
Learning Structural Decision Trees from Examples*

L a r r y Watanabe
Beckman Institute and

Dept. of Computer Science
University of Illinois

Urbana, IL 61801

Abs t r ac t

STRUCT is a system that learns structural
decision trees from positive and negative ex­
amples. The algorithm uses a modification
of Pagallo and Haussler's FRINGE algorithm
to construct new features in a first-order rep­
resentation. Experiments compare the effect-
s of different hypothesis evaluation strategies,
domain representation, and feature construc­
tion. STRUCT is also compared with Quinlan's
FOIL on two domains. The results show that
a modified FRINGE algorithm improves accu­
racy, but that it is sensitive to the distribution
of the examples.

1 I n t r o d u c t i o n

Structural learning, also known as relational learning,
has a long if not prominent history in machine learning.
Like attribute-value concept learners, structural concept
learners try to induce a description of a concept from
positive and negative examples of the concept. Struc­
tural concept learners differ in using a more expressive
first-order predicate calculus representation for their hy­
potheses.

One of the reasons for the unpopularity of structural
learning is the problems posed by learning in a first-
order representation. Examples are described in terms
of objects and the relationships among them; hypotheses
may include existentially quantified variables. The abili­
ty to quantify over objects adds a great deal of expressive
power to the representation. However, even matching a
hypothesis to an example is an NP-complete problem
[Haussler, 1989].

Recently, the advantages of a first-order representation
have motivated further research into learning in this hy­
pothesis language. FOIL [Quinlan, 1990a] KATE [Man-
ago, 1989], are some recent systems that can learn struc­
tural concepts.

This paper introduces a system, STRUCT, that learn-
s structural concepts from positive and negative exam­
ples. STRUCT integrates and extends previous work

*This research was supported in part by NSF grant IR1
8822031.

L a r r y Rende l l
Beckman Institute and

Dept. of Computer Science
University of Illinois

Urbana, IL 61801

in structural and attribute-value machine learning re­
search. From KATE it borrows the use of decision trees
to learn structural concepts. From FOIL it borrows the
approach and several techniques. From FRINGE [Pagal­
lo and Haussler, 1990] it borrows the iterative, adaptive
feature construction algorithm to produce more concise,
accurate, decision trees. From INDUCE [Dietterich and
Michalski, 1981] it borrows the representation of exam­
ples.

The main purpose of this paper is to explore how these
different techniques can be integrated into a structural
concept learning system. In addition, this paper de­
scribes the results of empirically evaluating several of
these refinements.

The paper is organized as follows. First, we describe
related research in section 2. The algorithm is described
in section 3. Next, we describe some experiments in
structural domains and discuss the results of these ex­
periments. Section 5 presents the conclusions of this
research.

2 Re la ted W o r k
In this section, we review systems that use an
information-theoretic approach to learning disjunctive
structural descriptions. There are many systems that
use other approaches, or address different problems in
structural learning. Some of these systems are described
in [Kodratoff and Ganascia, 1986; Iba et a/., 1988;
Muggleton, 1990].

2.1 Separate-and-conquer

Separate-and-conquer algorithms for structural domains,
also known as covering algorithms, try to find a DNF de­
scription of a concept by iteratively generating disjuncts
that cover some of the positive examples while excluding
the negative examples.

An early application of this algorithm to structural do­
mains is INDUCE [Dietterich and Michalski, 1981]. IN­
DUCE generates disjuncts by constructing a cover from
from the literals of one positive example, called the seed.

Quinlan's more recent FOIL [1989; 1990] differs from
INDUCE in a number of ways. First, it uses a tuple-
based learning paradigm, as opposed to an example-
based learning paradigm. Second, FOIL does not re­
strict the cover to use literals from a seed but searches

770 Learning and Knowledge Acquisition

the entire space of literals. We refer to this as ful l -width
search, because all one-step specializations are consid­
ered as candidates. However, having evaluated the can­
didates, FOIL commits itself to one particular choice and
discards the other candidates. In contrast, INDUCE
chooses a subset of the candidates for specialization.
Th i rd , I N D U C E uses a general user definable evaluation
funct ion, whereas FOIL's information-theoretic evalua­
t ion function is an integral part of the system.

Another recent separate-and-conquer algorithm for
learning structural descriptions is Pazzani and Kibler's
[1990] FOCL algori thm. FOCL uses a form of typed
logic wi th sortal and semantic constraints to reduce the
number of literals considered for inclusion in the cover.
This improves efficiency and accuracy. FOCL can also
use incomplete and incorrect background knowledge to
aid induction, and an iterative-widening search to find a
cover for the examples.

2.2 D i v i d e - a n d - c o n q u e r
Al though divide-and-conquer algorithms, also known
as decision tree inducers, have been widely used in
attribute-value domains, unt i l recently few systems have
used this strategy in structural domains. Bergadano and
Giordana's [1988] ML-SMART system uses a special­
ization tree approach that uses heuristics and domain
knowledge to drive induction. Manago's [1989] K A T E
is a decision-tree algori thm that uses an object-oriented
frame language equivalent to first-order predicate calcu­
lus. K A T E makes extensive use of the structure provid­
ed by the object hierarchy and heuristics to control the
generation of literals considered as branch tests. This
system has a strong bias against introducing new ex-
istentially quantified variables into the description, un­
like FOIL which favors introducing new variables. Later,
we discuss an experiment comparing the two strategies.
Man ago has also used INDUCE's partial-star algorithm
as a feature construction algorithm for K A T E .

2.3 A d a p t i v e Fea tu re C o n s t r u c t i o n
Like FOIL , Pagallo and Haussler's [1990] FRINGE uses a
tuple-based learning paradigm, but unlike the structure-
oriented systems, FR INGE uses the tuples simply as ex­
amples for atribute-based leaning. FR INGE also differs
from INDUCE, FOIL , FOCL, K A T E , and ML -SMART
in that FR INGE accepts only the training examples, no
other knowledge. Nevertheless, F R I N G E and its succes­
sors Symmetric FRINGE [Pagallo, 1990] and DCFringe
[Yang et al., 1991] have been shown to improve accura­
cy. These algorithms learn structure in the form of new
features constructed as more and more complex conjunc­
tions and disjunctions of the original attributes. The
scheme is to perform iterative feature construction at
the leaves of successive decision trees output by an ID3-
like algori thm. Extensions of the FR INGE method have
been tested by Matheus [1990] which do not restrict con­
structions to the fringe nodes [also see Yang et al., 90].

3 STRUCT
Our system learns structural decision trees f rom positive
and negative examples.

Databases:
DB1 =

father(Christopher, Arthur),
father(Christopher, Victoria),
mother(Penelope, Arthur),
mother(Penelope, Victoria),
brother(Arthur, Victoria),
sister(Victoria, Arthur),
son(Arthur, Christopher),
son(Arthur, Penelope),
daughter(Victoria, Christopher),
daughter(Victoria, Penelope),
husband (Christopher, Penelope),
wife (Penelope, Christopher).

Train:
father(Christophcr, Arthur) :- DBl
-father(Victoria, Arthur) :- DB l

Classes:
father(X, Y)

Figure 1: Input for STRUCT.

3.1 R e p r e s e n t a t i o n
STRUCT represents relations as Horn clauses. A Horn
clause can be viewed as a logical impl icat ion, where the
consequent consists of a single l i teral, called the head of
the Horn clause, and the antecedent consists of zero or
more literals, called the body of the Horn clause. This
representation of examples is similar to the inductive
assertions used in INDUCE. In contrast, FOIL learns
a relation f rom positive and negative tuples of a rela­
t ion. The following shows the input for STRUCT: The
Databases section defines zero or more dcitabases that
can be referenced by examples. Examples are horn claus­
es, whose antecedent may be an explicit list of literals or
a reference to a database. The Classes section defines
the classes that are to be included in the decision tree.
Unifying the head of the training examples wi th the class
l i teral yields the signed substitutions:

+ : { (C h r i s t o p h e r / X) , (A r t h u r / Y) >
- : { (V i c t o r i a / X) , (A r t h u r / Y) }

where the sign of the substitution indicates whether
one of the literals was negated before unifying. In con­
trast, FOIL would be given the tuples

+ : <Ch r i s t ophe r , A r t hu r>
- : < V i c t o r i a , A r t hu r>

which are isomorphic to the substitutions constructed
by STRUCT. The Classes may be followed by a Test
section giving the test set.

The abi l i ty of STRUCT to store data in mult iple
databases rather than one global database can make
induction more efficient. Informat ion that is not rele­
vant to an example can be ignored when learning from
that example. If this kind of relevance information is
not available, all the data can sti l l be stored in a single
database.

STRUCT also represents knowledge in the form of
Horn clauses. This knowledge may be prior knowledge
given to the system or a constructed feature. Before
constructing the decision tree, STRUCT computes the

Watanabe and Rendell 771

Create Tree (class, examples)
- create a node root labelled by the literal class.
- select the subset of examples whose head

unifies with class or —*class
- RecursiveSplit(root)

RecursivcSplit (node)
If all training examples at node

are positive or negative examples,
label node with pos or neg.

else
- select a test based on one literal
- label node with the literal
- create child nodes, left and right
- place the examples that match node at left

and the others at right
- Recursivc Split(left)
- RecursiveSplit (right)

Figure 2: Recursive Spl i t t ing A lgor i thm.

deductive closure of the body of each example, and re-
places the body wi th the closure. This form of logical
constructive induction has previously been implemented
in INDUCE.

3.2 S t r u c t u r a l Dec i s i on Trees

In this section we describe the decision tree formed
by STRUCT and how it is used to classify examples.
STRUCT learns a Boolean decision tree as shown in Fig-
ure 2. The decision tree algorithm is modified to han­
dle structural descriptions by associating a Horn clause
wi th each of the nodes of the tree, and SLD-resolution
is used as the match procedure. The clause associated
wi th a node is defined by the following mapping. Let
nodeo, ...,noden be the nodes along the path from the
root to node nodcn. Define L i, to be the literal labeling
node nodei if nodei is the left child of node.i-.1 other-
wise its negation. Then the clause is
associated wi th node noden. The node noden matches
an example if the head of the example can be derived
with SLD-resolution f rom the above clause and the l i t -
erals in the body of the example.

3.3 G e n e r a t i n g L i t e r a l s f o r B r a n c h Tests

In this section, we first review FOIL'S method for gener-
ating literals for branch tests, then compare its method
to STRUCT's method.

FOIL generates the literals used as tests using the
following procedure: If the clause associated wi th the
current node is then a new
l i teral of form or

can be added to the clause, where Xi's
are existing variables, the Vi's are existing or new vari­
ables, and Q is some relation. The entire space of these
literals is searched wi th the following exceptions:

• literals may be pruned

• the literal must contain at least one existing variable

• the l i teral must satisfy some constraints designed to
avoid problematic recursion.

In contrast, STRUCT generates the literals used as
tests using the following procedure: if the current node
is current, the parent of current is parent, the clause
associated w i th parent is
is a substitut ion that matches the current node to an
example, is a literal in the example, and

then is a
candidate l iteral for part i t ioning current. STRUCT also
considers all candidate literals of form where
Xi's are variables in the clause associated wi th parent.
The entire space of these literals is searched wi th the
fol lowing exceptions:

• the l iteral must contain at least one variable from
parent

• the l i teral must satisfy constraints to avoid prob­
lematic recursion.

Pazzani and Kibler [1990] analyze the complexity of
FOIL 's approach, and describe how sortal and semantic
constraints are incorporated into their system, FOCL.
The complexity of FOIL's strategy, without pruning, is
approximately (n + k — 1) , where n is the number of old
variables in the clause, and k is the arity of the predicate
in the new l i teral. This must be repeated for each predi­
cate and each generated literal must be matched against
the examples, so the cost of generating and choosing a
l i teral for a node is upper bounded by t ■ p - (n + k: — 1) ,
where t is the number of tuples covered by the current
clause, and p is the number of predicates. Quinlan re­
ports that pruning results in a dramatic improvement in
the efficiency of the algori thm.

STRUCT's strategy is comparable in complexity to
FOIL. The number of substitutions is the same as the
number of tuples in Quinlan's formalism. The cost of
generating and choosing a l iteral is upper bounded by

where t is the number of matches of
the parent node to the examples, / is the number of l it­
erals, and v is the maximum number of variables that
are bound to the the same constant in any substit i t ion.

3.4 E v a l u a t i n g L i t e r a l s
STRUCT uses the following evaluation function to eval­
uate candidate literals. Let S be the set of examples at
a node, X a l i teral, Sx the subset of S that matches X,
and Sx, y the subset of Sx that belongs to class y. Then
the evaluation function gives X the value:

Maximiz ing this evaluation function is equivalent
maximizing information gain [Quinlan, 1983]. FOlL's
evaluation function sums over the tuples covered by the
new clause, and is therefore asymmetric. The above e-
valuation function sums over both the matched and un­
matched examples (not tuples).

FOIL gives a small credit to a l i teral that introduces
new variables. STRUCT may give either a small reward
or penalty for each new variable in a l i teral. In
our experimental section, we compare the effects of the
reward and penalty strategies on the accuracy of the
learned concepts.

772 Learning and Knowledge Acquisition

1. Delete all instances of the relation to be
learned from the database.

2. As the decision tree is constructed, whenever a leaf
node is created, add the literals in the heads of
the examples at the leaf nodes to the database.

Figure 3: Recursive Learning Strategy.

3.5 R e c u r s i v e D e f i n i t i o n s
One issue that faces structural learners is the problem of
recursive definitions. Quinlan [1990] proposes a part ial
ordering strategy that can eliminate some, but not al l ,
of the problematic recursion.

The problem arises because instances of the relation
being learned are in the knowledge base. Clearly, the
relation itself is the best feature for spl i t t ing the positive
and negative examples; i.e.

perfectly splits the tree. But there is an impl ic i t re­
quirement on the learning system that it be able to clas­
sify future examples without knowing the same kind of
information that is available to it during training, name­
ly the classification of the example.

One possible approach to this problem is to explicit ly
remove from the database information that the decision
tree is supposed to learn, unless the decision tree has
already learned it (see Figure 3). STRUCT currently
does not implement this procedure, but it avoids adding
new literals wi th the same predicate and variables as the
head of the clause. STRUCT also has a non-recursive
mode, where definitions are may not add literals wi th
the same predicate as the one being learned.

A second problem that can arise is an infinite regres­
sion during induction. For example, suppose the descrip­
t ion associated w i th the current node is Q <— P (X , Y, Z)
and the literal to be added is The new defi­
nit ion matches exactly the same set of examples, and the
system may continue to add another alphabetic variant
of the l i teral indefinitely:

To avoid this problem, STRUCT forms co-designation
constraints on the possible bindings of a l i teral. These
arc created for every pair of literals Li, and Lj, where

• Lj is a new l i teral that has just been added to the
definition

• Li is a l iteral w i th the same predicate as Lj.
• The j - t h argument of Lj is either a new variable, or

is the same variable as the j - t h argument of Li,.

The constraint on unification of Lj is defined as fol­
lows: let Y 1 , . . . ,Y n be the new variables in Lj, and
X1,...,Xn be the variables in Li at the corresponding
argument positions. Then Y1 X 1 , . . . ,Y n Xn are
added as co-designation constraints on unification of Lj.

These co-designation constraints prevent the inductive
recursion that sometimes occurred in earlier versions of
STRUCT.

find-featurel {leaf)
Let Lp be the literal at the parent node of leaf
Let Lg be the literal at the grandparent node of leaf

If leaf is to the left of its parent

else

If leaf is to the left of its grandparent

else

Return
where Xi are the variables from the unnegated
literals in LO, L\ and P is a new predicate.

fmd-feature2(/ea/)
Let Lr be the literal at the root of the tree
Let

be the feature returned by find-featurel (leaf).
Return

with guard Lr

Figure 4: Feature Construction A lgor i thm.

3.6 Fea tu re C o n s t r u c t i o n

One problem wi th decision trees as a representation
scheme is that DNF concepts cannot be represented con­
cisely. Representing a DNF concept as a decision tree
may require replicating many parts of each disjunct in d-
ifferent branches of the tree. Pagallo and Haussler [1990]
call this the replication problem, and propose an adap­
tive, iterative feature construction algorthm, FR INGE,
as a solution to this problem.

Pagallo and Haussler have conducted experiments
wi th FR INGE in random and real-world domains. In the
random domain experiments, F R I N G E produced more
concise and more accurate decision trees for small DNF.
In the real-world domain experiments, FR INGE pro­
duced decision trees that were at least as accurate and
more concise. In STRUCT, we investigated a modifica­
t ion of the F R I N G E algori thm for a structural decision
tree. The algori thm is essentially the same as FRINGE,
wi th a few changes to handle variables. The algori thm
begins w i th the in i t ia l set of relations, and constructs a
decision tree as described in the previous sections. Next,
a find-features procedure generates a new set of relation
definitions by examining the fringe of the tree, by calling
find-feature J for each leaf in the tree at depth 2 (see
Figure 4).

We also implemented a variant of find-features, mo­
tivated by the fol lowing considerations. In the original
find-features, the variables in literals at the fringe of the
tree are usually bound by literals higher in the tree.
However, the bindings are lost when the fringe literals
are made into an independent feature. Thus, the feature
tends to be overly general if the l i teral is unnegated, or
overly specific if the l i teral is negated.

An addit ional source of potential problems is that the
l i teral in the head of the example contains information
that is ignored during feature construction. However,
this l i teral cannot be added to the body of a feature

Watanabe and Rendell 773

definition because it matches literals in the head of an
example, not the body. Accordingly, we modified the
rule representation and matching algori thm to handle
guard l iterals. These literals must match the head of an
example as a precondition of the rule.

The find-features procedure constructs new relation
definitions. The new relation definitions are added to
the knowledge base, in the form of Horn clauses. Old re­
lation definitions are removed from the knowledge base
if they define a relation that is not in the decision tree,
and are not necessary for computing a relation that is
in the decision tree. This method of feature pruning is
Pagallo's Keep Used Last method. The examples are re­
placed by the deductive closure of the base level literals
under the new knowledge base. Then, the decision tree
algor i thm and find-features procedure is repeated. The
process stops when the same decision tree is constructed
as in the previous i teration, or when a fixed number of
iterations (7) is exceeded.

4 Expe r imen ts

We had several objectives in performing the experiments.
First, we wanted to evaluate the overall performance of
the system on some standard domains. Second, we want­
ed to determine if Quinlan's heuristic of assigning a small
credit to new variables worked well in a decision tree sys­
tem. Th i rd , we wanted to investigate the effectiveness
of a modified FRINGE strategy for structural domains.

4 .1 K i n s h i p D o m a i n

Hinton [1986] implemented a connectionist system for
learning family relationships in two families. For a de­
tailed description of the learning task, we refer the reader
to Quinlan's excellent [1989, 1990] descriptions.

4.2 M e t h o d

In our experiments, we followed the procedure described
in [Quinlan, 1990b]. The instances of each relation were
partit ioned into input-output vectors that have the same
relation name and same second argument. Only input-
output vectors wi th at least one positive instance were
used. There are 24 instances (equivalently, tuples or ex­
amples) in each of the total of 104 input-output vectors.

The 104 input-output vectors were randomly part i ­
tioned into training and testing sets. The size of the
training set was varied among the values 4, 10, 20, and
40. Each of the test items was scored as correct only if all
24 examples wi th in the vector were correctly classified.

We extended Quinlan's experiment by manipulat ing
whether new variables were credited or penalized in the
evaluation of literals. The same samples were used across
conditions wi th the same sample size. Each condition
was run 20 times. These results are summarized in Ta­
ble 1.

4.3 Resu l t s a n d Observa t ions

STRUCT performed significantly better than FOIL on
this domain for conditions wi th the same sample size.
Perhaps family relationships, being trees, are easily
learned by a decision-tree algori thm.

Table 1: Accuracy Results on Kinship Domain.

For STRUCT, assigning a small credit to new variables
resulted in decision trees of no better or worse accuracy.
Quinlan's rationale for the credit strategy is that adding
new variables wil l allow new literals to be introduced
that might have more information gain. This locally
increases the size of the hypothesis space. However, the
larger hypothesis may also result in overfitt ing.

4.4 Chess E n d g a m e
The chess endgame domain was used in a comparison of
human and machine learning formalisms [Muggleton et
al. , 1989] Muggleton et al. concluded that the abil i ty
to produce high-performance in this domain was almost
entirely dependent on the ability to express first-order
predicate relationships. Thus, this domain seems to be a
natural test-bed for structural learning. Quinlan's [1990]
results for FOIL on this domain are included in Table 2.

The problem faced by the learner in the chess endgame
domain is to learn the concept of an lilegal position in­
volving three pieces a white rook, white king, and black
king. A position is Illegal if either king is in check or two
pieces occupy the same square.

4.5 E x p e r i m e n t 1

In this experiment we compared three strategies against
a default strategy for training sizes of 100 and 1000. The
control condition assigned a penalty for new variables in
l iteral tests, and used a symmetric evaluation function.
The other conditions differed from the control condition
in one aspect of their strategy. The reward condition
assigned a small reward for new variables. The asym
condition used an symmetric evaluation function simi­
lar to the one used in FOIL, except that it evaluated
information about examples rather than tuples.

Each condition was run wi th 10,000 testing examples
and repeated for 10 trials. The same samples were used
across conditions wi th the same sample size, and the
two-tailed correlated t-test was used to test significance.

4.6 Resu l t s a n d Observa t ions
As shown in Table 2, STRUCT achieved comparable ac­
curacy to FOIL for both sample sizes; their mean accu­
racies are wi th in one standard deviation of each other's.
However, FOIL finds descriptions of greater simplicity
than STRUCT.

The evaluation function results in Table 3 indicate
that on the chess endgame domain, STRUCT perform-
s better w i th the symmetric evaluation function (the
control condition) than wi th the asymmetric evalua­
tion function. The sym condition produced more accu-

774 Learning and Knowledge Acquisition

Table 2: Accuracy Results on Chess Endgame Domain.

Table 3: Compairison of Evaluation Functions.

rate trees, part icularly for larger sample sizes. Perhaps
the symmetric evaluation function is appropriate for the
symmetric decision tree algor i thm, and the asymmetric
evaluation function is apppropriate for the asymmetric
separate-and-conquer algor i thm.

On this domain, assigning a small credit to new vari­
ables was also significantly worse than assigning a small
penalty to new variables. This result is not surprising as
a complete and consistent description can be constructed
without introducing any new variables.

Feature construction did not result in a significant
t increase or decrease in accuracy in any condition,
so these results are not included in Table 3. For
this data, feature construction's only advantage is the
greater conciseness of the decision tree. Our result-
s are consistent w i th the results in [Matheus, 1990;
Pagallo and Haussler, 1990] which showed l i t t le or no im­
provement in accuracy for the datasets obtained from the
UCI Repository of Machine Learning Domains. Matheus
conjectures that the poor results are due to the high
quality of the in i t ia l features.

4.7 E x p e r i m e n t 2
This experiment was motivated by the disparity in Pa-
gallo's [1990] results for feature construction on synthet­
ic domains and the UCI domains. We conjectured that
feature construction might be more effective if the dis­
t r ibut ion was biased to generate more of the difficult
examples.

Accordingly, we created an example generator that
produced relatively more examples of illegal positions
where the black king was in check by the rook. We also
biased the example generator to generate many near-
misses of this case - situations where the black king
would be in check by the rook if the white king were
not in the way. To improve the efficiency of the da­
ta generator, we did not check for repeated positions in
either the t ra in ing or testing set. Each example was gen­
erated independently of every other example. The same
distr ibut ion bias was used for the training and testing

Table 4: Comparison of Feature Construction Strategies.

sets.
We ran the experiment for each of the two find-features

strategies, and a control condition with no feature con­
struction. The FFl condition used find-feature J, and the
FFS condition used find-feature2. Each feature construc­
tion strategy was run with 100 and 1000 training items,
and 10,000 test items; the experiment was repeated 20
times. The same samples were used across condition-
s wi th the same sample size. In Table 4, the correlated
two-tailed t-test was used to find significance. In the first
and last groups of three rows, each feature construction
strategy is compared to the control; in the middle group
of two rows, FF2 is compared wi th FFl.

4.8 Resu l t s and Obse rva t i ons
For the biased distr ibut ion, there were significant differ­
ences for accuracy with and without feature construc­
t ion. Overall, FF2 performed best, followed by FFl.
Interestingly, the accuracy without feature construction
is about the same as for the unbiased distr ibut ion.

FFl learned wi th less accuracy than the control for
100 training items, but the difference is not significant.
However, it did learn wi th significantly better accuracy
for the larger sample size. FF2 learned wi th significantly
better accuracy than the control for both sample sizes,
and significantly better accuracy than FFl for the small­
er sample size.

These results suggest that feature construction is de­
pendent on the example distr ibution. On the other hand,
it may be quite easy to bias the distr ibution - one can use
the decision tree as a test of whether or not an example
is difficult. Namely, examples that are incorrectly clas­
sified by a f irst-attempt decision tree might be used to
construct a biased distribution for feature construction.

The difference between the two feature construction
results seems to indicate that the context of the literal
is important for feature construction when learning from
smaller sample sizes.

5 Conclusions
STRUCT is a structural decision tree algorithm that pro­
vides good performance on the two test domains. On
the kinship domain, it learns more accurate descriptions
than FOIL. On the chess domain, it learns descriptions
of comparable accuracy to FOIL. However, FOIL is con­
siderably faster than STRUCT. This can be important
if there are many examples. In addit ion, FOIL generally
f inds simpler definitions than STRUCT.

Watanabe and Rendell 775

Our experiments demonstrated that Quinlan's heuris-
tic of assigning a small credit to new variables does not
work effectively in STRUCT for these datasets. Assign­
ing a small debit to new variables produced more ac­
curate decision trees. We conjecture that these results
would be reversed for a separate-and-conquer strategy:
Quinlan's evaluation function would consistently outper­
form our evaluation function because of the asymmetry
of the algor i thm.

The feature construction results indicate that the lack
of effectiveness of feature construction on real-world do­
mains may be due to the distr ibut ion of the examples. In
order to use feature construction effectively, it may be
necessary to bias the distr ibut ion. Our results showed
that a straightforward extension of FRINGE for struc­
tural decision trees produced significantly less accurate
descriptions for smaller sample sizes than an alternate
approach that compensated for loss of context informa­
t ion.

Acknowledgements

Discussions wi th Pat Langley, Sudhakar Yerramareddy,
and members of the Inductive Learning Group contribut­
ed to this paper. We would also like to thank Ross Quin-
lan for sending us FOIL.2.1.

References

[Bergadano and Giordana, 1988] F. Bergadano and
A. Giordana. A knowledge intensive approach to con­
cept induction. In J. Laird, editor, Proceedings of the
Fifth International Conference on Machine Learning,
pages 305-317. Morgan Kauffman, June 1988.

[Dietterich and Michalski, 1981] T .G. Diettench and
R. S. Michalski. Inductive learning of structural de­
scriptions. Artificial Intelligence, 16(3):257-294, 1981.

[Haussler, 1989] D. H aussler. Learning conjunctive con­
cepts in structural domains. Machine Learning, 4:7-
40, 1989.

[Hinton, 1986] G.E. Hinton. Learning distributed repre­
sentations of concepts. In Proceedings of the Eighth
Annual Conference of the Cognitive Science Society,
Amherst, M A , 1986. Lawrence Erlbaum.

[lba et al, 1988] W. Iba, J. Wogulis, and P. Langley.
Trading off simplici ty and coverage in incremental
concept learning. In J. Lai rd, editor, Proceedings of
the Fifth International Machine Learning Conference,
pages 73-79. Morgan Kaufmann, June 1988.

[KodratofT and Ganascia, 1986] Y. Kodratoff and J-G.
Ganascia. Improving the generalization step in learn­
ing. In R.S. Michalski, J.G. Carbonell, and T . M .
Mitchel l , editors, Machine Learning: An AI Approach,
volume 2, pages 215-244. Morgan Kaufmann, 1986.

[Manago, 1989] M. Manago. Knowledge intensive induc­
t ion. In A. M. Segre, editor, Proceedings of the Sixth
International Workshop on Machine Learning, pages
151 155. Morgan KaufTman, June 1989.

[Matheus, 1990] C. J. Matheus. Adding domain knowl­
edge to SBL through feature construction. In Proceed-
ings of the Eighth National Conference on Artificial
Intelligence, pages 803-808, 1990.

[Muggleton et al. , 1989] S. Muggleton, M. Bain, J.
Hayes-Michie, and D.Michie. An experimental com­
parison of human and machine learning formalisms.
In A. M. Segre, editor, Proceedings of the Sixth Inter-
national Machine Learning Workshop, pages 113-118.
Morgan Kaufmann, June 1989.

[Muggleton, 1990] S. Muggleton. Inductive logic pro-
gramming. In Proceedings of the First Conference
on Algorithmic Learning Theory, Tokyo, Japan, 1990.
Ohmsha.

[Pagallo and Haussler, 1990] G. Pagallo and D. Haus­
sler. Feature discovery in empirical learning. Technical
Report UCSC-CRL-90-27, University of California at
Santa Cruz, Santa Cruz, CA, August 1990.

[Quinlan, 1983] J.R. Quinlan. I .earning efficient clas­
sification procedures and their application to chess
endgames. In Carbonell Michalski and Mitchel l , edi­
tors, Machine Learning. Tioga Press, Palo A l to , CA,
1983.

[Quinlan, 1990a] J.R. Quinlan. Learning logical defini­
tions from relations. Machine Learning, 5:239-266,
1990.

[Quinlan, 1990b] J.R. Quinlan. I .earninc; relations:
Comparison of a symbolic and a connectionist ap­
proach. Technical Report TR-346, University of Sid­
ney, Sydney, Austral ia, 1990.

[Yang et al., 1991] Der-Shung Yang, Larry A. Rendell,
and Gunnar Bl ix . A scheme for feature construction
and a comparison of empirical methods. In Proceed­
ings of the Twelfth International Joint Conference on
Artificial Intelligence, Sydney, Austral ia, 1991.

776 Learning a n d Knowledge Acquisition

