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Abstract

We have addressed the problem of analyzing
images containing multiple sparse overlapped
patterns. This problem arises naturally when
analyzing the composition of organic macro-
molecules using data gathered from their NMR
spectra. Using a neural network approach, we
have obtained excellent results in using NMR
data to analyze the presence of various amino
acids in protein molecules. We have achieved
high correct classification percentages (about
87%) for images containing as many as five sub-
stantially distorted overlapping patterns.

1 Introduction

Currently known image analysis methods are not very
effective when applied to images containing large mul-
tiple overlapped sparse patterns. Such patterns consist
of a small number of features dispersed widely in the
image. The features are usually small in size: possi-
bly no larger than a single pixel. Such a classification
problem is encountered when analyzing images obtained
by certain types of Nuclear Magnetic Resonance (NMR)
spectroscopy.

Neural networks offer potentially promising techniques
for such problems, but few successful results have been
reported in the literature on the application of neural
networks to such complex image analysis tasks. One pos-
sible approach is to use Strong and Whitehead's physi-
ological model [10] which describes how humans can se-
quentially focus on each pattern contained in a complex
image. Their model is a discrete-event simulation of ac-
tivities within human neurons. Due to the complexity
of human neurons this model has only been tested with
small input images.

The selective-attention neural network of Fukushima
presents another approach for classifying overlapped pat-
terns [3]. The main problem in applying Fukushima's
approach for large images is the huge size of the re-
quired network. As many as 41000 cells are needed for
classifying patterns in a 19 x 19 image. Since practi-
cal applications require processing considerably larger
(256 x 256) images, the computational requirements us-
ing Fukushima's model are too high.
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We have developed a modular analyzer for the problem
of analyzing images containing multiple sparse patterns.
Each module detects the presence of patterns that be-
long to one class in the input image. Each module has
two stages. The first stage is a feature detector based on
clustering [5]. For each class of patterns, cluster analysis
is used to identify those regions of the input image where
features of the patterns belonging to that class are most
likely to be found. The second stage of each module is
a backpropagation-trained feed-forward neural network
[9] that performs the tasks of thresholding and classifi-
cation. With this approach, we have been able to ob-
tain very high correct classification performance (87%)
on 256 x 256 images with noisy test data.

In the next section, we discuss the problem of ana-
lyzing multiple sparse patterns, describe some details of
the NMR analysis problem, and discuss previous work on
this topic. In section 3, we describe details of our sys-
tem. Experiments and results are presented in section 4.
Section 5 contains concluding remarks.

2 The problem

The images we analyze may contain many different 'pat-
terns'. Each pattern consists of several 'features'. A
feature may be a group of neighboring pixels, or per-
haps just a single pixel. The locations of pixels may
vary within a range determined by the feature. Hence
the pattern-matching process has to allow for variability
of pixel locations.

Figure 1 shows three images, each containing one pat-
tern (of the same class) which consists of three features.
Each feature consists of a single pixel (indicated by a '+'
symbol), which must occur somewhere within a known
region (delineated by dashed ellipses in the figure).
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Figure 1: Three sparse patterns which belong to the same
class.
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Figure 2: Overlap of feature regions

In the applications that we are interested in, feature-
regions for different classes do overlap, as shown in Fig-
ure 2. Consequently, a feature may lie within feature-
regions of several classes. Such a feature partially con-
strains the classification, although it does not permit us
to decide unambiguously whether a particular class of
patterns is present in the image. As noted by Rumelhart
and McClelland [9], such problems are ideal candidates
for neural network solutions.

A particular instance of this problem arises in the
classification of NMR spectra. NMR spectroscopy
is a powerful method for the determination of the
three-dimensional structure of complex organic macro-
molecules such as proteins [11]. Proteins are long chains
of smaller molecules called amino acids. Approximately
18 different types of amino acids are commonly found in
proteins. The first step in analyzing the structure of a
protein is to determine its constituent amino acids. One
type of NMR spectroscopy used for this purpose is called
Correlational Spectroscopy ('COSY"').

The COSY spectrum of a protein is the result of the
combination of the spectra of its constituent amino acids.
The task of determining the constituent amino acids of
a protein is therefore equivalent to the task of analyz-
ing an image containing multiple sparse patterns. The
training set for our analyzer consists of a number of sam-
ple spectra for each type of amino acid. These spectra
were generated from information about the distributions
of peaks for each type of amino acid, tabulated in [4].

2.1 Definitions

Image representation: An input image is a two-
dimensional array of non-negative integers called 'in-
tensities'. We will represent an image by a set P =-
{Py,Py,...,Px) of triples, where each triple P; =
(Piz. Piy. Fis) f 1 <1< N. The first two compo-
nents (P r, P;y) of each triple identify the location of
a non-zero element in the input image, while the third
(Piz) represents the intensity of that element. Chemists
refer to each such triple as a peak.

An image P may contain several patterns (disjoint sub-
sets of P). Each pattern is a collection of peaks associated
with a certain amino acid class. The number of pat-
terns contained in an input image is not known a priori.
Hence each image contains an unknown number of peaks

(N).

Pattern Description: In some cases, the same class
may be identified by one of many different images. For
instance, an amino acid ¢ may give rise to t(cs) or t(c,2)j

patiern template 1(c, 1)  pattern template t(c, 2)

Pe 113

Pie. 21

Ble, 1M

Figure 3: A class of patterns with two pattern templates.

which are two different configurations. Therefore, we de-
fine a set T, of pattern-templates for each class r, where
each pattern-template t(c,ij) characterizes one configura-
tion:

?‘C = {t(ﬂ,l)l tfi'?.'.!_l\ oo sr'(c,M.-_]}‘

Each pattern-template is a set of feature-templates:

te gy = AF e Flejz - Flejse it

A feature-template F(cjk) contains a complete specifi-
cation for a feature wnich could occur in a pattern be
longing to class c¢. Feature-templates determine which
features (peaks) are present in an input image:

Feegmy = (Tre ey Ade,j i)

where r (c,j,k) is the center of a feature region and X(c,j,k)
is used to define how far the feature region extends
around the center. As described in section 3, we obtain
the values of r by cluster analysis and implicitly compute
the values of A when a neural network is trained

2.2 Classification procedure

In this section, we describe our procedure for analyzing
images with multiple patterns from C classes.

Matching a feature-template: This is the first step
in pattern recognition. We must determine whether a
peak in the input image matches a feature-template.

We say that a peak P; 'matches' a feature-template
F[:,j,k) lf

gllr¢e 5.6y — (P2 Fig))
F;

< Ak

where g, the 'error function', is chosen to increase with
distance |r — (P; =, Piy)|. Peaks with high intensity val-
ues {Pi;) match a feature template even when they are
positioned far from the location of the feature template
(r(c,j,k}]- This is the reason for depicting feature tem-
plates with varying grey levels in Figure 3.

Matching a pattern-template: We say that an input
image P 'matches' a pattern-template {(.;y if for each
feature-template F¢ j k) € {(cj), there exists a unique
peak F; € P, such that P, matches Fi ;).

Classification: If an input image P matches a pattern-
template ft(cj), a pattern of class c is defined to be
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Figure 4: Overview of the classification process.

present in the input image. The overall analysis task is
to determine all the classes whose features are present in
the input image, hence the above procedure is repeated
for every class.

An overview of the classification process is depicted in
Figure 4. In the example shown, the feature-regions for
two classes are known to the analyzer. Using this knowl-
edge, the analyzer can determine whether a pattern of
either class is present in the input image.

3 System description

In this section, we describe a modular analyzer for the
analysis of images containing multiple sparse patterns.
An important aspect of our system is the use of a clus-
tering algorithm to train feature detectors for each class.
Our use of the term 'feature detection' to identify spa-
tial features in the patterns is to be distinguished from
statistical parlance, where 'feature detection' may refer
to the process of choosing the best set of variables to
characterize a set of items [I].

3.1 Over vie w of the analyzer

A block diagram of the analyzer is shown in Figure 5.
Each module detects the presence of one class of pat-
terns. The modules work in parallel on an input image
(presented as a list of peaks).

Each module consists of two stages. The first stage,
called a clustering filter, transforms the image into a 'fea-
ture vector'. The second stage is a perceptron-like feed-
forward neural network. The clustering filter computes
the values of the matching functions, while thresholding
is done by the neural network.
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Figure 5: Block diagram of part of the modular analyzer.
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Figure 6: Use of clustering to find the expected locations of
features.

3.2 Clustering

In machine vision systems, clustering is often used for
image segmentation [8]. In our system, clustering is used
to find the expected locations of features. We illustrate
this with an example. Let the training set for some class
¢ consist of the three images in Figure 1. Each image
contains one pattern, which is known to belong to class
c. These images have been superimposed in Figure 6.
Clearly, the features occur in three clusters. The center
of each cluster is the expected location of a feature.

The procedure may be summarized thus: for each class
c, create a set R, containing the locations of all features
in an image created by superimposing all the training set
images for class c. By applying a clustering algorithm to
R, we determine the expected location of each feature,
i.e., the cluster center.

We have investigated two clustering algorithms: the
K-means clustering algorithm [5] and the LVQ (Learn-
ing Vector Quantizer) [6]. We have found that the LVQ
performs better for our problem. A benchmarking study
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Figure 7: Clustering filter

by Kohonen et al. [7] also found that the LVQ produced
better results than K-means clustering on several classi-
fication tasks.

3.3 The clustering filter

The role of each clustering filter (shown in Figure 7)
is to extract relevant information from the input image
for one class of patterns. A clustering filter consists of
a number of feature detectors. A feature detector is a
processing unit activated by the presence of a feature
(peak) in its receptive field, a specific region of the in-
put image. The output of a feature detector is a real
value which depends on the number of peaks present
within its receptive field, the intensities of those peaks
and their distances from the center of the receptive field.
The output of a clustering filter is the 'feature vector’,
each element of which is the (real-valued) output from
one feature detector in the filter.

In a filter for class c, the receptive fields of the fea-
ture detectors should coincide with the feature regions
of class c. For simplicity, we use feature detectors with
fixed size receptive fields in our system. Consequently,
if a feature region is larger than the receptive field, sev-
eral feature detectors are required to cover it. We use
the LVQ learning procedure to determine the position of
each feature detector.

The output from a feature detector located at co-

ordinate r, when presented with an image P —
{PI,P,,...,PN} s
N
Piz
QOutput(r) = : .
; g(lr — (Fis, Piy)l)

The kernel function chosen is g(z) = exp™” where T
is a constant between 0.1 and 0.5. Although all peaks in
the image are fed to the feature detector, it will actually
respond only to those peaks which are very close to r.
This is because for the values of r that we have chosen,
the reciprocal of the kernel function g(x) drops to almost
zero when x > 6. Therefore the feature detector only
responds to peaks which lie within a radius of 6 pixels
around its center, r.

As we noted previously, there are cases where two
peaks sometimes occur very close together. We do not
need to make any special provision for this situation.
We use only one set of feature detectors to cover the
combined feature region. The output from these feature

detectors will be higher, but this is easily handled by the
neural network.

3.4 The neural network

Although a clustering filter is trained to respond most
strongly to patterns of a particular class, it is possi-
ble (due to overlap of feature-regions) that some of the
detectors of one class may be activated when patterns
of another class are presented. We use a feed-forward
neural network to determine implicitly the appropriate
thresholds for each pattern detector. This neural net-
work is trained after the clustering filters of the first
stage have been trained and set up.

For each class c, the neural network (of the corre-
sponding module) must be taught to discriminate be-
tween feature vectors obtained from images containing
a pattern of class ¢ and feature vectors produced from
images which do not contain patterns of class c.

We use backpropagation [9] to train the network.
Backpropagation is a supervised learning algorithm in
which a set of patterns to be learnt are repeatedly pre-
sented to the network together with their target output
patterns. At the outset of a training session, the weights
and biases are randomly initialized. For each pattern
presented, the error backpropagation rule defines a cor-
rection to the weights and thresholds to minimize the
square sum of the differences between the target and the
actual outputs. The learning process is repeated until
the average difference between the target and the actual
output falls below an operator-specified level.

4 Results

In this section, we describe our experiments in training
and testing the sparse image recognition system, and
report the results obtained.

4.1 System parameters

To substantiate our approach, seven modules were
trained for the NMR protein analysis problem. Each
module can detect patterns corresponding to one amino
acid. The final output from each module is a yes/no an-
swer about whether the respective class (amino acid) is
judged to be present.

From among 18 possible amino acids, we trained mod-
ules for seven amino acids whose spectra appeared to be
the most complex, with more peaks than the others. But
in training as well as testing the modules, we used data
which included peaks from the other 11 amino acids as
well, and obtained good results in analyzing the pres-
ence of the seven amino acids for which modules were
trained. This shows that an incremental approach is
possible: upon building modules for the other 11 amino
acids, we expect that our results will continue to hold.

Table la lists the parameters of each module. The
names of the amino acids along with their one-letter
codes are listed in the first column. The second column is
the number of feature detectors in the first stage of each
module. The third column shows the number of hidden
layer nodes in the neural network which comprises the
second stage of each module. These were approximately
the smallest number of nodes required for convergence

Anand, et al. 841



of the network training procedure, obtained by experi-
menting with various values.

Module Number Hidden

of detectors | layer size
Alanine (a) 4 10
Cystine (c) 10 20
Aspartic aad (d) 19 20
Glutamic acid (e) 14 1t)
Phenylalanine {I) 26 10
Tsoleucine (1) 19 20
Valine {v) 15 20

Table la: Module Parameters.

The training set consists of a total of 90 single-class
images, with 5 for each of the 18 amino acids. The equa-
tion indicating how weights are changed using the error
back-propagation procedure [9J is:

Awji(n+ 1) = gbpjop; + alw;i(n).

In each module, we used a value of n — 0.1 for the learn-
ing rate parameter, and a value of a — 0.05 for the mo-
mentum coefficient. The target mean squared error (to
terminate the network training procedure) was set to be
0.01. During training, the target output for the networks
was set to be 0.1 when the required answer was 'no' and
0.9 when the required answer was 'yes'. Weights in the
network were updated only at the end of each 'epoch’
(one sequence of presentations of all training inputs).
Table Ib shows the number of epochs needed to train
the LVQ's and the feedforward (backpropagation) neu-
ral networks, for each module.

Module | LVQ | Backpropagation
a 100040 Ti7
[+ 10000 2653
d 20000 452
[ 20000 149
f 30000 3128
1 20000 503
v 200040 328

Table Ib: Number of epochs required for training.

To investigate the effect of varying the receptive field
sizes of detectors, we trained two versions of each mod-
ule with different values for r, the constant in the kernel
function. When T = 0.5, detectors have small recep-
tive fields, whereas when T = 0.1, detectors have large
receptive fields.

4.2 Experimental results

The goal of the experiments was to measure the cor-
rectness of overall classification when the system was
presented with composite images containing several pat-
terns of different classes. Various experiments were per-
formed to test our sparse image analysis system on com-
posite images consisting of:

(i) different numbers of patterns;

(ii) with and without perturbations; and
(iii)fordetectorswithdifferentreceptivefields (1' = 0.5

and7 =0.1).
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To illustrate the testing method, consider a composite
image created by superimposing two images with pat-
terns that belong to classes ¢ and d. Correct classifica-
tion implies that this image should be classified 'NO' by
modules a, e, i, fand v and 'YES' by modules ¢ and
d. We measure the percentages of correct classification,
testing the modules in this manner on various composite
images.

In the first set of experiments, we generated 1000 ex-
amples of each case: composite images containing 2, 3,
4 and 5 patterns respectively. In each set, the compos-
ite images were created by superimposing a randomly
chosen set of images (each of a different class) drawn
from the training set. The percentages of these images
correctly classified by each module under different con-
ditions are reported in table 2, for r = 0.5 and r = 0.1.

From table 2, it is clear that error rates increase with
the number of images (patterns) in the input image. This
is because the receptive fields of different classes of pat-
terns overlap. Hence patterns of one class may partially
activate feature detectors for other classes. As the num-
ber of patterns in the input image increases, it becomes
increasingly likely that a feature detector may respond
to artifacts arising from a fortuitous combination of pat-
terns belonging to other classes. This problem is further
aggravated by increasing the size of the receptive fields,
as shown in table 2.

Module r = 0.5 r =0.1 T
Ho_of patierns in lmage No. of palterns in imagr |
F] 3 4 B z 3 + L
- o0 100 104 100 ER) 900 R 8 ur. T
3 100 o108 e .8 99.7 100 100 100 160 |
o 100 a0 a0 A .5 100 »o.0 091 BA_4
L 100 104 1iqa 300 He .4 o4 4 80.3 ag.n
i EXRETE @51 #8.5 88 .3 e 1 1.8 | A
1 G840 D& .4 DE. 4 85.% 89.9 o0 6 Bo.8 99.2
v 100 100 100 o6 o4 wey.1 HB8.7 D44

Table 2: Percentages correctly classified, when test images
were random combinations of training set images.

Module r = 0.5 =01
No_ of patterns in image Wo. of patterns in image |
2 a 4 5 2 J 4 5
a 9p .0 aT.A oT.A a5 4 9.7 LR 8.6 6.6
[ Bt.1 »5.0 85.0 94.0 e T pe.a 8.0 292
o [TX3 BT.1 85 5 04.8 100 §b.6 T 4 BE.2Z
- K] 98.2 5.6 LS 87.0 aL.0 ARG 87.7
1 6.1 83.2 83,6 a0, 98 9 97.0 46.8 §4.8
1 PE .4 P4.6 2.7 92.6 9.7 8.6 89.7 28.1
[ 8.3 o7.0 BG4 05,1 FENE) o4 96.7 L&

Table 3: Percentages correctly classified, with low noise. Test
images were random combinations of training set images with
peak locations randomly translated by [-1, +I].

Module r =05 r=0.1
Wo. of patterns in image Wo. of patierns In Image |
2 3 [ B 2 3 1 5
[y b2.0 [ 858 [ 8275 T B0.7 46 ] 809 66.8 | 8.1
c 540 | 91.0 | 890 | K37 953 | 4.0 | B2.7 | 8a7
d B9.4 | a5.7 | 790 | 6.4 P52 | 4.6 | 920 | 85.8
€ BO.4 834 79.0 78,2 06,6 B5.2 1% RE X
T BY4 822 | /5K | j08 944 | ADE | h4A | TBE
1 80.3 | 828 | 775 | Taa 955 | 936 | 03.7 | 8o
v POC | AL A | ROE | 755 4.1 | 913 | BY.7 | Ak &
Table 4: Percentages correctly classified, with high noise.

Test images were random combinations of training set images
with peak locations randomly translated by [-3, +3].

It is desirable to perform correct classification even in
the presence of small errors or corrupted data. Hence,




we tested our system with composite images produced
by superimposing distorted versions of the training set
images to the system.

Two series of experiments were performed, varying the
amount of distortion in the test data, for small and large
receptive fields (r = 0.5 and r = 0.1). In one set of ex-
periments, distortions were introduced by adding a ran-
dom integer in the range [-1, +1] to the coordinates of
the peaks. The results of these are summarized in table
3. In another set of experiments, the distortion was in-
creased by adding random integers in the range [-3, 4-3]
to the coordinates of peaks. These results are summa-
rized in table 4.

With the small receptive field system (r = 0.5),
the combined effect of distortion and multiple patterns
causes classification accuracy to deteriorate substan-
tially. On the other hand, classification capabilities of
the large receptive field system (r = 0.1) are less af-
fected and degrade more gracefully with noise. This phe-
nomenon may be contrasted with the observation that
the small receptive field system performs marginally bet-
ter on uncorrupted test data.

5 Concluding Remarks

In this paper, we have addressed the problem of analyz-
ing images containing multiple sparse overlapped pat-
terns. This problem arises naturally when analyzing the
composition of organic rnacromolecules using data gath-
ered from their NMR spectra. Using a neural network
approach, we have obtained excellent results in analyzing
the presence of various amino acids in protein molecules.
We have achieved high correct classification percentages
(about 87%) for images containing as many as five sub-
stantially distorted overlapping patterns.

The architecture of our system is modular: each mod-
ule analyzes the input image and delivers a yes/no out-
put regarding the presence of one class of patterns in the
image. Each module contains two stages: a clustering
filter, and a feedforward neural network. An unconven-
tional aspect of our approach is the use of clustering to
detect spatial features of patterns.

We performed a number of experiments to measure
the correctness of overall classification when the system
was presented with composite images containing several
patterns of different classes. We tried two versions of
the system, one with small receptive field detectors and
the other with large receptive field detectors. In both
cases, we observed that the rate of correct classification
decreased as the number of patterns in the image was
increased. To determine the ability of the system to
cope with variations in the patterns, images with ran-
dom perturbations to the patterns were presented to the
system in another series of experiments. In this case,
we observed that the classification abilities of the large
receptive field system are less affected and degrade more
gracefully.

The classification process described in this paper is
only the first step in the analysis of NMR spectra. It
is of considerable interest to chemists to determine the
precise association of the peaks in in the input image
with different patterns. We are currently working on an

extension to the system described in this paper to per-
form this task. We plan to refine the clustering algorithm
to enable the use of feature-detectors with variable size
receptive fields. We expect to improve performance by
combining the evidence from multiple input sources, as
is done in other NMR analysis methods.
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