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Abstract

Delayed reinforcement learning is an attrac-
tive framework for the unsupervised learning
of action policies for autonomous agents. Some
existing delayed reinforcement learning tech-
niques have shown promise in simple domains.
However, a number of hurdles must be passed
before they are applicable to realistic problems.
This paper describes one such difficulty, the in-
put generalization problem (whereby the system
must generalize to produce similar actions in
similar situations) and an implemented solu-
tion, the G algorithm. This algorithm is based
on recursive splitting of the state space based
on statistical measures of differences in rein-
forcements received. Connectionist backpropa-
gation has previously been used for input gen-
eralization in reinforcement learning. We com-
pare the two techniques analytically and empir-
ically. The G algorithm's sound statistical ba-
sis makes it easy to predict when it should and
should not work, whereas the behavior of back-
propagation is unpredictable. We found that a
previous successful use of backpropagation can
be explained by the linearity of the application
domain. We found that in another domain, G
reliably found the optimal policy, whereas none
of a set of runs of backpropagation with many
combinations of parameters did.

1 Background

Delayed reinforcement learning is a framework for learn-
ing, without supervision, to act in an environment [Sut-
ton, 1988]. In this framework, an agent is given on each
tick, in addition to "perceptual" inputs, a numerical re-
inforcement, which is a measure of the immediate value
of the state corresponding to the inputs. The goal of
the agent is to choose actions to maximize the sum of
reinforcement over time.'

*This work was supported by the Defense Advance Re-
search Projects Agency under NASA contract NAS2-13229.

'Or, more accurately, to maximize a future-discounted
sum of reinforcement, as we will explain.
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Delayed reinforcement learning is attractive due to its
similarity to the problem faced by a person or other crea-
ture placed in unfamiliar surroundings and expected to
act intelligently. Such problems are of increasing theo-
retical and practical interest due to recent progress in
the construction of autonomous agents such as mobile
robots. Though such systems have achieved new levels of
performance, they generally depend on elaborate hand-
coded policies in computing how to act. When the envi-
ronment for which they were designed is changed slightly,
they may fail gracelessly; they are unable to adapt to
new environments; and the process of hand-coding poli-
cies they require is slow and error-prone. Agents whose
action policies are developed autonomously from a re-
inforcement signal might transcend all these problems
[Chapman, 1991, Appendix B].

The bulk of experience with delayed reinforcement
learning methods has been in simple domains that do
not stretch their capabilities. The work described in
this paper began by applying existing techniques to a
more difficult task domain. This domain raised techni-
cal problems that our work here addresses.

1.1 Temporal difference learning

The best-understood approach to delayed reinforcement
learning is temporal difference (TD) learning, codi-
fied by Sutton and his colleagues [Barto et al., 1989a;
Sutton, 1988]. Two forms of TD learning have been
studied in detail, the adaptive heuristic critic of Sutton
[1988] and Q-learning, due to Watkins [1989]. Several
authors have compared these methods empirically and
found Q-learning superior [Kaelbling, 1991; Lin, 1990;
Sutton, 1990], so we adopted Q-learning as our starting
point.

Q-learning is based on estimating the values of Q(i, a),
which is the expected future discounted reinforcement for
taking action a in input state i and continuing with the
optimal policy. The discounted reinforcement is the sum
of all future reinforcement weighted by how close they
are; specifically
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where t is the present time, 0 < v < 1 is a discount fac-
tor close to one, and rft) is the reinforcement received



at time . Thus the Q values say how good an action is
not only in terms of immediate reinforcement, but also
in terms of whether it gets the agent closer to future
reinforcement; so in effect they allow the learner to dy-
namically create subgoals based on reinforcement that
may be far in the future. Given Q values, we can also
compute the value of a state as the value of the best
action in that state:

U(i) = maxQ(i,a).

The learning algorithm works by creating a two-dimen-
sional table of Q values indexed by actions and inputs
and then adjusting the values in the table based on ac-
tions taken and reinforcement received. This process
is based on the observation that Q of the current (in-
put,action) pair can be computed based on the imme-
diate reinforcement received and the value of the next
input:
QUi(1), a(t)) = r(t) + v U(i(t + 1)).

For further details, see [Kaelbling, 1991; Watkins, 1989].

1.2 The domain

The domain used in this research was the videogame
Amazon, previously used in the system Sonja [Chapman,
1991]. More accurately, we studied an apparently simple
subproblem from this domain, which turned out to be
unexpectedly difficult.

In Amazon, the player controls an "amazon" icon
which is attacked by ghosts. On each tick, the player
can move the amazon one pixel in any of the eight
"king's move" directions. Since the amazon is fifty pixels
high, the player has very fine-grained control over mo-
tion. (The otherwise similar videogame domains used by
other researchers have coarse motion control, in which
the player icon moves its entire width in a single tick.
We'll see that this difference matters.) Ghosts similarly
move a single pixel on each tick. The player can cause
the amazon to shoot a projectile in the amazon's direc-
tion of motion. Projectiles move in a straight line, four
pixels per tick; if they collide with a ghost, the ghost
dies. Thus, the amazon must be aligned with a ghost
in one of the king's move directions to kill it. The rein-
forcement given is 10 when a ghost dies, otherwise —.1
if a shot is taken, otherwise 0.

The subproblem from Amazon we studied generates
a ghost at a random distance and orientation from the
amazon, waits for the amazon to kill it, and then repeats.
We experimented with various forms of perception, some
described in [Chapman and Kaelbling, 1990], all deliver-
ing a relatively small number of input bits.

This domain is difficult for several reasons. First, some
states are rare, and it is hard to gain enough experience
with them to find the optimal policy. Second, ghosts are
programmed to avoid alignment with the amazon. When
the amazon and the ghost are unaligned, there are lim-
ited opportunities for the system to learn. In particular,
the system is not (locally) reinforced for actions that
lead to killing the ghost, because it is impossible to kill
the ghost while unaligned. Under a random strategy,
the amazon and ghost will typically stay unaligned for
stretches of several hundred ticks punctuated by brief

periods of alignment terminated by ghost death. Thus
most experience is of very limited value, and the inter-
esting reinforcements (ghost deaths) occur infrequently.
Third, there is a great variance in the value of states that
the limited perception does not make available. How
nearly aligned the ghost is and how close it is to the
amazon determine how long it will be before it is possi-
ble to kill it. If the system gets a series of "easy" ghosts
in a row it can readily come to wrong conclusions about
a state value. This means that the learning rate must
be sufficiently low to even such differences out; but that
makes learning slow.

A fourth difficulty in this domain lead directly to the
G algorithm. We hoped to use Sonja's visual system
as an input representation for Q-learning, and that the
learner could come to control this active visual system in
which the computations performed are chosen top-down.
Progress along these lines has been reported by White-
head and Ballard [1990]. However, this visual system
provides more than a hundred bits of input, correspond-
ing to more than 2'°° distinct inputs. This is a problem
for two reasons, space and time. One simply cannot al-
locate an array one of whose dimensions is 2'°°. Even if
you could, it would divide the state space up into tiny
pieces, each of which would occur extremely rarely, so
the system could never accumulate enough experience
to gauge the value of most states. Somehow a learning
algorithm must guess about the value of states based
on experience with similar states. But how can it know
which states are similar when it has no experience with
them?

2 The G algorithm

The G algorithm addresses this problem of input, gen-
eralization in a Q-learning framework.? Although gen-
eralization over inputs is a large field of study in ma-
chine learning, delayed reinforcement learning puts spe-
cial constraints on the problem that make most general
techniques inapplicable.

We can motivate the G algorithm in two ways. The
first is to see it as collapsing the exponential sized Q ta-
ble engendered by large numbers of input bits. In most
domains, large chunks of the table should have identi-
cal entries, because many of the bits will be irrelevant
to acting under certain circumstances. If we can figure
out which bits are irrelevant, we can summarize a large
region of the state space with only one Q value, thereby
saving both space (to store the values) and time (since
experience with any state in the region can be used to
update the single Q value).

Another way of looking at the algorithm is as a tech-
nique for incrementally constructing the sort of action
selection networks that have recently been used in vari-
ous situated machine agents [Beer, 1990; Brooks, 1989;
Chapman, 1991; Connell, 1990; Kaelbling and Rosen-
schein, 1990]. These networks are digital circuits that
compute what to do based on perceptual inputs. The cir-
cuits are kept shallow in order to compute quickly when

2For further discussion of the algorithm, see [Chapman
and Kaelbling, 1990].
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Figure 1: A G tree. Internal nodes correspond to in-
put bit splits; the algorithm collects statistics about the
subspaces represented by the leaf nodes.

implemented on slow, massively parallel hardware. Typ-
ically they maintain little or no state. Because the net-
works are shallow, they have the property that although
every input bit is used in computing how to act, in most
situations most bits are ignored. For example, Sonja
searches for the amazon whenever the visual system re-
ports losing track of it; all other inputs are irrelevant in
this case.

The G algorithm incrementally builds a tree-structur-
ed Q table. It begins by supposing that all input bits are
irrelevant, thereby collapsing the entire table into a sin-
gle block. It collects Q values within this block. G also
collects statistical evidence for the relevance of individ-
ual bits. When it discovers that a bit is relevant, it splits
the state space into the two subspaces corresponding to
the relevant bit being on and off. Then it collects statis-
tics (action and relevance) within each of those blocks.
These blocks can in turn be split, giving rise to a tree-
structured Q table (figure 1). The system acts on the
basis of the Q statistics in the leaf node corresponding
to an input. Thus the tree acts as a boolean input classi-
fication network, essentially similar to the sorts of action
networks described above.

The incremental, one-bit-at-a-time construction of the
G tree puts a constraint on the sorts of environments
that G can learn in: the relevance of bits must be ap-
parent in isolation. The algorithm will fail if groups of
bits are collectively relevant but individually irrelevant.
If we consider the perceptual system of an agent to be
part of the "environment" of its learning system, as we
must, then this constraint can be placed on that system
rather than the world. In other words, we hypothesize
that a well-designed perceptual system  orthogonahzes in-
puts such that they are individually relevant.

The G splitting technique is related to existing algo-
rithms, such as ID3 [Quinlan, 1986] and CART [Breiman
et a/., 1984], for inducing decision trees. The crucial dif-
ference is that the decision-tree algorithms are presented
with input/output pairs rather than reinforcement data;
for this reason, the statistical tests used to make splits
must be different. Also, our work has emphasized mak-
ing incremental decisions with a fixed amount of com-
putation per tick rather than learning the shallowest or
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smallest tree.®

The G algorithm applies to input generalization. A
similar problem arises on the output side: if the number
of actions is very large, the learner can not hope to try
each in every state. For example, Sonja's visual system
has several dozen control bits that, the action policy must
set on every tick. Kaelbling [1991] has described an ap-
proach to this problem. We believe, however, that the
G algorithm should be directly applicable to the output
generalization problem. That is, the system could keep
track of the effect of individual output bits on reinforce-
ment received in particular input blocks, and construct
a tree of output bit relevance analogous to the input bit
relevance tree. We have not implemented this, however.

3 Statistics

3.1 Discrete reinforcement: D statistics

We found the standard Q technique insufficiently sen-
sitive in the Amazon domain. The problem is that Q
simply sums all the reinforcement it gets, without dis-
tinguishing between different reinforcement values. For
example, if the system is acting at random, as it does
initially, it will typically have to shoot off many pro-
jectiles before killing a ghost. As the value of killing a
ghost is only 10 and the cost of shooting is — .1, the 10
can get lost when summed with enough —.Is. To solve
this problem, we extended Q to make more distinctions.
Specifically, we effectively added a third dimension to
Q(i, a), keeping track of D(z,a,r), the discounted future
probability of receiving reinforcement r after performing
action a given input i:

D(i(),a(t),r) = 3y p(r(t+ k) = 7).

k=n

This extension separates out the various possible rein-
for cement values and so gives better statistical informa-
tion. The Q values can be recovered with the identity

Q(i,a) = Z r (i, a,r)

relft

where R is the space of reinforcements. This extension to
Q-learning is possible only when the reinforcement given
is discrete and takes on only a relatively small number
of values (though it might be possible to use buckets to
apply it in cases of continuously varying reinforcement).

It's not surprising that D-learning works better than
Q-learning; it is superior for the same reason that Q-
learning is better than the adaptive heuristic critic: it
keeps track of more distinctions. The logical next step in
this progression would be to keep track of input-action-
input triples, as (for instance) Drescher [1991] has done.
This raises questions of combinatorial feasibility, how-
ever.

3Utgoff's [1988] ID5 algorithm works incrementally, but a
single instance can require a large amount of work if it causes
a node to be "pulled up" in the tree.



3.2 The bit relevance test

C uses a standard statistical test, the Student's t test
[Snedecor, 1989], to determine when a bit is relevant.
The t test tells you, given two sets of data, how probable
it is that distinct distributions gave rise to them. That
is, how likely is it that these two sets of data arose from
the same underlying process? This is just what we need
in order to determine whether an input bit is relevant: is
the learner/environment interaction the same when the
bit is on versus off, or is it different?

Two sorts of relevance statistics are kept: a bit may be
relevant because it affects the value of a state or because
it affects the way the system should act in that state.
Two sorts of statistics are used to determine value, cor-
responding to the mean immediate value of the state
and its mean discounted future value. Both sorts are
required; immediate value is used to "bootstrap" the
process by recognizing the states that themselves give
large reinforcements (e. g. those in which a projectile is
flying toward the ghost) and discounted value is used
to find states that lie on a path toward externally rein-
forced states (such as those in which the ghost and the
arnazon are aligned). For each bit in each state block,
G keeps track of the immediate and discounted values of
the state block subdivided by the bit being on and off,
and compares these values with the t test.

A bit may also be relevant because it affects how the

agent should act; for example the input bits indicating
the direction to the ghost do not affect the values of
states, but they do determine which direction the player
should head in. To discover such relevance, G keeps
track, for each action in each state block, of the dis-
counted value of taking the action in that state block
when the bit is on versus when it is off, and compares
these values with the f test.
- When a bit is shown to be relevant in a block, that
block is split on the bit. When a block is split, all
discounted statistics (both action value and relevance)
must be zeroed. The reason is that a state block whose
mean value is low may have a subblock whose value is
high. Before the split is made, this high-valued subblock
is effectively invisible, and the estimated values of all
states that can transition to that subblock will be too
low. Throwing away all experience accumulated thus far
on each split seems too drastic. We are exploring ways
of avoiding this, and expect that they will substantially
increase the learning rate.

3.3 Enforcing normality

Unfortunately, the t test depends on the assumption that
items sampled are distributed normally. Most statistical
techniques make such assumptions.4 The normality as-
sumption is violated by Amazon, because the interesting
reinforcement value (for killing a ghost) occurs so rarely.
We found, as a result, that the test as specified in the last
section often made incorrect judgements of relevance.
Normal statistics are frequently used to examine non-
normal data, and this is often successful due to the cen-

“An alternative is to use nonparametric statistics, which
are unwieldy and seemed inappropriate to this domain (for
reasons too complex to go into here).
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Figure 2: Noise bits that change slowly relative to esti-
mated state values look relevant.

=3 lime -

tral limit theorem which states that the sum of a set of
values from an arbitrary distribution will approach nor-
mality as the number of samples increases. We were able
to eliminate most incorrect relevance judgements by de-
laying splitting until enough samples had been collected
for their distribution to approach normality. This fix de-
pends on a numerical threshold whose values may vary
according to the domain. A better-motivated alterna-
tive would be to use statistical tests of normality (such
as skew and kurtosis [Snedecor, 1989]) to decide whether
enough samples have been collected to trust the data.

3.4 Low frequency noise

The techniques described in the previous sections were
mostly sufficient in practice to ensure that the system did
not split on irrelevant bits. An additional problem arose
in some cases, however: while bits that changed rapidly
presented no problems, irrelevant slowly-changing bits
continued to pass the / test. Figure 2 illustrates the rea-
son. If an input bit changes slowly relative to changes
in estimated state values, the statistics collected to de-
termine the discounted value of a subspace are skewed.
In the figure, the estimated value of the state starts low
and converges to a higher value. Initially the bit B69 is
low, and later goes high. As a result, it will appear that
B69 being on makes this subspace more valuable and the
system will split.

The solution to this problem is to separate learning
into action value and bit relevance phases. Estimated
Q values are held constant while bit relevance statistics
are collected. The system switches phases when values
seem to have settled down, based on information about
the derivatives of the statistical measures.

4 Performance comparisons

Relevance-splitting in G has performed well in our prob-
lem domain. We have run it for well over a million ticks
with ten bits of noise given in addition to the standard
inputs; it never split on any of these noise bits. On the
other hand, on several runs on each of several variations
of the problem G has always split on all the bits that arc
relevant. Having done so, it has always learned the op-
timal policy for the domain. The total learning time for
the simplest version of the problem runs around 35,000
ticks.

The system learns many times slower than Q on prob-
lems with few inputs bits, because it has to find the right
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splits before learning a policy. However, we have success-
fully run G on problems with thirty input bits, for which
Q could not allocate memory to store its table, much less
accumulate the billions of ticks of experience neccessary
to fill it out.

Several other methods have been applied to input gen-
eralization for reinforcement learning. Watkins [1989]
used the CMAC algorithm. Mahadevan and Connell
[1990], working simultaneously with and independent
of us, developed a statistical clustering method that is
neatly dual to G. Rather than starting from a single
merged state and splitting it, they start with fully dif-
ferentiated inputs and merge them when they are found
to behave similarly. We hope to compare G with CMAC
and with this clustering technique in future work.

Anderson [1987] and Lin [1990] have successfully com-
bined TD methods with connectionist backpropaga-
tion, which can generalize given a large number of in-
put bits. Others [Chapman, 1991; Kaelbling, 1991;
Shepanski and Macy, 1987] have attempted the combi-
nation and reported negative results; the combination of
TD and backpropagation sometimes learns very slowly
and converges to poor action choices. It is hard to re-
solve the discrepancy analytically because backpropaga-
tion is ill-characterized; it is impossible to know how the
algorithm will perform when presented with a complex
problem because it often converges to bad local minima.

To better understand backpropagation's success, we
examined more closely Lin's domain, a video game in
which a player collects food and avoids obstacles and
enemies. It occured to us that potential field navigation,
in which the direction of motion depends on a vector
sum of attractive and repulsive forces, might be an ad-
equate strategy for this domain, and furthermore that
such a strategy would arise from a Q(i,a) function that
is linear in Lin's retinotopic input representation. If this
is the case, the good performance of backpropagation
would not be surprising; by the perceptron convergence
theorem, there should be no local minima to fall into.

We tested this hypothesis by using a linear associator
in place of backpropagation. Figure 3 demonstrates that
the linear learner does as well as backpropagation. This
suggests that this domain is unexpectedly easy, and that
the success of backpropagation should not necessarily be
expected to transfer to other domains in which the Q
function is nonlinear.

G would not work in this domain with the retinotopic
input encoding because each of the 145 input bits is rel-
evant in every situation. G would try to split on all of
them and would soon generate too large a tree. How-
ever, as we have argued elsewhere [Chapman, 1991], the
inputs to mammalian policy learning systems are almost
certainly not retinotopic, and we should not try to opti-
mize our learning systems for such inputs. We hypoth-
esize that "intermediate" visual inputs should be easier
to learn from than retinotopic ones.

The G algorithm is a more direct approach to the gen-
eralization problem than is backpropagation. It is math-
ematically well-characterized due to a sound statistical
basis, and it is therefore easier to determine when and
why it should or should not work. Given the difficulty in
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Figure 3: Typical learning curves for Q plus backprop-
agation (solid) and linear associator (dotted) in Lin's
video game domain. The horizontal axis is games played
and the vertical axis is the average number of pieces of
food collected.

predicting the performance of Q plus backpropagation,
a fair empirical comparison of the two methods would
require tests on a spectrum of domains.

We tested Q plus backpropagation on the simplest
Amazon problem with the same input representation
used with G. Backpropagation has numerical parame-
ters that must be tuned for a domain: the learning rate
and the number of hidden units. We carried out sev-
eral dozen runs with a wide variety of combinations of
settings of these parameters. We checked every thou-
sand ticks to see if the system had yet found the op-
timal policy; the average run length was about 70,000
ticks (twice the time required by (*), and some were as
long as 210,000 ticks. Backpropagation never found the
optimal policy. It is possible, though, that some other
combination of parameter settings, or longer runs, would
eventually find the solution. Also, our backpropagation
engine does not implement momentum, so this parame-
ter was effectively zero in all runs.

The input generalization problem is one of the most
important in attempting to apply temporal difference
learning to complex domains. Further analytic study
and more detailed empirical testing, involving a spec-
trum of domains, is needed.
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