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A b s t r a c t 

Delayed re in fo rcement l ea rn ing is an a t t r ac ­
t i ve f r a m e w o r k for t he unsuperv ised lea rn ing 
of ac t ion pol ic ies for au tonomous agents. Some 
ex i s t i ng delayed re in fo rcement l ea rn ing tech­
niques have shown promise in s imp le doma ins . 
However , a number of hurd les mus t be passed 
before they are app l icab le to real is t ic p rob lems. 
T h i s paper describes one such d i f f i cu l t y , the in­
put generalization problem (whereby the sys tem 
m u s t general ize to p roduce s im i la r act ions in 
s im i la r s i t ua t i ons ) and an i m p l e m e n t e d so lu­
t i o n , the G algorithm. T h i s a l g o r i t h m is based 
on recurs ive s p l i t t i n g of the s ta te space based 
on s ta t i s t i ca l measures o f dif ferences in re in ­
fo rcements received. Connec t i on i s t backp ropa -
ga t i on has p rev ious ly been used for i n p u t gen­
e ra l i za t ion i n re in fo rcement l ea rn ing . We com­
pare the t w o techn iques ana ly t i ca l l y and emp i r ­
ica l ly . T h e G a l g o r i t h m ' s sound s ta t i s t i ca l ba­
sis makes i t easy to p red i c t when i t shou ld and 
shou ld n o t w o r k , whereas the behav io r o f back-
p ropaga t i on is unp red i c tab le . We f o u n d t h a t a 
p rev ious successful use of backp ropaga t i on can 
be exp la ined by the l i nea r i t y o f the app l i ca t i on 
d o m a i n . We f o u n d t h a t i n another d o m a i n , G 
re l iab ly f o u n d the o p t i m a l po l icy , whereas none 
o f a set o f runs o f backp ropaga t i on w i t h m a n y 
comb ina t i ons o f parameters d i d . 

1 Backg round 

Delayed reinforcement learning is a f r a m e w o r k for learn­
i ng , w i t h o u t supe rv i s ion , t o ac t i n an e n v i r o n m e n t [Sut­
t o n , 1988]. In th is f r a m e w o r k , an agent is g iven on each 
t i ck , in a d d i t i o n to " p e r c e p t u a l " i n p u t s , a numer i ca l re­
inforcement, w h i c h is a measure of the immediate va lue 
o f the s ta te co r respond ing to the i n p u t s . T h e goal o f 
the agent i s to choose act ions to m a x i m i z e the s u m of 
re in fo rcement over t i m e . 1 

*This work was supported by the Defense Advance Re­
search Projects Agency under N A S A contract NAS2-13229. 

1 Or , more accurately, to maximize a future-discounted 
sum of reinforcement, as we wi l l explain. 

Delayed reinforcement learning is attractive due to its 
similarity to the problem faced by a person or other crea­
ture placed in unfamiliar surroundings and expected to 
act intelligently. Such problems are of increasing theo­
retical and practical interest due to recent progress in 
the construction of autonomous agents such as mobile 
robots. Though such systems have achieved new levels of 
performance, they generally depend on elaborate hand-
coded policies in computing how to act. When the envi­
ronment for which they were designed is changed slightly, 
they may fail gracelessly; they are unable to adapt to 
new environments; and the process of hand-coding poli­
cies they require is slow and error-prone. Agents whose 
action policies are developed autonomously from a re­
inforcement signal might transcend all these problems 
[Chapman, 1991, Appendix B]. 

The bulk of experience wi th delayed reinforcement 
learning methods has been in simple domains that do 
not stretch their capabilities. The work described in 
this paper began by applying existing techniques to a 
more difficult task domain. This domain raised techni­
cal problems that our work here addresses. 

1.1 T e m p o r a l d i f fe rence l e a r n i n g 
The best-understood approach to delayed reinforcement 
learning is temporal difference (TD) learning, codi­
fied by Sutton and his colleagues [Barto et al., 1989a; 
Sutton, 1988]. Two forms of TD learning have been 
studied in detail , the adaptive heuristic critic of Sutton 
[1988] and Q-learning, due to Watkins [1989]. Several 
authors have compared these methods empirically and 
found Q-learning superior [Kaelbling, 1991; L in , 1990; 
Sutton, 1990], so we adopted Q-learning as our starting 
point. 

Q-learning is based on estimating the values of Q(i, a), 
which is the expected future discounted reinforcement for 
taking action a in input state i and continuing wi th the 
opt imal policy. The discounted reinforcement is the sum 
of all future reinforcement weighted by how close they 
are; specifically 

where t is the present t ime, is a discount fac­
tor close to one, and r{t) is the reinforcement received 
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at t i m e t . T h u s the Q values say how good an ac t ion is 
no t on l y in te rms o f i m m e d i a t e re in fo rcement , bu t also 
in te rms o f whe the r i t gets the agent closer to f u tu re 
re in fo rcement ; so in effect they a l low the learner to dy­
namica l l y create subgoals based on re in forcement t h a t 
may be far in the f u t u r e . G i v e n Q values, we can also 
compu te the va lue of a s ta te as the value of the best 
ac t ion i n t h a t s ta te : 

a 
T h e l ea rn ing a l g o r i t h m works by c rea t ing a t w o - d i m e n ­
s ional tab le of Q values indexed by act ions and i npu t s 
and t h e n a d j u s t i n g the values in the tab le based on ac­
t ions taken and re in fo rcement received. T h i s process 
is based on the observa t ion t h a t Q o f the cu r ren t ( i n ­
p u t , a c t i o n ) pa i r can be c o m p u t e d based on the imme­
d ia te re in fo rcement received and the value of the next 
i n p u t :  

For f u r t h e r deta i ls , see [ K a e l b l i n g , 1991; W a t k i n s , 1989]. 

1.2 T h e d o m a i n 

T h e d o m a i n used in th i s research was the v ideogame 
A m a z o n , p rev ious ly used in the sys tem Son ja [ C h a p m a n , 
1991]. M o r e accura te ly , we s tud ied an appa ren t l y s imple 
s u b p r o b l e m f r o m th i s d o m a i n , wh i ch t u r n e d ou t t o be 
unexpec ted ly d i f f i cu l t . 

In A m a z o n , the p layer cont ro ls an " a m a z o n " icon 
wh ich is a t tacked by ghosts. On each t i ck , the player 
can move the amazon one p ixe l in any o f t he e ight 
" k ing ' s m o v e " d i rec t ions . Since the amazon is f i f ty pixels 
h i g h , the p layer has very f ine-gra ined con t ro l over mo­
t i o n . ( T h e o therw ise s im i la r v ideogame domains used by 
o ther researchers have coarse m o t i o n con t r o l , in wh i ch 
the player icon moves i ts en t i re w i d t h in a single t i ck . 
W e ' l l see t h a t th is di f ference mat te rs . ) Ghosts s im i l a r l y 
move a single p ixe l on each t i ck . T h e p layer can cause 
the amazon to shoot a p ro jec t i l e in the amazon's direc­
t i on o f m o t i o n . Pro jec t i les move in a s t ra igh t l ine, four 
pixels per t i c k ; i f t hey co l l ide w i t h a ghost , the ghost 
dies. T h u s , the amazon m u s t be al igned w i t h a ghost 
in one o f the k ing 's move d i rec t ions to k i l l i t . T h e re in­
fo rcement g iven is 10 when a ghost dies, o therwise —.1 
i f a shot is t a k e n , o therw ise 0. 

T h e s u b p r o b l e m f r o m A m a z o n we s tud ied generates 
a ghost at a r a n d o m d is tance and o r i e n t a t i o n f r o m the 
amazon , wa i t s for t he amazon to k i l l i t , and then repeats. 
We expe r imen ted w i t h var ious fo rms o f pe rcep t i on , some 
descr ibed in [ C h a p m a n and K a e l b l i n g , 1990], a l l del iver­
i ng a re la t i ve l y sma l l n u m b e r o f i n p u t b i t s . 

T h i s d o m a i n is d i f f i cu l t for several reasons. F i r s t , some 
states are ra re , and i t i s h a r d to ga in enough experience 
w i t h t h e m to f i nd t h e o p t i m a l po l icy . Second, ghosts are 
p r o g r a m m e d t o avo id a l i g n m e n t w i t h the amazon . W h e n 
the amazon and the ghost are una l i gned , there are l i m ­
i ted o p p o r t u n i t i e s fo r t he sys tem to lea rn . I n pa r t i cu l a r , 
the sys tem is no t ( l oca l l y ) re in forced for act ions t h a t 
lead to k i l l i n g the ghost , because i t i s imposs ib le to k i l l 
the ghost wh i l e una l i gned . Unde r a r a n d o m s t ra tegy , 
the amazon and ghost w i l l t y p i c a l l y s tay una l igned for 
stretches o f several h u n d r e d t i cks p u n c t u a t e d by b r i e f 

periods of alignment terminated by ghost death. Thus 
most experience is of very l imited value, and the inter­
esting reinforcements (ghost deaths) occur infrequently. 
Th i rd , there is a great variance in the value of states that 
the limited perception does not make available. How 
nearly aligned the ghost is and how close it is to the 
amazon determine how long it wil l be before it is possi­
ble to ki l l i t . If the system gets a series of "easy" ghosts 
in a row it can readily come to wrong conclusions about 
a state value. This means that the learning rate must 
be sufficiently low to even such differences out; but that 
makes learning slow. 

A fourth difficulty in this domain lead directly to the 
G algorithm. We hoped to use Sonja's visual system 
as an input representation for Q-learning, and that the 
learner could come to control this active visual system in 
which the computations performed are chosen top-down. 
Progress along these lines has been reported by White­
head and Ballard [1990]. However, this visual system 
provides more than a hundred bits of input, correspond-
ing to more than 21 0 0 distinct inputs. This is a problem 
for two reasons, space and t ime. One simply cannot al­
locate an array one of whose dimensions is 21 0 0 . Even if 
you could, it would divide the state space up into tiny 
pieces, each of which would occur extremely rarely, so 
the system could never accumulate enough experience 
to gauge the value of most states. Somehow a learning 
algorithm must guess about the value of states based 
on experience wi th similar states. But how can it know 
which states are similar when it has no experience with 
them? 

2 The G a l g o r i t h m 

The G algorithm addresses this problem of input, gen­
eralization in a Q-learning framework.2 Although gen­
eralization over inputs is a large field of study in ma­
chine learning, delayed reinforcement learning puts spe­
cial constraints on the problem that make most general 
techniques inapplicable. 

We can motivate the G algorithm in two ways. The 
first is to see it as collapsing the exponential sized Q ta­
ble engendered by large numbers of input bits. In most 
domains, large chunks of the table should have identi­
cal entries, because many of the bits wi l l be irrelevant 
to acting under certain circumstances. If we can figure 
out which bits are irrelevant, we can summarize a large 
region of the state space wi th only one Q value, thereby 
saving both space ( to store the values) and time (since 
experience wi th any state in the region can be used to 
update the single Q value). 

Another way of looking at the algorithm is as a tech­
nique for incrementally constructing the sort of action 
selection networks that have recently been used in vari­
ous situated machine agents [Beer, 1990; Brooks, 1989; 
Chapman, 1991; Connell, 1990; Kaelbling and Rosen-
schein, 1990]. These networks are digital circuits that 
compute what to do based on perceptual inputs. The cir­
cuits are kept shallow in order to compute quickly when 

2For further discussion of the algorithm, see [Chapman 
and Kaelbling, 1990]. 
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Figure 1: A G t ree. I n t e r n a l nodes cor respond to i n ­
p u t b i t sp l i t s ; t he a l g o r i t h m col lects s ta t i s t i cs abou t the 
subspaces represented by the leaf nodes. 

imp lemen ted on s low, massively para l le l h a r d w a r e . T y p ­
ica l ly they m a i n t a i n l i t t l e o r no s ta te . Because the net­
works are sha l low, they have the p r o p e r t y t h a t a l t hough 
every i n p u t b i t i s used in c o m p u t i n g how to act , in most 
s i tua t ions mos t b i ts are ignored . For example , Son ja 
searches for the amazon whenever the v isua l sys tem re­
por ts los ing t rack o f i t ; a l l o ther i n p u t s are i r re levant in 
th is case. 

T h e G a l g o r i t h m i nc remen ta l l y bu i lds a t ree -s t ruc tu r ­
ed Q t ab le . I t begins by suppos ing t h a t a l l i n p u t b i t s are 
i r re levant , the reby co l laps ing the en t i re tab le i n to a s in­
gle b lock . I t col lects Q values w i t h i n th is b lock . G also 
col lects s ta t i s t i ca l evidence for t he relevance o f i n d i v i d ­
ua l b i t s . W h e n i t discovers t h a t a b i t is re levant , i t sp l i ts 
the s ta te space i n t o the t w o subspaces cor respond ing to 
the re levant b i t be ing on and off. T h e n i t col lects s tat is­
t ics (ac t i on and relevance) w i t h i n each o f those b locks. 
These b locks can in t u r n be sp l i t , g i v i n g rise to a t ree-
s t r uc tu red Q t ab le ( f igure 1). T h e sys tem acts on the 
basis of the Q s ta t i s t i cs in t he leaf node cor respond ing 
to an i n p u t . T h u s the tree acts as a boolean i n p u t classi­
f i ca t ion n e t w o r k , essent ia l ly s im i la r to the sor ts o f ac t ion 
ne tworks descr ibed above. 

T h e i n c r e m e n t a l , one -b i t - a t - a - t ime cons t ruc t i on o f the 
G tree pu ts a cons t ra in t on the sor ts of env i ronmen ts 
t h a t G can learn i n : the relevance of b i t s m u s t be ap­
paren t i n i so la t i on . T h e a l g o r i t h m w i l l fa i l i f g roups o f 
b i ts are co l lec t ive ly re levant b u t i n d i v i d u a l l y i r re levant . 
I f we consider the pe rcep tua l sys tem of an agent to be 
p a r t o f the " e n v i r o n m e n t " o f i ts l ea rn ing sys tem, as we 
mus t , t hen t h i s cons t ra in t can be p laced on t h a t sys tem 
ra ther t h a n the w o r l d . I n o ther wo rds , we hypothes ize 
t h a t a well-designed perceptual system orthogonahzes in­
puts such that they are individually relevant. 

T h e G s p l i t t i n g techn ique is re la ted to ex i s t i ng algo­
r i t h m s , such as I D 3 [ Q u i n l a n , 1986] and C A R T [B re iman 
et a/., 1984], for i n d u c i n g decision trees. T h e c ruc ia l di f­
ference is t h a t the decis ion- t ree a l go r i t hms are presented 
w i t h i n p u t / o u t p u t pai rs ra the r t h a n re in fo rcement da ta ; 
for th is reason, the s ta t i s t i ca l tests used to make sp l i ts 
mus t be d i f fe rent . A l so , our wo rk has emphas ized mak ­
i ng i nc remen ta l decisions w i t h a f i xed a m o u n t o f com­
p u t a t i o n per t i c k ra the r t h a n lea rn ing the shal lowest o r 

smal lest t ree . 3 

T h e G a l g o r i t h m appl ies to i n p u t genera l i za t ion . A 
s im i la r p r o b l e m arises on the o u t p u t side: i f the number 
o f act ions is ve ry large, the learner can no t hope to t r y 
each in every s ta te . For examp le , Sonja 's v isua l sys tem 
has several dozen con t ro l b i t s that, the act ion po l i cy must 
set on every t i ck . K a e l b l i n g [1991] has descr ibed an ap­
proach to th i s p r o b l e m . We bel ieve, however, t h a t the 
G a l g o r i t h m shou ld be d i rec t l y app l icab le to the o u t p u t 
genera l iza t ion p r o b l e m . T h a t is, the sys tem could keep 
t rack o f the effect o f i n d i v i d u a l o u t p u t b i ts on reinforce­
men t received in pa r t i cu l a r i n p u t b locks, and cons t ruc t 
a tree o f o u t p u t b i t relevance analogous to the i n p u t b i t 
relevance t ree. We have no t i m p l e m e n t e d th is , however. 

3 Stat is t ics 

3 .1 D i s c r e t e r e i n f o r c e m e n t : D s t a t i s t i c s 

We found the s t anda rd Q techn ique insuf f ic ien t ly sen­
s i t i ve in the A m a z o n d o m a i n . T h e p rob lem is t h a t Q 
s imp ly sums a l l the re in fo rcement i t gets, w i t h o u t dis­
t i n g u i s h i n g between d i f ferent re in fo rcement values. For 
examp le , i f t he sys tem is ac t i ng at r a n d o m , as i t does 
i n i t i a l l y , i t w i l l t yp i ca l l y have to shoot of f many pro­
ject i les before k i l l i n g a ghost . As the value of k i l l i n g a 
ghost is on ly 10 and the cost of shoo t i ng is — . 1 , the 10 
can get lost when s u m m e d w i t h enough —. Is . To solve 
th is p r o b l e m , we ex tended Q to make more d is t i nc t ions . 
Speci f ica l ly , we ef fect ively added a t h i r d d imens ion to 
Q(i, a ) , keep ing t rack o f D ( z , a , r ) , the d iscounted f u tu re 
p r o b a b i l i t y of rece iv ing re in forcement r af ter pe r f o rm ing 
ac t ion a g iven i n p u t i: 

T h i s ex tens ion separates o u t the var ious possible rein-
for cement values and so gives be t te r s ta t i s t i ca l i n fo rma­
t i o n . T h e Q values can be recovered w i t h the i den t i t y 

where R is the space of re in fo rcements . T h i s extens ion to 
Q- lea rn ing is possible on ly when t he re in fo rcement g iven 
is d iscrete and takes on on ly a re la t i ve l y sma l l number 
o f values ( t hough i t m i g h t be possible to use buckets to 
app l y i t i n cases o f con t i nuous ly v a r y i n g re in fo rcemen t ) . 

I t ' s no t su rp r i s i ng t h a t D - lea rn ing works be t te r than 
Q- lea rn ing ; i t is super ior for the same reason t h a t Q-
lea rn ing is b e t t e r t h a n the adap t i ve heur is t ic c r i t i c : i t 
keeps t r ack o f more d i s t i nc t i ons . T h e logical nex t step in 
th i s progression w o u l d be to keep t rack o f i n p u t - a c t i o n -
i n p u t t r i p les , as ( for ins tance) Drescher [1991] has done. 
T h i s raises quest ions o f comb ina to r i a l feas ib i l i ty , how­
ever. 

3 Utgo f f ' s [1988] ID5 algor i thm works incrementally, but a 
single instance can require a large amount of work if it causes 
a node to be "pul led up " in the tree. 
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3.2 T h e b i t re levance tes t 
C uses a standard statistical test, the Student's t test 
[Snedecor, 1989], to determine when a bit is relevant. 
The t test tells you, given two sets of data, how probable 
it is that distinct distributions gave rise to them. That 
is, how likely is it that these two sets of data arose from 
the same underlying process? This is just what we need 
in order to determine whether an input bit is relevant: is 
the learner/environment interaction the same when the 
bit is on versus off, or is it different? 

Two sorts of relevance statistics are kept: a bit may be 
relevant because it affects the value of a state or because 
it affects the way the system should act in that state. 
Two sorts of statistics are used to determine value, cor­
responding to the mean immediate value of the state 
and its mean discounted future value. Both sorts are 
required; immediate value is used to "bootstrap" the 
process by recognizing the states that themselves give 
large reinforcements (e. g. those in which a projectile is 
f lying toward the ghost) and discounted value is used 
to find states that lie on a path toward externally rein­
forced states (such as those in which the ghost and the 
arnazon are aligned). For each bit in each state block, 
G keeps track of the immediate and discounted values of 
the state block subdivided by the bit being on and off, 
and compares these values with the t test. 

A bit may also be relevant because it affects how the 
agent should act; for example the input bits indicating 
the direction to the ghost do not affect the values of 
states, but they do determine which direction the player 
should head in. To discover such relevance, G keeps 
track, for each action in each state block, of the dis­
counted value of taking the action in that state block 
when the bit is on versus when it is off, and compares 
these values wi th the t test. 
- When a bit is shown to be relevant in a block, that 
block is split on the bi t . When a block is split, all 
discounted statistics (both action value and relevance) 
must be zeroed. The reason is that a state block whose 
mean value is low may have a subblock whose value is 
high. Before the split is made, this high-valued subblock 
is effectively invisible, and the estimated values of all 
states that can transit ion to that subblock wil l be too 
low. Throwing away all experience accumulated thus far 
on each split seems too drastic. We are exploring ways 
of avoiding this, and expect that they wil l substantially 
increase the learning rate. 

3.3 E n f o r c i n g n o r m a l i t y 
Unfortunately, the t test depends on the assumption that 
items sampled are distr ibuted normally. Most statistical 
techniques make such assumptions.4 The normality as­
sumption is violated by Amazon, because the interesting 
reinforcement value (for ki l l ing a ghost) occurs so rarely. 
We found, as a result, that the test as specified in the last 
section often made incorrect judgements of relevance. 

Normal statistics are frequently used to examine non-
normal data, and this is often successful due to the cen-

4An alternative is to use nonparametric statistics, which 
are unwieldy and seemed inappropriate to this domain (for 
reasons too complex to go into here). 

Figure 2: Noise bits that change slowly relative to esti-
mated state values look relevant. 

tral limit theorem which states that the sum of a set of 
values from an arbitrary distr ibution wil l approach nor­
mality as the number of samples increases. We were able 
to eliminate most incorrect relevance judgements by de-
laying spl i t t ing unti l enough samples had been collected 
for their distr ibution to approach normality. This fix de­
pends on a numerical threshold whose values may vary 
according to the domain. A better-motivated alterna­
tive would be to use statistical tests of normality (such 
as skew and kurtosis [Snedecor, 1989]) to decide whether 
enough samples have been collected to trust the data. 

3.4 L o w f requency noise 

The techniques described in the previous sections were 
mostly sufficient in practice to ensure that the system did 
not split on irrelevant bits. An additional problem arose 
in some cases, however: while bits that changed rapidly 
presented no problems, irrelevant slowly-changing bits 
continued to pass the / test. Figure 2 illustrates the rea­
son. If an input bit changes slowly relative to changes 
in estimated state values, the statistics collected to de-
termine the discounted value of a subspace are skewed. 
In the figure, the estimated value of the state starts low 
and converges to a higher value. Ini t ia l ly the bit B69 is 
low, and later goes high. As a result, it wil l appear that 
B69 being on makes this subspace more valuable and the 
system wil l split. 

The solution to this problem is to separate learning 
into action value and bit relevance phases. Estimated 
Q values are held constant while bit relevance statistics 
are collected. The system switches phases when values 
seem to have settled down, based on information about 
the derivatives of the statistical measures. 

4 Per fo rmance compar isons 

Relevance-splitting in G has performed well in our prob­
lem domain. We have run it for well over a mil l ion ticks 
wi th ten bits of noise given in addition to the standard 
inputs; it never split on any of these noise bits. On the 
other hand, on several runs on each of several variations 
of the problem G has always split on all the bits that arc 
relevant. Having done so, it has always learned the op­
t imal policy for the domain. The total learning time for 
the simplest version of the problem runs around 35,000 
ticks. 

The system learns many times slower than Q on prob­
lems wi th few inputs bits, because it has to find the right 
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splits before learning a policy. However, we have success­
fully run G on problems with th i r ty input bits, for which 
Q could not allocate memory to store its table, much less 
accumulate the billions of ticks of experience neccessary 
to fill it out. 

Several other methods have been applied to input gen­
eralization for reinforcement learning. Watkins [1989] 
used the C M A C algorithm. Mahadevan and Connell 
[1990], working simultaneously wi th and independent 
of us, developed a statistical clustering method that is 
neatly dual to G. Rather than start ing from a single 
merged state and spl i t t ing i t , they start wi th fully dif­
ferentiated inputs and merge them when they are found 
to behave similarly. We hope to compare G wi th C M A C 
and wi th this clustering technique in future work. 

Anderson [1987] and Lin [1990] have successfully com­
bined TD methods wi th connectionist backpropaga­
t ion, which can generalize given a large number of in­
put bits. Others [Chapman, 1991; Kaelbling, 1991; 
Shepanski and Macy, 1987] have attempted the combi­
nation and reported negative results; the combination of 
TD and backpropagation sometimes learns very slowly 
and converges to poor action choices. It is hard to re­
solve the discrepancy analytically because backpropaga­
tion is ill-characterized; it is impossible to know how the 
algorithm wil l perform when presented with a complex 
problem because it often converges to bad local minima. 

To better understand backpropagation's success, we 
examined more closely Lin's domain, a video game in 
which a player collects food and avoids obstacles and 
enemies. It occured to us that potential field navigation, 
in which the direction of motion depends on a vector 
sum of attractive and repulsive forces, might be an ad­
equate strategy for this domain, and furthermore that 
such a strategy would arise from a Q(i,a) function that 
is linear in Lin's retinotopic input representation. If this 
is the case, the good performance of backpropagation 
would not be surprising; by the perceptron convergence 
theorem, there should be no local minima to fall into. 

We tested this hypothesis by using a linear associator 
in place of backpropagation. Figure 3 demonstrates that 
the linear learner does as well as backpropagation. This 
suggests that this domain is unexpectedly easy, and that 
the success of backpropagation should not necessarily be 
expected to transfer to other domains in which the Q 
function is nonlinear. 

G would not work in this domain wi th the retinotopic 
input encoding because each of the 145 input bits is rel­
evant in every situation. G would t ry to split on all of 
them and would soon generate too large a tree. How­
ever, as we have argued elsewhere [Chapman, 1991], the 
inputs to mammalian policy learning systems are almost 
certainly not retinotopic, and we should not try to opt i ­
mize our learning systems for such inputs. We hypoth­
esize that "intermediate" visual inputs should be easier 
to learn from than retinotopic ones. 

The G algori thm is a more direct approach to the gen­
eralization problem than is backpropagation. It is math­
ematically well-characterized due to a sound statistical 
basis, and it is therefore easier to determine when and 
why it should or should not work. Given the difficulty in 

Figure 3: Typical learning curves for Q plus backprop-
agation (solid) and linear associator (dotted) in Lin's 
video game domain. The horizontal axis is games played 
and the vertical axis is the average number of pieces of 
food collected. 

predicting the performance of Q plus backpropagation, 
a fair empirical comparison of the two methods would 
require tests on a spectrum of domains. 

We tested Q plus backpropagation on the simplest 
Amazon problem wi th the same input representation 
used wi th G. Backpropagation has numerical parame­
ters that must be tuned for a domain: the learning rate 
and the number of hidden units. We carried out sev­
eral dozen runs wi th a wide variety of combinations of 
settings of these parameters. We checked every thou­
sand ticks to see if the system had yet found the op­
t imal policy; the average run length was about 70,000 
ticks (twice the time required by (*), and some were as 
long as 210,000 ticks. Backpropagation never found the 
optimal policy. It is possible, though, that some other 
combination of parameter settings, or longer runs, would 
eventually find the solution. Also, our backpropagation 
engine does not implement momentum, so this parame­
ter was effectively zero in all runs. 

The input generalization problem is one of the most 
important in attempting to apply temporal difference 
learning to complex domains. Further analytic study 
and more detailed empirical testing, involving a spec­
t rum of domains, is needed. 
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