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Dif ferent researchers use " the phi losophy of automated 
theorem p r o v i n g " to cover d i f fe ren t concepts, indeed, 
different levels of concepts. Some wou ld count such issues 
as h o w to e f f i c i e n t l y index databases as par t of the 
phi losophy of automated theorem prov ing . Others wonder 
about whether fo rmulas should be represented as strings or 
as trees or as l is ts , and cal l th is part of the phi losophy of 
automated theorem prov ing. Yet others concern themselves 
w i t h what k i n d o f search should be embodied in a n y 
automated theorem prover, or to what degree any automated 
theorem prover should resemble Prolog. St i l l others debate 
whether natural deduct ion or semantic tableaux or resolution 
is "be t te r " , and ca l l th is a par t of the ph i losophy of 
automated theorem p rov ing . Some people wonder whether 
automated theorem p rov ing should be "human or iented" or 
"machine or ien ted" — sometimes arguing about whether the 
internal p roo f methods should be " h u m a n - I i k e " or not, 
sometimes arguing about whether the generated proof should 
be output in a f o r m unders tandab le by peop le , and 
somet imes a r g u i n g about the des i r ab i l i t y o f human 
intervention in the process of constructing a proof. There are 
also those who ask such questions as whether we shou ld 
even be concerned w i t h completeness or w i th soundness of a 
system, or perhaps we should instead look at very ef f ic ient 
(but i n c o m p l e t e ) subsystems or look at methods of 
generating models wh ich might nevertheless validate inval id 
arguments. A n d a l l of these have been v iewed as issues in 
the phi losophy of automated theorem proving. 

Here, I wou ld l i ke to step back f rom such implement ­
ation issues and ask: "Wha t do we real ly th ink we are doing 
when we wr i te an automated theorem prover?" My reflec­
tions are perhaps id iosyncrat ic, but I do th ink that they put 
the di f ferent researchers* efforts in to a broader perspective, 
and g ive us some k ind of handle on wh ich direct ions we 
ourselves m igh t w i s h to pursue when const ruct ing (or 
extending) an automated theorem proving system. 

A logic is def ined to be ( i ) a vocabulary and format ion 
rules (wh i ch te l ls us wha t str ings of symbols are we l l -
formed formulas in the log ic) , and ( i i ) a def in i t ion of ' p r o o f 
in that system (wh ich tel ls us the condit ions under which an 
arrangement of formulas in the system constitutes a proof) . 
His tor ica l ly speaking, def in i t ions of ' p r o o f have been given 
in var ious d i f ferent manners: the most common have been 
H i lber t -s ty le (ax iomat i c ) , Gentzen-sty le (consecut ion, or 
sequent), F i tch-s ty le (natura l deduct ion) , and Beth-sty le 
(tableaux). The fact that there are di f ferent styles of proof 
brings up an issue I wou ld l i ke to discuss for a wh i le , and I 
th ink the best way to proceed w o u l d be to look at a very 
simple example. Let System A be a classical two-va lued 
proposi t ional log ic whose on l y connectives are -> and - i , 
having punctuat ion symbols ) and (, w i t h variables p,q,r,...., 
and w i t h the usual fo rmat ion rules for formulas. In such a 
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For example skolemized formulas are not equivalent to the 
original formulas which gave rise to them. (Of course, if the 
skolemized formula can be proved, then so can the original; 
but once again this does not constitute a proof of the 
original, but merely an assurance that there exists some 
proof or other of the original.) So what are we doing when 
we present the output of our automated theorem prover in 
response to the query of whether some formula is a theorem? 

One answer is the Realist answer, according to which 
there exists an (abstract) object, Propositional Logic, 
consisting perhaps of a set of valid formulas or perhaps of a 
set of valid arguments (and maybe there are even other 
choices....just what one believes an abstract logic to contain 
depends upon one's philosophic beliefs about abstract 
objects in general). With such an outlook, the various proof 
systems merely become different ways for us to discover 
whether some particular formula (or argument) is a part of 
Propositional Logic. We start, within this Realist 
framework, with some idea of what Propositional Logic is; 
perhaps we think it is the set of theorems, and perhaps we 
would designate this set by And now, any sound way 
of convincing ourselves that is a member of this set is as 
good as any other — we might construct a proof of in 
system A, or with THINKER, or give a tableau, or indeed 
we might just write out a truth table for . The problem 
then becomes merely a matter of convincing ourselves that 
if for whatever method Y we happen to use, then 

, that is, of convincing ourselves that system Y is 
sound. Generally this is pretty straightforward to prove; 
indeed, too easy, since even if system Y produced no proofs 
it would satisfy this. More d i f f icu l t is to show 
completeness: that if not then not — i.e., that 
system Y captures all of the abstract system, Propositional 
Logic. 

The remarks 1 have been making in fact suggest two 
distinctions: on the one hand (i) a distinction between a 
particular proof system, such as resolution or system A 
above, and some abstract object such as Proposit ional 
Logic, and on the other hand ( i i ) a distinction between a 
particular proof system, such as resolution or system A, and 
a program written which intends to manifest or emulate that 
proof system. I would like to dwell a bit on the second of 
these distinctions. THINKER, for example, is an emulation 
of Kalish & Montague's (1964) proof system (henceforth 
KM). It was constructed in such a way that if then 

. But the converse is not true. There are various 
proofs in KM that wi l l never be produced by THINKER — it 
just wouldn't make such-and-so inference in that situation or 
it just wouldn't set so-and-so subgoal at this point even 
though it was legal to do so in K M ; and there are even 
formulas for which but not  
TH INKER is, after a l l , bound by certain emulation/ 
implementation considerations which dictate finiteness to an 
extreme degree. For example, all individual variables are 
amongst e..z together with a subscript 0..9. This means 
that there are only 220 individual variables available to 
THINKER; therefore any theorem requiring more than that 
number of variables cannot be expressed, much less proved. 
(For example "If there are at least 222 objects then there are 

at least 221 objects".) Besides that, my computer times 
THINKER out after a certain period of time — even if 
THINKER is only one step away from completing a proof. 
It is for reasons such as these that I would prefer to say that 
THINKER arid KM are different proof systems. KM is 
sound and complete: But THINKER is 
not complete; indeed, computer emulat ion is 
complete...or so I would prefer to use the term 'complete'. 
This would mean that no computer emulation really is the 
same as any of the well-known systems of logic. There is 
no automated theorem prover which is ("really") resolution, 
or semantic tableaux, etc.; for these are all complete proof 
systems. Thus, proving that (say) negative hyperresolution 
is a complete proof system in no way indicates that any 
particular system should embody it — for the emulation is 
bound to be incomplete anyway. There needs to be a 
different type of proof to the effect that such-and-such 
emulat ion is better as an emulat ion of negative 
hyperresolution than (say) THINKER is as an emulation of 
K M . There thus seem to be three "Levels" of objects here, 
according to the Realist: Propositional Logic, different proof 
systems, and different emulations of some proof system. 

Of course, some people wish to abstract away from 
these "mudane considerations" of finiteness of emulations 
and talk about idealized emulations. This would be to posit 
a fourth Level of objects — an idealized emulation 
somewhere "between" a proof system and any particular 
emulation of that system. In such a setting the question of 
completeness becomes more delicate. Here we want to 
know whether the strategy employed in the emulation wi l l 
(eventually and without considerations of space, memory, or 
representability) generate everything that the emulated 
system allows. This is the sort of question posed (and 
answered negatively) by the authors of the Logic Theorist 
when they remark that the Logic Theorist could have proved 

even though it never succeeded (because, 
they say, of time considerations), but its strategies never 
would have proved even though the system they 
were emulating, Principia Mathematica, does yield a proof 
of it. Would THINKER, for example, generate all the 
proofs allowed by KM? The answer to this is no: as 
remarked above, THINKER'S strategy makes certain legal 
moves of KM be unavailable. A more interesting question 
is whether, for any proof in KM of > is there a proof in 
THINKER of (ignoring considerations of finiteness, etc.). 
The answer to this is unknown, but there is no particular 
reason to think so. I 'm sure that precisely similar remarks 
could be made for any automated theorem proving system. 
Suppose system X is "resolution with set of support 
strategy." We know that X is complete: there is a proof that 

But whether any particular system which 
emulates this is complete is another matter, even ignoring 
issues of "finiteness". For surely this depends on whether 
the program can always find the correct set of support and 
then generate all possible resolvants from it. 

The Realist position with regards to the automated 
theorem proving of propositional logic can be illustrated as 
in Figure 1. For each different logical system, he wi l l have 
a similar hierarchy. In the hierarchy there are four different 
"Levels": 1, the abstract object; 2, the various proof 
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Figure 1: The Realist's View of Automated Proof Systems 

systems; 3, the various "idealized emulations" of a proof 
system; and 4, the various actual emulations of which the 
Level 3 objects are idealizations. For the Realist, questions 
of "completeness" can be raised between any two adjacent 
Levels: one can always ask of something at Level n whether 
it is "complete for" the object at Level n-1. The Realist 
believes that logic has answered the question between Levels 
2 and 1 — all of the well-known systems of proof are 
complete. And of course, from the very definition of the 
relation between a Level 4 object and the corresponding 
Level 3 object, it follows that they are not complete. The 
only interesting question then is between Level 3 and Level 
2. That is, given the specific strategies used in any 
particular emulation, but abstracting away from questions of 
finiteness, w i l l the system "match" the proof theory. As 
indicated before, the notion of "match" here is a bit tricky. If 
one meant: w i l l it generate all the proofs (with each step 
included) that are legal according to the proof theory, then 
the answer is almost surely no since every particular 
emulation (except the British Museum Algorithm) embodies 
some search strategy which eliminates some possible 
proofs. But the better question is: for every argument 
that the proof theory allows, is there a proof of in the 
idealized emulation? The idea is that the proof theory allows 
many (an infinite number) of proofs of from all we 
require of the ideal emulation is that it find one of them. 
But this is a question that seems not to be addressed very 
often in the literature. Researchers do not ask whether such-
and-so actual system with its actual proof-generating 
strategy that embodies negative hyperresolution (for 
example) could, considerations of finiteness aside, find a 
proof of any valid argument of the resolution proof theory. 
Instead, they choose to investigate whether, for everything 
that can be proved using ordinary resolution, there is a proof 
using negative hyperresolution — ignoring the question of 
whether their particular strategy wi l l succeed in finding it. 
Writers in the area may have been clear in their own minds 
what precisely they are proving about completeness, but this 
does not always seep through to the reader. I myself often 
wonder whether they aren't in reality inventing a new Level 
2 proof system and showing that it is complete with respect 
to Level 1. But if so, this says nothing about any particular 
Level 3 system. (There has also been little study of precise 

conditions under which a particular emulation is incomplete 
for the idealized emulation. Perhaps this is because people 
find the specific conditions under which we today compute 
not very interesting — they w i l l change, after a l l . But it 
might nonetheless be interesting to study i t , since it is 
actual implementations — Level 4 objects— which exist in 
the world and with which we are required to compute and 
which we are required to use for all those applications that 
automated theorem proving is claimed to be good.) 

As remarked above, one basic attitude someone might 
take towards logic is a Realist position. As w i th a l l 
philosophical positions, there is an opposing position; here 
the opposing position is a Nominal ism. The Realist 
believes that there is an antecedently existing system of 
logic and that all the various proof systems are but different 
ways to "get at" this antecedently existing system. The 
Nominalist, on the other hand, believes that there are only 
the various proof systems. Of course, even a Nominalist 
could believe that there can be "something in common" 
amongst various proof systems, or even "something they are 
striving toward" (in the case of incomplete systems). They 
may even call this "something" a semantics or a semantic 
interpretation and produce completeness and soundness 
results for the various systems. But to a Nominalist, this 
semantics is just yet another system — it has no ontological 
(or epistemological) priority over the various proof systems 
- even though it might perhaps have been singled out for 
special consideration because of some interesting properties 
it was perceived to have (such as essential use having been 
made of such concepts as "true", "satisfies", etc.). 

The Nominalist, then, denies the existence of the 
Realist's Level 1 abstract logic and instead allows only the 
various proof theories. What makes a Realist think there is 
an abstract object in addition to the proof theories, the 
Nominalist says, is merely due to certain similarities 
amongst the proof theories. But the study of these 
similarities does not presuppose the existence of yet another 
object to be studied, any more than the study of "the average 
North American academic" (who is white, male, married, has 
1.8 children,....) presupposes the existence of such a person. 
The Nominalist takes the position illustrated in Figure 2 
(for the propositional logic, there are further hierarchies for 
other groupings of proof systems): 
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Figure 2: The Nominal is t 's V i e w 
The here, re la t ing the objects on Leve l 2 to one 
another, are used to indicate that the Nomina l i s t believes 
that these proof systems can be compared w i t h one another 
and ce r ta in s i m i l a r i t i e s no ted . For the N o m i n a l i s t , 
completeness is a somewhat di f ferent matter than it is for 
the Realist. Of course, the Nomina l is t can ask precisely the 
same things as a Realist about the relat ion between a Level 
4 object and a Level 3 object, or between a Level 3 object 
and a Level 2 object. Bu t the not ion of completeness of a 
Level 2 object must be f ramed not in terms of some abstract 
object at Level 1, but rather w i t h respect to some special 
Level 2 system. As remarked above, this is, by his own 
l igh ts , " just another sys tem" . Bu t i t is v iewed as special 
due to i ts unique use of certain concepts -- the so-called 
"semantic concepts". S t i l l , according to a Nominal is t , there 
is no special ontological status to be accorded this system. 

Wha t does a l l th is have to do w i t h the business of 
actual ly w r i t i ng an automated theorem prov ing system, you 
might be impat ient to know at this point. Perhaps not too 
m u c h , p rac t i ca l l y ; but i t seems to me that on a more 
abstract, ph i losoph ica l level i t addresses the quest ion of 
whether var ious practi t ioners of automated theorem prov ing 
have a coherent posi t ion. Consider a person who argues that 
natural deduct ion is better than resolution-based systems, 
e.g., Bledsoe (1971) or Pelletier (1982). Whyever wou ld a 
person be even tempted to argue this unless he thought that 
the goal of automated theorem prov ing was to approach "the 
real sys tem" — that is, unless he were a Realist. Af ter a l l , it 
is patent ly obv ious that T H I N K E R is better at emulat ing 
proofs in the KM system than any reso lu t ion-emulat ing 
system; and that any resolut ion-emulat ing system is better 
than T H I N K E R at producing proofs of a resolution system. 
The same sort of Real ist reasoning must have been in 
Wang 's m i n d when he inveighed against the Logic Theorist 
and in favour of h is consecution-style method (Wang 1960, 
p.246). But not everyone seems to be a Real ist in this 
sense. These who , l i ke the designers of the Logic Theorist, 
bel ieve that they are invest igat ing how people reason in the 
context of a g i ven system ( s tudy ing subs t i tu t ion in to 
par t icu lar ax ioms, reasoning backward f r o m certain goals 
dictated by part icular ax ioms, and the l i ke) can be taken to 
be Nomina l i s ts — at least insofar as they wou ld be qu i t e 
unconcerned w i t h the results of a system where proofs take a 
dif ferent f o rm. A n d I have spoken w i t h various practit ioners 
in the f ie ld who wou ld vehement ly deny the existence of any 
Level 1 object. 

As I see i t , p roo f systems come in four basic f lavours: 
ax iomat i c ( w i t h a pedigree i n v o l v i n g H i l be r t 1927 and 
Wh i tehead & Russel l 1910), resolut ion-based ( w i t h a 

of Automated Proof Systems 
pedigree of Robinson 1965 and Herbrand 19301 tableau-
based (w i th the pedigree of Beth 1959 and Gentzen 1934/5), 
and natural deduct ion (w i t h a pedigree of F i tch 1952 and 
Gentzen 1934 /5 2 ) . One can wr i te an automated theorem 
p r o v i n g p r o g r a m w h i c h e m u l a t e s any p a r t i c u l a r 
mani festat ion of one of these f lavours . So long as one 
concerns oneself w i t h no th ing more than the quest ion of 
how good one's emula t ion is, one can qui te happ i l y be a 
Nomina l i s t . But should one at tempt to argue that their 
system is better than one of a di f ferent f lavour , then there is 
some standard presupposed. A n d this impl ies Real ism w i t h 
respect to the standard. W i thou t the standard, there s imp ly 
are no grounds on wh ich to per fo rm the comparison. 

Bu t i f you were a Real ist interested in automated 
theorem p rov ing , what wou ld an argument against one or 
another of these types of systems look l i ke? Aga ins t 
emu la t i ng an ax i oma t i c sys tem, one m i g h t say that 
generating proofs wh ich invo lve arb i t rary subst i tut ion of 
sentences for proposi t ional var iables jus t cannot be done 
ef f ic ient ly . (O f course there has never been a proof of th is , 
but I th ink it fa i r to say that this is the col lect ive w isdom of 
the automated theorem prov ing commun i t y , as witnessed by 
the fact that none of the major automated theorem prov ing 
systems is an emulat ion of the ax iomat ic approach.) The 
point , for -he Realist, is that i f you are rea l ly interested in 
"gett ing a t " the abstract logic, you wou ld not t ry to emulate 
an ax iomat ic system, but w o u l d rather t r y to "get a t " the 
logic through another route. The Nomina l i s t o f course 
doesn't have this opt ion: since he th inks there is no abstract 
logic to "get a t " , h is who le goal is to emula te some 
part icular proof theory. W h y w o u l d he choose one rather 
than another proof theory to emulate? For the Nomina l i s t , 
this must be a matter merely of pract ica l i ty : wh ich is more 
interest ing/chal lenging/wi l l get a bigger grant? But there can 
be no appeal to the Real ist 's be l ie f that there is an abstract 
logic and "any way of invest igat ing it is leg i t imate , " so we 
should choose the most eff ic ient way. 

1 Davis (1983, pp.9-12) says that Herbrand (1930) is 
incorrectly credited here, and that credit should instead be 
accorded Skolem (1928). What we call 'the Herbrand 
universe', he says, should be called 'the Skolem universe'. 
(But he does accord Herbrand with discovery of a version of 
unification in which a system of equations needs be solved.) 
2Actually, Gentzen systems (consecution or sequent systems) 
are a very general format. Although both tableaux and natural 
deductions might just i f iably be said to derive from this 
format, some authors take pains to keep the three separated. 
(E.g., Anderson & Bclnap, 1973; see p. xxiv). 
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We have seen the kind of argument a Realist would give 
against emulating axiomatic systems — it is too hard and 
since there are other equally good routes to the abstract logic 
we should investigate them. But this type of argument is 
difficult to use against the other types of proof theory since 
they al l seem equally capable of emulation. To give 
arguments of a similar nature against the other flavours 
seems to call for our casting out nets a bit wider, and asking 
whether such systems can be reasonably extended to other 
areas, e.g., to non-classical logics such as modal logics. If 
they cannott be, this might count against pursuing such a 
formalization even in the case of classical logic. 

Let us then consider modal logics, for here we can find 
difficulties both for the Realist and the Nominalist — at least 
within the framework so far considered. In the logic 
literature, modal logics are generally presented in an 
axiomatic form, and it is in only a few special cases that we 
have alternative formulations. The Realist can at least use 
these alternative formulations, when they exist, as a means 
of "getting at" the abstract logic (assuming that he is not 
interested in trying to emulate axiomatic systems). But a 
Nominalist who is not wi l l ing to emulate an axiomatic 
system is in a dif f icult position. Of course he too can 
emulate any other proof theory which happens to exist, just 
as the Realist can; but in his own mind he is not "getting 
at" the same thing that the axiomatic system was describing. 
And since all the modal systems are given at least an 
axiomatic formulation, there seems to be an important sense 
in which the Nominalist is missing some generalization 
about modal logic in not having some uniform method to 
deal with the field. The problem, both for the Realist and the 
Nominalist, is one of converting the axiomatic systems into 
some other format and then emulating it. But there may be 
no such transformation -- or at least, no such transformation 
which is easily emulated. For example, Fitting (1988) 
reports on the diff iculty of transforming the modal system 
S5 (and by implication, the Brower system KTB, and weaker 
systems such as KB) into a tableau format; Abadi & Manna 
(1986) remark that the system KG (as they call it; it is often 
called KGrz) seems unamenible to a resolution-style format. 
The resolution systems of Farinas del Cerro (1985) are 
restricted to a quite small subset of the formulas of any 
particular modal logic, due to the lack of a normal form 
representation with which he can apply resolution to these 
other formulas. Various "doubly indexed" resolut ion 
strategies have been adopted in the resolution literature by 
Wallen (1987), Jackson & Reichgelt (1987), and Olbach 
(1988); but as Fitting (1988, p. 191) puts it, "it has required 
considerable coercion" of the underlying logic to implement 
it. Bonevac (1987) gives a natural deduction format for 
systems including the T axiom (in particular for KT, KT4, 
and KT5 ~ the systems often called T, S4, and S5), but it is 
not at all obvious that any system without this axiom can 
be given a "natural" natural deduction formulation. 

As can be seen, Realist arguments against the use of 
one or another of the basic proof formats take the form: one 
shouldn't try to emulate proof system X2 (subscript 2 
indicating a "Level 2 object") because there are so many 
difficulties with doing this that the relation between X4 and 

X3, or between X3 and X2 , w i l l be bad (3 and 4 subscripts 
indicating the Level 3 or 4 item of proof system X 2 ) . But 
since we are just trying to "get at" X1, the Realist w i l l 
believe that it does not matter whether sometimes one uses 
one kind of Level 2 system and at another time we use a 
different type of Level 2 system. Indeed we can even mix the 
different types up and use them simultaneously. The Realist 
believes these are all good ways to investigate the abstract 
Level 1 object. It is these kinds of strategies that a Realist 
can pursue with a clear conscience but a Nominalist cannot, 
bound as he is to particular proof systems. So, if one is to 
be a Nominalist with respect to modal logics generally, it 
looks like one's range is quite narrowed — unless one is 
going directly to emulate axiomatic systems. But there are 
two more strategies that haven't yet been mentioned, and at 
least one of them could be used with equinimity by a 
Nominalist. These methods involve an "ascent to the 
metalanguage'', and were (I believe) first mentioned in the 
automated theorem proving literature in Morgan (1976) 
where they were called "syntactic" and "semantic" methods. 

As described, a Nominalist believes that there are proof 
systems -- he denies only the independent existence of some 
further, abstract object to which any proof system is merely 
a means of access. Thus a Nominalist would have no 
ontological qualms with reasoning about such a proof 
system. Of course, this reasoning must be done within a 
system, according to his Nominalistic views; but this raises 
no particular problem — he can use any of the various proof 
systems (which he does believe to exist) to reason about any 
particular system. For example, our Nominalist might wish 
to reason about our system A, and wish to do so by 
invoking the use of some quantified resolution system (say). 
Here our Nominalist views the various formulas of A as 
being objects, and views the claim as expressing that 
the object denoted by the formula <J> has a certain property, 
which he may choose to express as And in 
system A, formulas have a structure. This structure is 
represented in our Nominal ist 's system by function 
symbols. For example, the unary sentential operator -1 of 
system A is perhaps represented as the unary function 
symbol n, so that formula of system A becomes the 
term *n(p)' of the Nominal ist 's system. The binary 
sentential operator of A is perhaps represented by the 
binary function symbol i, so that of system A 
becomes ' i (p,q) \ The axioms of system A merely become 
universally quantified premises of each argument in the 
Nominalist's system. Thus axiom 1 of system A becomes 

And this is used as a premise whenever we wish to 
determine for some Rules of inference of 
system A, such as our Rule 1, are expressed as saying that 
every pair of formulas that are related to one another in a 
certain way and to which the predicate 'ThmA' can be 
applied, give rise to another formula to which 'ThmA' can 
also be applied. That is, Rule 1 gets represented as 

For an automated theorem proving Nominalist, then, 
this is the strategy to pursue when faced with a proof system 
for which there is no transformation into some other proof 
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system for which he has an automated theorem proving 
emulator. Examples of systems which have adopted this 
strategy are: Morgan (1985), Paulson (1988), Quaife (1988). 
Pelletier (1986) had rated this kind of strategy as being very 
difficult to pursue (see the discussion surrounding problems 
#66-70), but the results reported in Quaife (1988) seem to 
show that this was much too pessimistic. 

Since the Realist too acknowledges the existence of 
these proof systems, he too can use this "syntactic method." 
But since he in addition acknowledges the existence of an 
abstract system, he can feel free to investigate it directly. 
Let us ask ourselves again, just what is this abstract 
system? According to the Realist, it is the set of valid 
formulas (or arguments) towards which the various proof 
systems are a means of access. This way of looking at the 
abstract system makes it be characterized by certain 
"semantic" notions, such as 'True' and 'False' (for our 
system A) or True in a given possible world with a specific 
accessibility relation R' (for a modal system). This means 
that the Realist would find it acceptable to write a truth table 
for a formula of system A in order to determine whether it 
belonged to Propositional Logic. But a Nominalist ought 
not to be able to take this route, since he denies the very 
existence of Propositional Logic. It means that a Realist 
ought to be happy to write a "transitive, reflexive possible 
world diagram" for a sentence in the language of S4 to find 
out whether it really belonged to the abstract system, S4. 
But again, a Nominalist ought not do this — he refuses to 
believe that there is an abstract S4 to do this to, but rather 
thinks there are only the various proof systems which are 
presentations of S4. Indeed, since a Realist believes that all 
these things exist, he could quantify over the possible 
worlds and could make one-place predicates P(x), Q(y),... 
mean "(proposition) p is true at world x". To say that the 
formula Lp is true at a given possible world x is to say that 
p is true at every possible world y which is accessible from 
x. A l l this can be represented by the realist as 

( "W" means that y is a possible world; "R" is the accessi­
bil i ty relation saying that y is accessible from x). A formula 
is a theorem of any normal modal logic just in case it is true 
at every possible world. The different (normal) modal logics 
differ only on what extra requirements they impose upon the 
accessibility relation R. And these requirements can be added 
as premises to the representation of an argument of any such 
modal system. This is Morgan's (1976) "semantic method". 
It has been incorporated into T H I N K E R wi th some 
considerable success for standard modal systems. 

Of course, to use the semantic method correctly one 
must know what the correct underlying logic of the abstract 
system is. The examples of constructing truth tables for 
Propositional Logic and of quantifying over possible worlds 
in S4 have assumed that their logic is truth functional and 
classical first order quantification theory. In these cases that 
assumption is correct, but some other cases are not so clear 
and there are yet others for which this is quite false. For 
example, some proponents of many-valued logics have 
argued that "the metalanguage of their proof systems" (or as 
I would prefer to say: the abstract object) it itself many-

valued, not classically two-valued. And demonstrably there 
are modal logics - even normal modal logics — for which 
there is no characteristic first-order condit ion on the 
accessibility relation amongst possible worlds. For 
example, although the axiom (Grz) 

has a first-order model, the closely-related axiom 

does not. Therefore, the specific "semantic method" given 
above, which assumed that the abstract system has a first-
order underlying logic, cannot be used here. Some other 
underlying logic system would have to be developed and 
implemented to investigate directly this abstract system of 
this modal logic. (For further considerations on this 
peculiar state of affairs, see Hughes & Cresswell 1986, 
under the heading "What do we mean by 'completeness'.") 

Of course, the Nominalistic-oriented "syntactic method" 
suffers no such shortcoming, since it is not trying to use the 
"underlying logic of the abstract system" but only generates 
proofs that are in accord with it. Some might think that 
this greater flexibil ity in the realm of non-standard logics is 
precisely what the theorem-proving community needs. But 
others may be attracted to the view that for any logic worthy 
of the name there "really is" an abstract system; and that 
unless we have a characterization of this abstract system and 
can therefore work directly with it, the advantage afforded by 
the "syntactic method" is only a chimera. For, unti l we 
know a logical system is "really there", there is no reason to 
waste time studying it. 

Who is right in this matter I leave it to the reader to 
judge. 
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