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A b s t r a c t 

We have addressed the problem of analyzing 
images containing mult ip le sparse overlapped 
patterns. This problem arises natural ly when 
analyzing the composition of organic macro-
molecules using data gathered from their N M R 
spectra. Using a neural network approach, we 
have obtained excellent results in using N M R 
data to analyze the presence of various amino 
acids in protein molecules. We have achieved 
high correct classification percentages (about 
87%) for images containing as many as five sub­
stantial ly distorted overlapping patterns. 

1 I n t r o d u c t i o n 
Currently known image analysis methods are not very 
effective when applied to images containing large mul­
tiple overlapped sparse patterns. Such patterns consist 
of a small number of features dispersed widely in the 
image. The features are usually small in size: possi­
bly no larger than a single pixel. Such a classification 
problem is encountered when analyzing images obtained 
by certain types of Nuclear Magnetic Resonance (NMR) 
spectroscopy. 

Neural networks offer potential ly promising techniques 
for such problems, but few successful results have been 
reported in the l i terature on the application of neural 
networks to such complex image analysis tasks. One pos­
sible approach is to use Strong and Whitehead's physi­
ological model [10] which describes how humans can se­
quentially focus on each pattern contained in a complex 
image. Their model is a discrete-event simulation of ac­
tivit ies wi th in human neurons. Due to the complexity 
of human neurons this model has only been tested wi th 
small input images. 

The selective-attention neural network of Fukushima 
presents another approach for classifying overlapped pat­
terns [3]. The main problem in applying Fukushima's 
approach for large images is the huge size of the re­
quired network. As many as 41000 cells are needed for 
classifying patterns in a 19 x 19 image. Since practi­
cal applications require processing considerably larger 
(256 x 256) images, the computational requirements us­
ing Fukushima's model are too high. 

We have developed a modular analyzer for the problem 
of analyzing images containing mult ip le sparse patterns. 
Each module detects the presence of patterns that be­
long to one class in the input image. Each module has 
two stages. The first stage is a feature detector based on 
clustering [5]. For each class of patterns, cluster analysis 
is used to identify those regions of the input image where 
features of the patterns belonging to that class are most 
likely to be found. The second stage of each module is 
a backpropagation-trained feed-forward neural network 
[9] that performs the tasks of thresholding and classifi­
cation. W i t h this approach, we have been able to ob­
tain very high correct classification performance (87%) 
on 256 x 256 images wi th noisy test data. 

In the next section, we discuss the problem of ana­
lyzing mult iple sparse patterns, describe some details of 
the N M R analysis problem, and discuss previous work on 
this topic. In section 3, we describe details of our sys­
tem. Experiments and results are presented in section 4. 
Section 5 contains concluding remarks. 

2 The p r o b l e m 
The images we analyze may contain many different 'pat-
terns'. Each pattern consists of several 'features'. A 
feature may be a group of neighboring pixels, or per­
haps just a single pixel. The locations of pixels may 
vary wi th in a range determined by the feature. Hence 
the pattern-matching process has to allow for variabil i ty 
of pixel locations. 

Figure 1 shows three images, each containing one pat­
tern (of the same class) which consists of three features. 
Each feature consists of a single pixel (indicated by a '+' 
symbol), which must occur somewhere wi th in a known 
region (delineated by dashed ellipses in the figure). 

Figure 1: Three sparse patterns which belong to the same 
class. 
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F i g u r e 2 : O v e r l a p o f f e a t u r e reg ions 

In the app l i ca t i ons t h a t we are in terested i n , fea ture-
regions for d i f fe rent classes do over lap , as shown in F i g ­
ure 2. Consequent l y , a fea ture m a y l ie w i t h i n fea ture-
regions of several classes. Such a fea tu re p a r t i a l l y con­
s t ra ins the c lass i f i ca t ion , a l t h o u g h i t does no t p e r m i t us 
to decide u n a m b i g u o u s l y whe the r a pa r t i cu l a r class of 
pa t te rns is present in the image . As no ted by R u m e l h a r t 
and M c C l e l l a n d [9], such p r o b l e m s are ideal cand idates 
for neura l ne two rk so lu t ions . 

A p a r t i c u l a r ins tance of th i s p r o b l e m arises in the 
c lass i f icat ion o f N M R spect ra . N M R spectroscopy 
is a power fu l m e t h o d fo r the d e t e r m i n a t i o n of the 
th ree -d imens iona l s t r u c t u r e o f comp lex o rgan ic mac ro -
molecules such as p ro te ins [11]. P ro te ins are l ong chains 
o f sma l le r molecules cal led a m i n o acids. A p p r o x i m a t e l y 
18 d i f ferent types of a m i n o acids are c o m m o n l y f ound in 
p ro te ins . T h e f i rs t step in ana l yz i ng the s t r u c t u r e o f a 
p ro te i n i s to de te rm ine i ts cons t i t uen t a m i n o acids. One 
t ype o f N M R spectroscopy used for t h i s purpose is cal led 
C o r r e l a t i o n a l Spectroscopy ( ' C O S Y ' ) . 

T h e C O S Y s p e c t r u m of a p ro te i n is the resul t o f the 
c o m b i n a t i o n o f t he spect ra o f i t s cons t i t uen t a m i n o acids. 
T h e task o f d e t e r m i n i n g the cons t i t uen t a m i n o acids o f 
a p r o t e i n is therefore equ iva len t to the task of ana lyz­
i ng an image c o n t a i n i n g m u l t i p l e sparse pa t te rns . T h e 
t r a i n i n g set for our analyzer consists of a numbe r of sam­
ple spec t ra for each t y p e o f a m i n o ac id . These spect ra 
were generated f r o m i n f o r m a t i o n a b o u t the d i s t r i b u t i o n s 
o f peaks for each t y p e o f a m i n o ac id , t a b u l a t e d in [4]. 

2 . 1 D e f i n i t i o n s 

I m a g e r e p r e s e n t a t i o n : A n i n p u t image i s a two -
d imens iona l a r ray o f non-nega t i ve integers cal led ' i n ­
tens i t ies ' . We w i l l represent an image by a set P =-

r) of t r i p l es , where each t r i p l e P i = 
f o r . T h e f i rs t two compo ­

nents o f each t r i p l e i den t i f y the l oca t i on o f 
a non-zero e lement in t he i n p u t image , w h i l e the t h i r d 
(P i , tz) represents the i n tens i t y o f t h a t e lement . Chemis ts 
refer to each such t r i p l e as a peak. 

An image P m a y con ta in several pa t te rns (d i s j o i n t sub­
sets of P). Each p a t t e r n is a co l lec t ion of peaks associated 
w i t h a ce r ta in a m i n o ac id class. T h e n u m b e r o f pa t ­
terns con ta ined in an i n p u t image is n o t k n o w n a priori. 
Hence each i m a g e con ta ins an u n k n o w n n u m b e r o f peaks 
( N ) . 

P a t t e r n D e s c r i p t i o n : I n some cases, the same class 
m a y be iden t i f i ed by one o f m a n y d i f ferent images. For 
ins tance, an a m i n o ac id c m a y g ive rise to t(C,1) or t(c,,2)j 

F igure 3: A class of patterns w i th two pattern templates. 

wh ich are t w o d i f ferent con f i gu ra t i ons . There fo re , we de­
fine a set Tc of pattern-templates for each class r, where 
each p a t t e r n - t e m p l a t e t(c,,i) character izes one conf igura­
t i o n : 

Each p a t t e r n - t e m p l a t e is a set of feature-templates: 

A f ea tu re - temp la te F(c,j,k) con ta ins a comp le te specif i-
ca t i on for a feature wn ich cou ld occur in a p a t t e r n be 
l ong ing to class c . Fea tu re - temp la tes de te rm ine wh ich 
features (peaks) are present in an i n p u t image : 

where r (c, j ,k) is the center of a feature reg ion and X(c, j ,k) 
is used to define how far the feature reg ion extends 
a round the center. As descr ibed in sect ion 3, we ob ta in 
the values of r by c luster analys is and i m p l i c i t l y compu te 
the values of A when a neura l ne two rk is t r a i n e d 

2 . 2 C l a s s i f i c a t i o n p r o c e d u r e 

In th i s sec t ion , we describe our procedure for ana lyz ing 
images w i t h m u l t i p l e pa t te rns f r o m C classes. 

M a t c h i n g a f e a t u r e - t e m p l a t e : T h i s i s the f i r s t step 
in p a t t e r n recogn i t i on . We m u s t de te rm ine whether a 
peak in the i n p u t image matches a f ea tu re - t emp la te . 

We say t h a t a peak P i 'ma tches ' a f ea tu re - temp la te 

where g, the 'e r ror f u n c t i o n ' , is chosen to increase w i t h 
d is tance Peaks w i t h h igh in tens i t y va l ­
ues {Pi,Z) m a t c h a fea tu re t e m p l a t e even when they are 
pos i t i oned far f r o m the l oca t i on o f the fea ture t e m p l a t e 

T h i s i s the reason for d e p i c t i n g feature t e m ­
plates w i t h v a r y i n g grey levels in F igu re 3 . 

M a t c h i n g a p a t t e r n - t e m p l a t e : We say tha t an i npu t 
image P 'ma tches ' a p a t t e r n - t e m p l a t e i f for each 
f ea tu re - temp la te there exists a un ique 
peak such t h a t P, matches  

C l a s s i f i c a t i o n : I f an i n p u t image P ma tches a p a t t e r n -
t e m p l a t e t(c,j), a p a t t e r n of class c is def ined to be 
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F igu re 4: Overview of the classification process. 

present in the i n p u t image . T h e overa l l analys is task i s 
to de te rm ine a l l t he classes whose features are present in 
the i n p u t image , hence the above procedure is repeated 
for every class. 

An overv iew o f the c lass i f ica t ion process is dep ic ted in 
F igu re 4 . I n the e x a m p l e s h o w n , the feature- reg ions for 
two classes are k n o w n to the analyzer . Us ing th i s k n o w l ­
edge, the analyzer can de te rm ine whe the r a p a t t e r n of 
e i ther class is present in the i n p u t image . 

3 Sys tem desc r ip t i on 

In t h i s sec t ion , we descr ibe a m o d u l a r analyzer fo r the 
analys is o f images c o n t a i n i n g m u l t i p l e sparse pa t t e rns . 
An i m p o r t a n t aspect o f ou r sys tem is t he use o f a c lus­
t e r i n g a l g o r i t h m to t r a i n fea ture detectors for each class. 
O u r use o f t he t e r m ' fea tu re d e t e c t i o n ' to i d e n t i f y spa-
tial features in the pa t t e rns is to be d is t i ngu ished f r o m 
s ta t i s t i ca l par lance , where ' fea tu re d e t e c t i o n ' m a y refer 
to the process o f choos ing the best set o f var iab les to 
character ize a set of i t e m s [ l ] . 

3 . 1 O v e r v i e w o f t h e a n a l y z e r 

A b lock d i a g r a m of t he ana lyzer is shown in F i gu re 5. 
Each m o d u l e detects t he presence o f one class o f pa t ­
terns. T h e m o d u l e s w o r k i n para l le l on an i n p u t image 
(presented as a l i s t of peaks) . 

Each m o d u l e consists o f t w o stages. T h e f i r s t s tage, 
cal led a clustering f i l ter, t r a n s f o r m s the image i n t o a ' fea­
t u re vec to r ' . T h e second stage is a pe rcep t ron - l i ke feed-
f o r w a r d neura l n e t w o r k . T h e c lus te r ing f i l t e r computes 
the values o f t he m a t c h i n g f unc t i ons , w h i l e t h resho ld i ng 
is done by the neu ra l n e t w o r k . 

F igu re 5: Block diagram of par t of the modular analyzer. 

F igu re 6: Use of clustering to f ind the expected locations of 
features. 

3 .2 C l u s t e r i n g 

In mach ine v i s ion sys tems, c lus te r ing is o f ten used for 
image segmen ta t i on [8] . In our s y s t e m , c lus te r ing is used 
to f i nd t he expected loca t ions o f features. We i l l us t ra te 
th i s w i t h an examp le . Le t the t r a i n i n g set for some class 
c consist o f the th ree images in F i g u r e 1 . Each image 
conta ins one p a t t e r n , w h i c h i s k n o w n to be long to class 
c. These images have been supe r imposed in F igu re 6. 
C lea r l y , the features occur in th ree c lusters. T h e center 
of each c luster is t he expected l o c a t i o n of a fea tu re . 

T h e procedure m a y be s u m m a r i z e d t hus : fo r each class 
c, create a set Rc c o n t a i n i n g the loca t ions of a l l features 
in an image created by s u p e r i m p o s i n g a l l t he t r a i n i n g set 
images fo r class c. By a p p l y i n g a c lus te r ing a l g o r i t h m to 
Rc, we d e t e r m i n e t he expected l o c a t i o n of each fea tu re , 
i.e., t he c luster center. 

We have inves t iga ted t w o c lus te r ing a l g o r i t h m s : the 
K -means c lus te r ing a l g o r i t h m [5] a n d the L V Q (Lea rn ­
i n g Vec to r Quan t i ze r ) [6] . We have f o u n d t h a t the L V Q 
pe r f o rms be t te r fo r ou r p r o b l e m . A b e n c h m a r k i n g s t u d y 
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detectors 

F i g u r e 7: Clustering f i l ter 

by Kohonen et al. [7] also found that the LVQ produced 
better results than K-means clustering on several classi­
fication tasks. 

3.3 T h e c l u s t e r i n g f i l t e r 

The role of each clustering filter (shown in Figure 7) 
is to extract relevant informat ion f rom the input image 
for one class of patterns. A clustering filter consists of 
a number of feature detectors. A feature detector is a 
processing unit activated by the presence of a feature 
(peak) in its receptive field, a specific region of the in­
put image. The output of a feature detector is a real 
value which depends on the number of peaks present 
wi th in its receptive field, the intensities of those peaks 
and their distances f rom the center of the receptive field. 
The output of a clustering filter is the 'feature vector', 
each element of which is the (real-valued) output f rom 
one feature detector in the filter. 

In a filter for class c, the receptive fields of the fea­
ture detectors should coincide w i th the feature regions 
of class c. For simplicity, we use feature detectors wi th 
fixed size receptive fields in our system. Consequently, 
if a feature region is larger than the receptive field, sev­
eral feature detectors are required to cover i t . We use 
the LVQ learning procedure to determine the position of 
each feature detector. 

The output f rom a feature detector located at co-
ordinate r, when presented w i th an image P — 
{ P I , P 2 , . . . , P N } is: 

The kernel funct ion chosen is where  
is a constant between 0.1 and 0.5. Al though all peaks in 
the image are fed to the feature detector, it wi l l actually 
respond only to those peaks which are very close to r. 
This is because for the values of r that we have chosen, 
the reciprocal of the kernel function g(x) drops to almost 
zero when x > 6. Therefore the feature detector only 
responds to peaks which lie w i th in a radius of 6 pixels 
around its center, r. 

As we noted previously, there are cases where two 
peaks sometimes occur very close together. We do not 
need to make any special provision for this situation. 
We use only one set of feature detectors to cover the 
combined feature region. The output f rom these feature 

detectors wi l l be higher, but this is easily handled by the 
neural network. 

3.4 T h e n e u r a l n e t w o r k 
Al though a clustering filter is trained to respond most 
strongly to patterns of a particular class, it is possi­
ble (due to overlap of feature-regions) that some of the 
detectors of one class may be activated when patterns 
of another class are presented. We use a feed-forward 
neural network to determine impl ic i t ly the appropriate 
thresholds for each pattern detector. This neural net­
work is trained after the clustering filters of the first 
stage have been trained and set up. 

For each class c, the neural network (of the corre­
sponding module) must be taught to discriminate be­
tween feature vectors obtained from images containing 
a pattern of class c and feature vectors produced from 
images which do not contain patterns of class c. 

We use backpropagation [9] to train the network. 
Backpropagation is a supervised learning algori thm in 
which a set of patterns to be learnt are repeatedly pre­
sented to the network together w i th their target output 
patterns. At the outset of a t ra in ing session, the weights 
and biases are randomly init ial ized. For each pattern 
presented, the error backpropagation rule defines a cor­
rection to the weights and thresholds to minimize the 
square sum of the differences between the target and the 
actual outputs. The learning process is repeated unti l 
the average difference between the target and the actual 
output falls below an operator-specified level. 

4 Resul ts 
In this section, we describe our experiments in training 
and testing the sparse image recognition system, and 
report the results obtained. 

4 .1 S y s t e m p a r a m e t e r s 
To substantiate our approach, seven modules were 
trained for the N M R protein analysis problem. Each 
module can detect patterns corresponding to one amino 
acid. The final output from each module is a yes/no an­
swer about whether the respective class (amino acid) is 
judged to be present. 

From among 18 possible amino acids, we trained mod­
ules for seven amino acids whose spectra appeared to be 
the most complex, w i th more peaks than the others. But 
in training as well as testing the modules, we used data 
which included peaks from the other 11 amino acids as 
well, and obtained good results in analyzing the pres-
ence of the seven amino acids for which modules were 
trained. This shows that an incremental approach is 
possible: upon bui lding modules for the other 11 amino 
acids, we expect that our results w i l l continue to hold. 

Table la lists the parameters of each module. The 
names of the amino acids along wi th their one-letter 
codes are listed in the first column. The second column is 
the number of feature detectors in the first stage of each 
module. The th i rd column shows the number of hidden 
layer nodes in the neural network which comprises the 
second stage of each module. These were approximately 
the smallest number of nodes required for convergence 
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o f the ne two rk t r a i n i n g p rocedure , ob ta i ned by exper i ­
m e n t i n g w i t h var ious values. 

Table l a : Module Parameters. 

The training set consists of a total of 90 single-class 
images, w i th 5 for each of the 18 amino acids. The equa­
tion indicating how weights are changed using the error 
back-propagation procedure [9J is: 

In each module, we used a value of n — 0.1 for the learn­
ing rate parameter, and a value of a — 0.05 for the mo­
mentum coefficient. The target mean squared error (to 
terminate the network training procedure) was set to be 
0.01. Dur ing t ra in ing, the target output for the networks 
was set to be 0.1 when the required answer was 'no' and 
0.9 when the required answer was 'yes'. Weights in the 
network were updated only at the end of each 'epoch' 
(one sequence of presentations of all t ra in ing inputs). 
Table lb shows the number of epochs needed to train 
the LVQ's and the feedforward (backpropagation) neu­
ral networks, for each module. 

Table l b : Number of epochs required for t ra in ing. 

To investigate the effect of varying the receptive field 
sizes of detectors, we trained two versions of each mod­
ule w i th different values for r, the constant in the kernel 
function. When = 0.5, detectors have small recep­
tive fields, whereas when = 0 .1 , detectors have large 
receptive fields. 

4.2 E x p e r i m e n t a l r esu l t s 

The goal of the experiments was to measure the cor­
rectness of overall classification when the system was 
presented wi th composite images containing several pat­
terns of different classes. Various experiments were per­
formed to test our sparse image analysis system on com­
posite images consisting of: 
(i) different numbers of patterns; 
( i i) w i th and wi thout perturbations; and 
( i i i ) for detectors w i th different receptive fields 
and = 0.1). 

To i l l u s t r a te the tes t ing m e t h o d , consider a compos i te 
image created by s u p e r i m p o s i n g t w o images w i t h pa t ­
terns t h a t be long to classes c a n d d. Cor rec t classif ica­
t i o n imp l i es t h a t t h i s image shou ld be classif ied ' N O ' by 
modu les a, e, i, f and v and ' Y E S ' by modu les c and 
d. We measure the percentages of correct c lass i f ica t ion, 
t es t i ng the modu les i n th is m a n n e r on var ious compos i te 
images. 

In the f i rst set of expe r imen ts , we generated 1000 ex­
amples of each case: compos i te images c o n t a i n i n g 2, 3, 
4 and 5 pa t t e rns respect ive ly . In each set, the compos­
i te images were created by s u p e r i m p o s i n g a r a n d o m l y 
chosen set of images (each of a d i f ferent class) d rawn 
f r o m the t r a i n i n g set. T h e percentages o f these images 
cor rec t ly classif ied by each m o d u l e under d i f ferent con­
d i t i ons are repor ted in tab le 2, for r = 0.5 and r = 0 . 1 . 

F r o m tab le 2 , i t i s clear t h a t er ror rates increase w i t h 
the n u m b e r o f images (pa t te rns ) i n the i n p u t image . T h i s 
is because the recept ive f ie lds of d i f ferent classes of pat ­
terns over lap . Hence pa t t e rns o f one class m a y p a r t i a l l y 
ac t i va te feature detectors for o the r classes. As the n u m ­
ber o f pa t te rns in the i n p u t image increases, i t becomes 
increas ing ly l i ke ly t h a t a fea tu re detector may respond 
to a r t i f ac ts a r i s ing f r o m a f o r t u i t o u s c o m b i n a t i o n o f pa t ­
terns be long ing to o the r classes. T h i s p r o b l e m is f u r t he r 
aggravated by increas ing the size of the recept ive f ie lds, 
as shown in tab le 2. 

Table 2: Percentages correctly classified, when test images 
were random combinations of t ra in ing set images. 

Table 3: Percentages correctly classified, w i t h low noise. Test 
images were random combinations of t ra in ing set images wi th 
peak locations randomly translated by [ -1 , + l ] . 

Table 4: Percentages correctly classified, w i th high noise. 
Test images were random combinations of t ra in ing set images 
wi th peak locations randomly translated by [-3, + 3 ] . 

I t i s desi rable to p e r f o r m correct c lass i f icat ion even in 
the presence o f s m a l l er rors o r c o r r u p t e d d a t a . Hence, 
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we tested our system wi th composite images produced 
by superimposing distorted versions of the training set-
images to the system. 

Two series of experiments were performed, varying the 
amount of distort ion in the test data, for small and large 
receptive fields (r = 0.5 and r = 0.1). In one set of ex­
periments, distortions were introduced by adding a ran­
dom integer in the range [ -1, +1] to the coordinates of 
the peaks. The results of these are summarized in table 
3. In another set of experiments, the distort ion was in­
creased by adding random integers in the range [-3, 4-3] 
to the coordinates of peaks. These results are summa­
rized in table 4. 

W i t h the small receptive field system (r = 0.5), 
the combined effect of distort ion and mult ip le patterns 
causes classification accuracy to deteriorate substan­
tially. On the other hand, classification capabilities of 
the large receptive field system (r = 0.1) are less af­
fected and degrade more gracefully w i th noise. This phe­
nomenon may be contrasted w i th the observation that 
the small receptive field system performs marginally bet­
ter on uncorrupted test data. 

5 Conc lud ing R e m a r k s 
In this paper, we have addressed the problem of analyz­
ing images containing mult ip le sparse overlapped pat­
terns. This problem arises natural ly when analyzing the 
composition of organic rnacromolecules using data gath­
ered from their N M R spectra. Using a neural network 
approach, we have obtained excellent results in analyzing 
the presence of various amino acids in protein molecules. 
We have achieved high correct classification percentages 
(about 87%) for images containing as many as five sub­
stantially distorted overlapping patterns. 

The architecture of our system is modular: each mod­
ule analyzes the input image and delivers a yes/no out­
put regarding the presence of one class of patterns in the 
image. Each module contains two stages: a clustering 
filter, and a feedforward neural network. An unconven­
tional aspect of our approach is the use of clustering to 
detect spatial features of patterns. 

We performed a number of experiments to measure 
the correctness of overall classification when the system 
was presented wi th composite images containing several 
patterns of different classes. We tr ied two versions of 
the system, one wi th small receptive field detectors and 
the other w i th large receptive field detectors. In both 
cases, we observed that the rate of correct classification 
decreased as the number of patterns in the image was 
increased. To determine the abi l i ty of the system to 
cope w i th variations in the patterns, images with ran­
dom perturbations to the patterns were presented to the 
system in another series of experiments. In this case, 
we observed that the classification abilities of the large 
receptive field system are less affected and degrade more 
gracefully. 

The classification process described in this paper is 
only the first step in the analysis of N M R spectra. It 
is of considerable interest to chemists to determine the 
precise association of the peaks in in the input image 
wi th different patterns. We are currently working on an 

extension to the system described in this paper to per­
form this task. We plan to refine the clustering algorithm 
to enable the use of feature-detectors wi th variable size 
receptive fields. We expect to improve performance by 
combining the evidence from mult iple input sources, as 
is done in other N M R analysis methods. 
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