
The Prob lem of Induct ion and Machine Learning 

F. Bergadano* 
University of Torino 

Corso Svizzera 1S5, Torino, Italy 
bergadan@di.unito.it 

A b s t r a c t 

Are we justified in inferring a general rule from 
observations that frequently confirm it? This 
is the usual statement of the problem of induc­
tion. The present paper argues that this ques­
tion is relevant for the understanding of Ma­
chine Learning, but insufficient. Research in 
Machine Learning has prompted another, more 
fundamental question: the number of possi­
ble rules grows exponentially wi th the size of 
the examples, and many of them are some­
how confirmed by the data - how are we to 
choose effectively some rules that have good 
chances of being predictive? We analyze if and 
how this problem is approached in standard ac­
counts of induction and show the difficulties 
that are present. Finally, we suggest that the 
Explanation-based Learning approach and re­
lated methods of knowledge intensive induction 
could be a partial solution to some of these 
problems, and help understanding the question 
of valid induction from a new perspective. 

1 The t r a d i t i o n a l p r o b l e m of i nduc t i on 

Induction seems to escape all deductive explanations, 
because its conclusions cannot be proved to be correct. 
Worse than this, it is not even possible to prove that they 
are correct most of the time, unless we are ready to ac­
cept very elaborate and questionable premises. Many 
conclusions obtained by an inductive process are totally 
wrong, although infinitely many examples confirm them. 
Some actually get worse as more confirming evidence is 
found. The philosophical literature is full of such ex­
amples; for instance, let me paraphrase a bit the well 
known argument of Goodman [Goodman, 1954]. Sup­
pose we define a learning system of "unexpected value'1 

as a system that performs quite badly unti l August 30, 
1991, and then starts to produce incredibly good results. 
If one was to believe blindly in the power of induction, 
then an L7CA1-91 paper describing all kinds of very poor 
results and emphasizing how badly their system works 
would thus confirm in many ways that the system is of 

*I am grateful to Paola Dessi', Stuart Russell and Lorenza 
Saitta for helpful comments on a draft version 

"unexpected value". The more and the more varied the 
confirming examples that are possible before the IJCA1 
conference, the worse the conclusion seems to follow. 

In this paper, we analyze the problem of induction in 
a computational framework, where it is possible to make 
clear the assumptions that we could rely upon when we 
(or computers) infer general rules that are justified only 
by a finite number of confirming examples. 

When the scope of the enquiry is so restricted, one 
of the most authoritative approaches to the problem is 
statistical estimation, as developed, for example, by Ney-
man. This theory is very well known, but the following 
wil l make our later discussion clearer. Suppose, for ex­
ample, that we are to estimate the mean of a given 
population, that we know to be normal and with stan­
dard deviation . Let us observe a sample having mean 

Then, because of the properties of the normal distri­
bution, we may say that, with probability 0.95 

( i ) 
that is to say, we have estimated the value of the real 
mean with some precision, and we know we are right with 
high probability. This is a form of inductive reasoning, 
since we have inferred a general statement about, a large 
population from the observation of a limited number of 
facts. But the puzzles seem to have vanished because 
we now know that we are right most of the time. This, 
as Neyman also believes, follows deductively from the 
premises. Alas, the premises are quite hard to demon­
strate and cannot be taken as intuit ively plausible, as 
they involve knowledge of the form of the distribution 
and of some of their parameters. It seems that what we 
are required to know before we perforin any experiment 
is much more than what we are actually able to infer. 
Moreover, this technique deals with the estimation of 
parameters in a continuous domain, so that approxima­
tion with an interval makes sense; it is not clear how this 
can be adapted to inductive arguments in general. 

These problems have led many researchers and prac­
titioners to adopt the alternative approach of subjective 
Bayesian inference. In this framework, probabilities of 
inductive hypotheses are defined as subjective degrees of 
belief and objective data are used to update their values. 
A l l that is needed for the updating is the application of 
Bayes' theorem. The Bayesians defend themselves from 
the difficulties of subjectivism by arguing that the pre­
cise value of prior probabilities is not important: in many 
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cases even large differences in the prior probabilities lead 
to the same conclusions if sufficient data are provided 
(e.g. [Edwards et a/., 1963]). We wil l argue later that 
in many other cases relevant to induction and AI this is 
not true. Subjective Bayesian induction, as well as tra­
ditional statistical reasoning, is often concerned with the 
inference of numerical parameters when various kinds of 
continuity assumptions are acceptable. Such assump­
tions are quite far from the mark when dealing with log­
ical hypotheses such as the ones we work with in many 
fields of science and particularly in A I . 

An approach that emphasizes the logical and symbolic 
aspects of inductive reasoning is the framework of in­
ductive logic, as developed, for example, by Carnap and 
Hintikka. In their views, the probability of some state­
ment is defined on the basis of the ground conjunctive 
expressions that it implies. In Carnap's theory, for in­
stance, the function indicates the degree, or the 
strength of the implication and is defined as 
follows: 

where in indicates some measure of the extension of a 
formula, that is of how many and how important are 
the basic statements covered by the formula. Some such 
measures allow one to justify inductive inference, in the 
sense that a positive example e of a general rule <f> wil l be 
such that where K is our previous 
knowledge. Unfortunately there are, as Carnap finally 
came to admit, infinitely many such functions, and there 
is no objective criterion for preferring one over the other. 
Moreover, the choice of the confirmation function wil l 
have profound effects on what one actually deems to be 
credible on the basis of the very same evidence. 

But before we move on to further analysis and crit i­
cism, we must discuss the new challenges and the new 
aspects of induction that have been brought to our at­
tention by the recent research on Machine Learning. 

2 N e w i s s u e s r a i s e d b y M a c h i n e 
L e a r n i n g 

Let us start with a terminological question. Induction, 
in Machine Learning, is not only taken as the inference 
from observations to given general rules. It includes the 
search for these rules in a large set of possibilities. This 
is not always so in the philosophical l iterature; for exam­
ple Peirce seems-to be calling "abduction" the choice of 
the hypotheses, and " induct ion" the leap from observ­
ing the chosen hypotheses work on the available data 
to accepting them in general. Also when dealing with 
scientific reasoning, the works on induction are mainly 
concerned with the testing of some theory which is al-
ready given, and strive to justify the conclusions that are 
derived from the test. We argue, on the contrary, that 
it is the search and the choice of a plausible inductive 
hypothesis that is problematic, more than the inductive 
leap per se. 

This issue is emphasized in Machine Learning and AI 
also because of the great importance given to inductive 
hypotheses of a logical form. The move from numerical 
to symbolic Al-oriented learning methods has prompted 

the problem of the very great number of possible rules 
Moreover the rules are quite unrelated and distinct: it 
is hard to see how one rule can be accepted as an ap­
proximation of another. The problem at hand is very 
different from the one of numerical estimation, where 
the hypotheses are embedded in a continuous space of 
ordered values. For example, if the standard deviation 
is 10 and we estimate the mean from a sample of size 
25, we wi l l regard as practically equivalent the hypothe­
ses and On the contrary, even if we were to 
translate a logical space of hypotheses into a numerical 
representation, e.g. by means of a Godel numbering, we 
could by no means consider hypotheses n and n + 1 to 
be "close" in any other sense. 

Nevertheless, both because of cognitive and knowledge 
engineering motivations, we cannot set aside our goal of 
learning symbolic information. The problem of induc­
tion is in this case related to the problem of chosing an 
inductive hypothesis in a large space of distinct possibil­
ities and this choice leads us to a twofold discussion. On 
the one hand we are to analyze the predictivity of induc­
tion from a new perspective, that turns out to be rather 
pessimistic wi th respect to the standard account of sta­
tistical estimation. On the other, we are concerned with 
the computational complexity of inductive inference. 

2.1 A new u n d e r s t a n d i n g of p r e d i c t i v i t y 
This analysis wil l be l imited to the problem of concept 
acquisition. In this framework we are given concept ex­
amples and counterexamples in the form of ground con­
junctive expressions, and we search for propositional or 
first order descriptions of the concepts. For instance, we 
may be given an example of a "block's world car" as 
follows: 

and we might learn from the above and other examples 
the following description of the concept "block's world 
car": 

(4) 
Although this description may seem insufficient, it could 
result from the learning process if it distinguishes well 
enough the examples from the counterexamples of the 
concept. 

If we were given a concept description such a.s the 
above and were asked how predictive it is, i.e., how well it 
could distinguish independent examples and counterex­
amples of block's world cars, we could use Bernoulli's 
l imi tat ion1 : 

(5) 
were m is the number of examples and counterexam­
ples that we have seen, the ones the observed-error is 
computed from. True_error is the recognition error that 
would be observed on all the possible examples2. If 

1This limitation is found in the original proof of his theo­
rem. The constants have been improved upon in an inequal­
ity of Hoeffding [Hoeffding, 1963]. 

2There is a finite number of possible examples repre-
sentable with conjunctive ground expressions without func­
tions, if the number of available predicates and constants is 
finite, as it usually is. 
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the number of examples is sufficiently large, the above 
limitation states that, wi th high probability, the perfor­
mance of the given concept description as measured on 
the available examples is quite close to the performance 
that we may expect on new examples. 

Unfortunately, this is not what we call induction in 
Machine Learning. This would just be the testing of 
a hypothesis supplied by an oracle. Normally, this 
hypothesis is not given and we must search for the 
best one in a very large number of possibilities. If 
we are asked how predictive we expect this best hy­
pothesis to be, we cannot use Bernoulli's l imitat ion, 
which is valid when the recognition rule is fixed, but 
we must modify it into the following [Vapnik, 1982; 
Devroye, 1988] : 

where is the set of hypotheses that are possible. Bet-
ter limitations may be found, but this is the basic idea. 
1 torn this we see that a large number of possible rules 
has very bad effects on predictivity. In other words, the 
larger the language that we use for learning the con-
cept descriptions, the worse the correspondence between 
the observed and the unknown. Obviously, there is an 
advantage in having a larger set of hypotheses: the ob­
served error rate is likely to be reduced, because by try­
ing more rules we have more chances of finding one that 
performs well on the training data. Nevertheless, this 
advantage may vanish when we move to classify new ex­
amples. 

When performing induction with a machine, one can-
not ignore this fact, which is constantly observed in Ma-
chine Learning experiments. As a consequence, much 
emphasis has been given to "bias" or preference criteria 
[Mitchell, 1982; Bergadano el a/., 1989; Bergadano el a/., 
1088], for choosing only the hypothesis that are deemed 
plausible a — priori. 

2.2 T h e p r o b l e m o f c o m p u t a t i o n a l c o m p l e x i t y 
It is not sufficient that learning be predictive, it must 
also be performed efficiently. If the time needed for ob-
taming predictive concept descriptions grows exponen­
tially with the size of the examples (e.g. the number of 
propositional variables), then induction may turn out to 
be practically unfeasible. Following the work of Valiant 
[Valiant, 1984a; Valiant, 1984b] there has been a growing 
interest on these aspects of induction, giving rise to the 
new field of computational learning theory. 

In that approach, the dimension of the problem de­
pends both on the size of the examples and on the accu­
racy that is required (i.e. the value o f f in the above l im­
itations). It can be shown that if the language used for 
formulating the inductive hypotheses is not adequately 
restricted, learning accurate hypotheses is NP-hard. For 
example, under some general assumptions, disjunctive 
normal form propositional formulas with at most k terms 
are "not learnable" [Kearns et a/., 1987], in the sense 
that the computation time grows exponentially with the 
size of the examples and the required accuracy. In other 
words, it turns out that even relatively simple descrip-

tion languages cause the search for accurate inductive 
hypotheses to be practically impossible when the size of 
the examples is large. 

It is indeed very interesting that predictiveness and 
complexity are so closely interrelated. Here is the trade­
off: if the language for expressing inductive hypotheses 
is simple and contains few alternatives, then we may 
not be able to find a description that discriminates the 
available examples, i.e. we cannot adequately describe 
the observations; if the language is too complex then 
it may take too long to find acceptable hypotheses and 
what we find may turn out to perform badly on new data, 
i.e. we cannot produce effectively reliable predictions of 
the unobserved. 

3 The above prob lems as addressed by 
s tandard accounts o f i nduc t i on 

When learning classification rules, we want to estimate 
the performance of the hypothesis that 
we have found to be the best for the given examples. 
For this purpose it is sufficient to evaluate the probable 
difference e between the error observed on the data and 
the error that we want to estimate: 

where is what we deem to be a high probability (e.g. 
0.95); e wil l then be the probable performance loss when 
moving from past to future examples. Limitation (6) al-
lows us to compute f given n, m (the number of learning 
examples) and  

This analysis does not take into account the nature 
of the hypothesis space >, it only counts the number 
of its elements. It may be the case that the possible 
hypotheses, while being many, are very similar, in the 
sense that they classify the possible examples (about) in 
the same way. In particular, there may be an infinite 
number of possible hypotheses, but there are at most 
2m ways of classifying a set of m examples. The work of 
Vapnik and Chervonenkis [Vapnik, 1982] has extended 
traditional estimation methods to deal with these prob­
lems, and provided limitations such as (6), where the 
cardinality of the hypothesis space is replaced by a mea­
sure of its expressiveness. Even if there is an infinite 
number of possible hypotheses (e.g. the set of linear 
discriminants), their expressiveness when classifying m 
examples may be l imited, and often much lower that 
2 m . Nevertheless, the bounds that may be found fol­
lowing this approach are quite inadequate for the sym­
bolic languages used in Machine Learning [Pearl, 1979; 
Bun tine, 1989; Bergadano and Saitta, 1989]. Suppose 
that we fix n and e in the above l imitat ion, and we want 
to known the minimum number m of examples needed 
for this level of probable performance. It turns out that 
this number is much larger than the number of examples 
that ML programs seem to need. 

The subjectivist Bayesians have often criticized the 
tradit ional approach to statistical inference and pro­
posed an alternative approach that could alleviate some 
of the above problems [Lindley, 1990; Howson and Ur-
bach, 1989]. To the concept of a sample space they have 
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substituted subjective prior probabilities, and have de­
fended themselves from the problems of subjectivism in 
science by noting that, when sufficient data are avail­
able, the posterior probabilities wil l converge to the same 
values, even for very different init ial priors. From the 
above discussion, it seems that there is a more funda-
mental problem in inductive inference, when explained 
in terms of objective probabilities: the arbitrariness of 
the hypothesis space. The choice of which hypotheses 
are possible is as crucial as the definition of the sample 
space (i.e.. which examples are possible). If the hypothe­
ses are unrestricted (or even just too many), what we 
learn wil l not be probably predictive, if they are few and 
badly chosen, we wil l not even describe effectively the 
available data, and may expect bad performance on new 
examples as well. The subjectivist approach would sub-
si it ute prior probabilities of hypotheses to the concept 
of a hypothesis space. We would not define a minimum 
number of examples needed to make learning predictive, 
but will just update the probabilities as we see new ex­
amples, making more probable the hypotheses that are 
confirmed by the data. It would seem that the prob­
lem of the prohibitive number of examples is avoided, 
enabling a learning system to learn even from limited 
information. 

Unfortunately, in symbolic Machine Learning it is no 
longer true that the choice of the priors is not crit ical, 
and is corrected by sufficient data. This is easily seen 
in the following example. Suppose we give equal prior 
probabilities to any hypothesis of a propositional lan­
guage with n variables; then the best classifier on the 
available examples will always be just the disjunction 
of the example descriptions. Needless to say, its predic­
tiveness will be null (unless future examples are perfectly 
equal to the ones that were seen). By contrast, if we give 
non-zero prior probabilities only to a small, fixed set of 
hypotheses, the learned description will not be equiv­
alent to the disjunction of the examples and might be 
predictive according to whether the priors are well cho-
sen and to how many examples we see. In general, if we 
have not seen most of the 2n examples, the two above 
choices of priors wil l not converge to the same result. 

We then need to face the problem of subjectivism, be­
cause the irrelevance of the prior is no longer an excuse. 
Of course, the choice of a sample space is as arbitrary 
as the choice of a prior probability [Lindley, 1990]. But 
there is certainly a difference between "subjective" and 
"arbi t rary" . The premises of any inference are, in a way, 
arbitrary, in the sense that one has to chose them on the 
basis of no other reason at all. The chain of "why" and 
"because" has to stop at some point and there are as­
sumptions which either correspond to self-evident facts 
or which we accept without further enquiry. A subjec­
tive probability is not an "arbi t rary" assumption in this 
sense. It is not clear when the assumption is true or 
false, even if we were to obtain the whole factual infor­
mation that is needed, i. e. the meaning of a subjective 
probability is not clear. But this is only my (subjective) 
opinion. 

The fact that the choice of the priors is in fact very im­
portant is connected to another traditional criticism to 

subjectivist Bayesian induction, which is usually stated 
as an unrelated question: hypotheses that are con­
structed explicitly to fit the data should not be confirmed 
by the very same data. By contrast, Bayesian updating 
does not distinguish among hypotheses that were gener­
ated at different times, or wi th different intentions. For 
example, if one Sunday we perform an experiment and 
we see that our scientific theory is wrong, we should 
not just correct it by adding that our laws only work 
during weekdays. Nevertheless, Bayesian updating will 
increase the probability of the corrected theory. On the 
other hand, it is hard to explain why one should prefer 
theories that where generated before seeing any datum. 
This is the same as saying that the credibility of scientific 
hypotheses depends on the order some particular scien­
tist performs his actions. The puzzle can be explained, 
1 think, if we understand that the choice of the priors 
is actually important. If we give non-zero probability 
to many hypotheses of high complexify, it may happen 
that inductive inference comes out with rules such as the 
Sunday-excluding theory. If, on the contrary, we chose 
only some hypotheses as possible, and we give them non­
zero prior probabilities, then we may not be able to ob­
tain high posterior probabilities for any of them. The 
problem of defining a suitable hypothesis space is essen­
tial when learning symbolic concept descriptions, both 
in the traditional and in the subjectivist accounts of in­
duction. 

4 Is Exp lanat ion-based Lea rn ing a 
possible answer? 

There is an understanding of the word "learning" that 
is apparently unrelated to induction, fo r instance, after 
our first few tic-tac-toe games, we might have "learned 
that the second move in Fig. 1 should never be made 
because it leads to certain loss. 

This is in fact a simple form of Explanation-based 
Learning (EBL). Here is another example: suppose we 
are given Peano's arithmetic and the fact 
then we could " learn" the commutative property of ad-
dit ion. This is in fact a deductive consequence of the 
theory but "learning" has somehow been guided by the 
example. As a more general case, suppose we have the 
following first order theory, defining the predicate P: 

(8) 

and the ground formula which will serve 
as an example of the concept P. We may now learn 
(through EBL) a specialized description of P, by sub-

1076 Philosophical Foundations 



stituting the theory of (8) w i th 

(9) 

This example may look t r iv ia l , and in fact it is, but I 
i hink it shows precisely the basic idea behind EBL. Here 
the theory (8) plays the role of the rules of tic-tac-toe in 
the first example and the ground formula 
corresponds to the board situation of Fig. 1, A similar 
correspondence holds with respect to Peano's arithmetic 
,iii.| the fact in the second example. A 
Miven theory has a number of deductive consequences 
(in the extreme case of (8) these consequences are just 
the two disjunctive components of the theory itself, or 
their instantiations), we are given some examples or ob-
,.nations about the predicates involved in the theory 
and we " learn" a subset of the deductive closure of the 
theory which allows us to explain the observations. 

There has been quite a number of interpretations of 
this form of reasoning from examples to rules with log­
ical constraints that justi fy the conclusions. Some have 
argued that EBL is not t ruly learning, because it is just a 
form of deduct ion. Others have stressed, that, although 
this form of inference is in fact truth-preserving, there 
is nevertheless some degree of generalization from the 
available data. For example, in the above tic-tac-toe 
name, we might have learned not only that this partic­
ular move is wrong, but that, in general, any move on a 
middle-side position is wrong. Similarly, formula (9) is 
more general than . Others have compared 
EBL to lemma generation and to partial evaluation. 

These perspectives, though all correct, fail to show 
that. EBL is actually related to induction, and in an im­
portant way. Let me put forward an alternative def­
inition: FAUJ is inductive inference with a logical 
def in i t ion of the hypothesis space. 

The fact that EBL was not unrelated to induction was 
noticed early on, when systems started to include statis­
tics of how often a given EBL-generated rule was used; 
the most frequently used rules were kept in the knowl-
•--dgc base, and the others were discarded. In other words, 
it was soon understood that, although the learned rule is 
certainly correct, ( i t follows deductively from the theory), 
the fact that it wi l l be of some ut i l i ty on future examples 
is not guaranteed, and the assumption implies an induc-
tive leaf>. For instance, it is certain that but 
it is not certain that by adding this rule to Peano's ax-
inns we wil l prove more efficiently a given theorem. For 
this reason EBL is often performed with more than one 
example - for instance the commutative property of ad­
dition may be established as another axiom only after 
seeing more cases were it is useful i and 

In the usual approach to inductive learning, any hy­
pothesis may be generated, if it explains the data and 
satisfies general constraints (e.g. being a DNF formula 
with less than n terms). In EBL, only the hypotheses 
that may be obtained deductively from the theory are 
possible. The examples are used to select, among the 
hypotheses that are possible, the ones that seem to per­
form well. 

I f the theory is complete and cor rec t 3 , the only r isk is 
t h a t the EBL-genera ted rules do not represent the most 
useful pa r t of the theory : these rules are a subset of the 
deduct ive closure of the theory , and as such they must 
cont inue to be correct , b u t when they are used alone 
( w i t h o u t the rest of the theory ) they may be incomplete 
and fai l to classify new examples - this w i l l occur more 
often i f the t r a i n i ng examples were biased or insuff ic ient. 

I f the theory is incorrect a n d / o r incomple te 4 , then th is 
on ly means t h a t a 100% correct rule for our learn ing 
examples may be excluded f r o m the hypothesis space. 
T h i s corresponds to the general stochast ic classif ication 
p rob lem in P a t t e r n Recogn i t ion , and is not necessarily a 
ha rm fu l s i tua t ion if the hypothesis space is well chosen 
and of a l im i t ed size. Res t r i c t ion to correct hypothe­
ses ( the determin is t ic p rob lem) of ten leads to larger 
search spaces and degrad ing per formance [Bergadano 
and Sa i t ta , 1989]5. Th i s is apparent ly cont rad ic ted by 
the fact t ha t in the determin is t i c case we can ob ta in 
fo rmulas such as (6) , where e'2 is subs t i tu ted by e [Yap-
n ik , 1982; B lumer et al . , 1987], leading to bet ter l im i ta ­
t ions of the number of examples needed for a specified 
per formance. Nevertheless, in order to be sure tha t a 
100% correct rule is possible, the hypothesis space lias 
to be larger, and , as a consequence, the difference be­
tween the observed error (wh i ch is 0) and the t rue error 
grows. Th is is also observed exper imenta l l y when p run ­
ing decision trees [Qu in lan , 1987] or s imp l i f y ing logical 
descr ipt ions [Bergadano et a l . , 1989]. 

The poss ib i l i ty of descr ib ing a hypothesis space in a 
knowledge-based style is an i m p o r t a n t advantage of E B L 
and other forms of declarat ive bias (e.g. determinat ions 
[Russel l , 1988])6 . I t al lows us to i n f o r m our induct ive 
procedures of the basic const ra in ts t ha t are present in 
a given d o m a i n , e.g. the mean ing of h igh level features 
usual ly employed by exper ts , or maybe the results of au­
t oma ted learn ing on another , s im i la r , d o m a i n ' . We have 
argued t ha t the de f in i t ion of a good hypothesis space 
is responsible for the d i f f i cu l ty of i nduc t i on and some-

3 I n EBL , a domain theory is said to he complete when 
it is able to classify any example. The theory is correct if 
all the classifications that are produced correspond to the a 
priori classification of the examples. 

4There has been substantial work on EBL with incorrect 
and incomplete theories, for example many papers in the 
1989 Machine Learning workshop on "Combin ing Empirical 
and Explanation-based Learning" are devoted to this prob­
lem (Proceedings published by Morgan Kaufmann) 

Induction in the deterministic and in the stochastic case 
have also been distinguished in the philosophical l i terature, 
for instance Mi l l calls the latter "approximate generalization" 
and Keynes speaks of "universal induct ion" and " induct ive 
correlat ion", respectively. Keynes discusses inductive corre­
lat ion separately, in the context of statistical inference in the 
last part of his Treatise on Probabil i ty. Here we basically 
view the two cases as instances of the same problem 

6 A n alternative perspective that distinguishes EBL from 
declarative bias is found in [Russell, to appear] 

7This feature is related to what is called " local induct ion" 
in the philosophical l i terature [Kyburg, 1976], i.e. induction 
that is based on knowledge that was itself obtained with some 
form of inductive reasoning. 
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times the reason of the paradoxes of inductive inference. 
Therefore, we must devote our efforts to this goal, ac­
quire knowledge about the domain of a given inductive 
problem, understand the basic constraints, and trans-
form all this into a domain theory, the logical definition 
of the hypothesis space. 

5 Conc lus ion 
Of rourse, this is a good start, but it is not a solution 
of the problem. Wi th EBL we have, in some sense, a 
good programming language for describing the hypoth­
esis space. But how to write a good program? How 
to know which hypotheses we should regard as possi­
ble? The statistical analysis which we have discussed 
above might give us some advice about how many these 
hypotheses should be, if we want to avoid total degrada-
tion of performance when moving to test examples. But 
this advice, which has been compared to Occam's razor 
[Blimier et al, 1987], is so pessimistic, that it is more ad-
equately associated to an axe. According to theoretical 
analysis, even when quite many examples are available, 
we should restrict our search to very few hypothesis; as 
a consequence, we will easily obtain bad performances 
even on the training data. Maybe, better advice could be 
obtained by experimental analysis, with cross-validation 
techniques (such as leave-one-out), in order to evaluate 
the probable performance loss. 

In any case, all these analyses might well tell us how 
many hypotheses we should have, they wil l never tell 
us which. Better understanding of the inductive prob­
lem and more research in Machine Learning might allow 
us to transfer knowledge of relevant features from one 
domain to the other, to explore the hypothesis space 
more efficiently, to collect more data in order to save 
predictiveness even if our previous knowledge is poor. 
Bui it wil l always be important, and sometimes neces-
sary, to describe a hypothesis space which is both expres­
sive and reasonably constrained. It is not surprising, I 
think, that knowledge of nothing at all does not lead 
to anything useful, in induction as well as in any other 
kind of inference. A l l forms of reasoning need premises 
that do not follow from anything else. "The starting 
point, of scientific knowledge is not itself scientific knowl­
edge. Therefore, since we possess no other infallible fac­
ulty besides scientific knowledge, the source from which 
such knowledge starts must be in tu i t ion" , or, 1 would 
rephrase, some form of a lucky guess. Good luck! 
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