back up the incompleteness. Since a t t r ac t ­
i ng and repe l l ing sets of p lanar O D E s are e i ther f ixed 
po in ts or l i m i t cycles, and since f ixed po in ts are deter­
m ined in analysis of local f low, the above gives a com­
plete process for g lobal analysis in theory . Of course, 
there is a chance t ha t the above m e t h o d may fa i l or 

produce an incorrect result, due to the failure in char­
acterizing the local flow or numerical error. This is a 
common difficulty we encounter in addressing nonlinear 
problems. 

4 Flow Grammar 
A flow grammar specifies all possible flow patterns in 
closed regions.3 Generally, a flow grammar is a system 

where B is a set of basic flow patterns, 
C a set of composition rules, and D a set of distortion 
rules. 

In the rest of this paper, we will describe one partic­
ular flow grammar, though other formulation might be 
possible as well. Particularly, we assume that closed re­
gions do not have fixed points on the boundary and that 
the given flow is structurally stable.4 Moreover, the flow 
grammar presented below does not generate l imit cycles 
for efficiency. L imi t cycles are handled in the algorithm 
which calls for the flow grammar [Nishida et a/., 199l]. 

Basic flow patterns specify flow patterns which contain 
at most one fixed point. We have four basic flow patterns 
as illustrated in figure 4. Basic flow patterns have at 
most one type of points of contact on the boundary. 

Composition rules specify the way the flow patterns 
wi th more than one fixed point are computed. Suppose 
we are to "fuse" a couple of 
together at boundary segments a1 b1 of P1 and 02 62 of 
P2 In order for flow patterns P1 and P2 to be properly 

3 The notion of flow grammar was inspired by Process 
Grammar [Leyton, 1988]. 

4 Structurally stable flows are those which persist under an 
infinitesimal perturbation to their parameters. If the purpose 
is to analyze ODEs for physical systems, only structurally 
stable systems may be observed. Peixoto's theorem suggests 
that fixed points which may appear in structurally stable 
flows are either sinks, sources, or saddle points (see p. 60 of 
[Guckenheimer and Holmes, 1983] for more detail). 
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(1) cv-distortion 

(3) merge into a convex node: vv — v 

• : convex node, o : concave node 

Figure 5: Four Patterns Governing Fusion of Flow 
End Points 

at 

fused, the flow at the open intervals (a i , b1) and (a2 , b2) 
should be complementary: outgoing (incoming) flow of 
Pi should correspond to incoming (outgoing) flow of P2, 
and each convex (concave) node of P1 should correspond 
to a convex (concave) node of P2. At the end points a, 
and 6,, flow should be either one of four patterns shown 
in figure 5. 

Distortion rules specify flow patterns arising when 
the relative geometric relation between the flow and the 
boundary segment becomes complex. We have two dis­
tort ion rules as shown in figure 6. One introduces a 
sequence of a concave node and a convex node into a 
boundary segment and the other introduces them in the 
reverse order. 

Figure 7 illustrates how the flow pattern shown in fig­
ure 3 can be obtained by applying a sequence of distor­
tion rules to the basic flow pattern B+. Figure 8 illus­
trates flow patterns formed by applying a composition 
rule to basic flow patterns B± and B_. 

We classify flow patterns by the number of fixed 
points and points of contact involved: we use a tuple 

as an index to the finite set of flow pat­
terns which have nsa saddle points, sinks or sources, 
nc concave nodes, and nv convex nodes. Although 

=* I 

(2) vc-distortion 

Figure 6: Distortion Rules 

Figure 7: Derivation of Flow Patterns shown in Figure 3 
(drawn schematically) 

Figure 8: 
terns B ± 

; (12 flow patterns in total) 

Flow Patterns Formed From Basic Flow Pat-
and B_ 
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the index appears four-dimensional, it is actually three-
dimensional, as shown in the following theorem: 
T h e o r e m 1 For any C1 structurally stable flow and a 
closed region R, let the number of saddle points and sinks 
or sources in R be n s a and n s s , respectively. L i t the 
number of convex nodes and concave nodes at the bound­
ary dR of R be nv and n c . respectively. Then wt havt 
the following relation: 

(4) 

O u t l i n e of p r o o f The theorem can be proved by the 
following facts: (a) the flow grammar G can produce all 
possible flow patterns which do not contain limit cycles, 
(b) introduction of l imit cycles does not affect the in­
dex, (c) (4) holds for basic flow patterns, (d) application 
of distortion rules trivially retains (4). and (e) applica­
tion of composition rules also retains (4), for the number 
of concave nodes and convex nodes should be equal at 
the boundary segments to be fused except the two end 
points, and nv — nc decreases by one at the two end 
points of fusion in each of four patterns governing fusion 
(see figure 5).  

Since n s a , n s s , nc, and nv, are computed indepen­
dently, the above theorem can be used as a constraint 
for detecting numerical errors or missing information. It 
can also be used to enumerate flow pattern efficiently. 
For example, if both nv and nc are 2, it follows from (4) 
that nsa — nss< — 1. Thus, we can start enumerating flow 
patterns from those with index (0,1,2,2). 

5 Enumera t ing F low Pat te rns 
The flow grammar presented in the previous section is 
ambiguous in the sense that there usually exists more 
than one derivation which produces the same flow pat­
tern. In order to cope with this unfortunate property, we 
have to rely on a generate-and-test method. In order to 
decrease the cost of enumeration, we use two techniques. 

The first technique is to pose a constraint on the se­
quence of derivations so as to suppress a sequence of 
derivations which eventually produces a flow pattern to 
be generated otherwise. Flow pattern P is minimal if 
there is no other flow pattern Q such that P results from 
applying a distortion rule to Q. If is easy to determine 
whether a given flow pattern is minimal or not. We have 
found the following property: 
T h e o r e m 2 For any derivation sequence S which in­
volves more than one application of distortion rules, 
there exists a derivation sequence S' such that S' pro­
duces the same flow pattern as S and application of dis­
tortion rules comes later than application of other rules 
in S'. 
Thus, it suffices to first generate minimal flow patterns 
and then apply distortion rules. 

The second technique is to use a short-hand repre­
sentation of flow patterns to reduce the cost of com-
paring flow patterns. An f~rep is a cyclic l ist5 of form 

Figure 9: Observation (drawn schematically) 

Each element of an f-rep 
corresponds to a boundary segment delimited by a cou­
ple of points of contact and qualitatively denotes in the 
counterclockwise order how points on the boundary seg­
ment are mapped by orbit intervals involved in the flow 
pattern. If the interval corresponding to X i j is mapped 
f rom/to another boundary segment B, we use a positive 
integer indicating the relative position of B counted in 
the counterclockwise order from the current boundary 
segment. If it is either a fixed point or a l imit cycle, we 
use a negative integer. si denotes the orientation of the 
flow there; it is + if the flow comes from the outside, 
and — if it leaves for the outside. 

For example, an f-rep for the flow pattern in figure 3 
is: 

(5) 

where, the first element is for boundary segment and 
the second is for and so on. Note that f-rep for a set 
of flow mappings is uniquely defined except the existence 
of variants which only differ from each other in the way 
fixed points are numbered. And importantly it seems 
that different flow mappings give different f-reps. More 
study is left for future. 

6 U t i l i t y of F low G r a m m a r 

The ut i l i ty of a flow grammar is twofold: firstly, it en­
ables to reason about complex patterns in a uniform 
manner, and secondly, it provides constraints. Both of 
these features are implemented in PSX2NL. 

When no information is available about fixed points, 
PSX2NL switches to an approximate algorithm based on 
a generate-and-test method. The input is a set of ob-
servations consisting of partially traced orbits and es­
timated location of convex and concave nodes. A flow 
pattern P is an interpretation of an observation O if there 
exists (possibly empty) a set of assumptions A such that 

An interpretation is minimal when there is no 
other interpretation which explains the observation with 
smaller set of assumptions. PSX2NL uses the enumer­
ator described in the previous section to generate flow 
patterns in turn and seeks for a minimal interpretation. 

For example, given the observation shown in figure 9, 
PSX2IML produces twelve minimal interpretations, two 
of which are shown in figure 10. Currently, PSX2NL 
will simply increase the number of observations when 
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(!) (2) 

Figure 10: Minimal Interpretations of the Observation 
in Figure 9 

more than one minimal interpretation is found When­
ever PSX2NL detects a symptom suggesting that a l imit 
cycle is contained in the given region, it wi l l divide the 
region into two by a line across the limit-cycle-like orbit 
Focusing observation for resolving ambiguity would be 
an interesting problem left for future. 

7 Related W o r k 
Attempts to incorporate global information have been 
made by several authors [Lee and Kuipers, 1988; Struss, 
1988]. Unfortunately, mast computational methods de­
veloped so far only make of the non-intersection con­
straint of orbits and some other partial constraints, and 
hence the ability of reasoning about global behaviors is 
sti l l quite l imited. Their weakness mostly comes from 
the lack of adequate representation. In contrast, flow 
patterns and a flow grammar provide a means for rea­
soning about various aspects of geometric constraints, 
allowing an envisioner to symbolically reason about the 
structure of global and asymptotic behaviors. 

Intelligent analysis of nonlinear ODEs is quite a new 
field. POINCARE [Sacks, 1991] would be the first pro­
gram addressing intelligent analysis of nonlinear ODEs. 
POINCARE integrates qualitative and quantitative meth-
ods, as PSX2NL does. Both POINCARE and PSX2NL 
work on planar ODEs including nonlinear ODEs, though 
POINCARE supports bifurcation analysis which is not yet 
implemented in PSX2NL. The difference in phase por­
trait analysis is that PSX2NL makes use of more rep­
resentation than POINCARE and other programs based 
on the conventional simulation technology. This leads 
to three consequences. First, PSX2NL saves computa-
tional resources, for it keeps geometric and topological 
information in an more abstract form. For example, 
PSX2NL keeps information about only a few essential 
points on orbits, while POINCARE has to keep the loca­
tion of all points on orbits. Second, PSX2NL can derive 
richer conclusion from the same observation obtained by 
quantitative analysis, as demonstrated in the previous 
section. Th i rd , PSX2NL is more robust from incomplete-
ness of information and numerical errors. For example, 
POINCARE rely on an external package in locating fixed 
points. If the package fails POINCARE fails, too. In 
contrast, PSX2NL can switch to a robust, approximate 
method based on a flow grammar. 

A stochastic approach [Doyle and Sacks, 1989] is an­

other candidate of uniform treatment of global behavior 
supported by mathematical theories. Since the stochas 
tic approach possesses a complementary nature to ours, 
it would be interesting to seek a way for combining the 
two. 

8 Fur ther W o r k 
An important work left for the future research is ex­
tension into higher dimensional flow. The research in 
that direction is quite challenging both theoretically and 
practically. Unfortunately, the extension of this work 
into higher dimensional flows is not t r iv ia l , for firstly flow 
patterns become far more complicated, secondly, rep­
resenting higher dimensional geometric objects is hard, 
and thirdly it becomes subtle to characterize the topo­
logical structure of flow. However, we believe that the 
concepts exploited in this paper would be of much help 
in such extension. 
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