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Abstract

This paper introduces the logical basis for mod-
elling the phenomenon of reasoning in the pres-
ence of contradiction, by identifying this prob-
lem with the notion of change of context. We
give here the basic definitions of a new seman-
tics, which works by interpreting one logic into
a family of logics via translations, which we call
semantics of translations. As a particular ap-
plication we show that a simple logic support-
Ing contradictions can be constructed translat-
Ing classical logic into three-valued logics. This
translation semantics offers a new interpreta-
tion to certain paraconsistent logics which al-
lows the application of them to automated rea-
soning and knowledge representation.

1 Introduction

In some previous work we have defended the idea that
any system which tries to formalise reasoning should be
able to treat the question of contradiction (cf. [Carnielli
and Lima Marques, 1990] and [Carnielli, 1990]).

A similar point has been raised (more or less indepen-
dently) by several authors, and some solutions involving
simple many-valued logics and non-monotonic logics, for
example, have already been proposed.

Such solutions, however, fail to consider the difference
between Jlocal (or contextual) inconsistencies, and global
Inconsistencies.

This is an important point, first because this distinc-
tion is apparently very familiar to real reasoners, and
second because by failing to consider these points the
existing solutions try to reestablish consistency as soon
as contradictions appear, and are thus obliged to main-
tain a costly and cumbersome process of revision.

It is then very natural to consider the possibility of
approaching this problem by means of some logic which
can support local inconsistencies.

In modal logics, for instance, simultaneous utterances
of A is possible and -A s possible are perfectly accept-

"Supported by the Alexander von Humboldt Foundation
(FRG) and CNPq (BrasU).

' Supported by BRA: (MEDLAR),
Supported by CAPES (BrasU) and BRA: (MEDLAR).

532 Knowledge Representation

Luis FARINAS del CERRO'

Univenit* Paud Sabatier-IRIT
116, Route de Narbonne
31062 Toulouse -

farina*®© iritfr

Mamede LIMA MARQUES *

Universit* Paul Sabatier-IRIT
118, Route de Narbonne
31062 Toulouse -

mamedeOirit.fr

France France

able, if we understand possibility as a contextual notion:
in this case we are just not referring to the same world.

We want to propose that frueness in certain cases can
be interpreted in a similar way: so if our theory has
to analyse A is true and -A s true and the theory is
sufficiently prepared, it may regard that discrepancy as
an intrinsic difference of context between the two as-
sertions, thus avoiding collapsing and at the same time
gaining more information while recognising that differ-
ence of context.

The objectives of this paper are:

L To propose a new definition of semantics of transla-
tions, in order to give a formal approach to the prob-
lem of characterizing the notion of distinct contexts
or situations that affect the truth of a sentence, and

2. In particular, to illustrate how semantics of this sort
can be obtained for a certain logic which supports
contradictions in the process of reasoning.

In the particular application, we will be using as
underlying logics certain three-valued logics (see, e.g.
[Ginsberg, 1988], and [Delahaye and Thibau, 1988] for
related uses of many-valued logics).

The method introduced here is general, and can be
used for instance in connection to other logics (many-
valued or not). The restriction to three-valued logics,
however, is interesting because of the connection with
paraconsistent logic.

Paraconsistent logic, in particular the propositional
systems Cn (1 <n <uw) and Cw and their first-order
counterparts make it possible to separate inconsistency
from triviality in formal systems. The importance of
this point in terms of reasoning strategy is discussed in
[Carnielli and Lima Marques, 1990].

Although all such paraconsistent systems are known
to be sound and complete with respect to semantics
of two-valued functions (see e.g. [da Costa, 1974] and
[Alves, 1984]) some non-intuitive aspects of those se-
mantics have prevented their applications in automated
reasoning.

We show how to obtain a new semantic interpretation
for paraconsistent logics in such a way that negation in
those logics could be seen as a kind of contextual nega-
tion-

In this way, as we argue, it is possible to obtain a
logical framework which gives a quite natural account of
the idea of reasoning under contradiction.



2 'Translation Semantics

The idea of translation semantics and its applications
was introduced in elsewhere (cf. [Carnielli, 1990]). In
this section we give a more general treatment to this
notion, refining the appropriate concepts.

Let L be a logic whose language L£(L) has connec-
tives (V,A,—, ) and quantifiers (V,3). Let also M be
another logic whose language £{M) contains sets of cor-

responding connectives and quantifiers, that is, L{M)
contalns sets

SV - ‘{vlr“wvﬂl} Sp, - {All '”1Aﬂ:}
S-—q— - {'""'11"': "'"'n:-.} S — {—lli""—l"i
Sy = {Vl, ...,Vna} S3 = {311 -":3";}

We suppose that £(M) and L£{I) contain all the fa-
miliar logical symbols and that all the usual syntactic
defimtions hold for them. A situation such as that oc-

curs naturally when M 1s a many-valued logic, for exam-
ple, where several connectives can be defined. It is usual
to classify them as conjunctions, disjunctions, etc., and
we use this classification here, assuming only that the
sets &y (where # is in {V,A, -, —,3,¥}) are non-empty
if the corresponding {V,A,=,—, 3,V¥} are present in L.
Of course each connective and quantifier can be seen as
a distinct logical symbol.

We define a translafion from I to M as a function
T : L(L)— L(M) such that:

1. T(p) 18 a wif of L{M), for p an atomic wif of L(L)
2. T(-A) = —i, T(A) for some t;

3. T(AV B) = T(A) Vi, T(B) for some 1,

4. T(A A B)Y=T(A) A, T(B) for some 13

5. T(A — B) = T(A) —;, T(B) for some 14

6. T(VzA) =V,;,T(A) for some iy
7. T(dzA) = 3;, T(A) for some 1¢

satisfying the following properties:
Ak A T(A) Ew T(A)

where T(A) = {T(X): X € A} and L, |Fm denote
the respective satisfiability relations in L and M.

The indices #; to g above are fixed in advances or can
vary according to prescribed conditions.

For example, the well-known Gentzen translation from

classical propositional calculus (PC) to intuitionistic
logic (INT) is given by:

T . L(PC) v+ L(INT)

where
T(p) =—p
T(~4) = ~(T(4)
T(A— B)=T(A) - T(B)
T(AAB)=T(A)AT(B)
T(AV B) = ~(~T(A)A-T(B))

In this case there are no quantifiers, and the sets 5; in

INT are all singletons (consequently, the indices ¢; to ig
are all fixed).

It is clear that our definition includes many distinct
translations depending upon the cardinalities of S\.

Other properties and examples of translations are
given in [Epstein, 1990].

The cases when M is a many-valued logic are of es-
pecial interest because those logics have semantics de-
scribed by simple algebraic conditions (through logic ma-
trices).

We shall concentrate on the particular case of three-
valued logics, showing that there exists a semantics of
translations between the paraconsistent calculus C1 and
the three-valued logic LCD containing two negations
(all other connectives and quantifiers appearing just one
time). In order to render the analysis more intuitive, we
tan consider two different logics, LD and CD, instead of
one single logic LCD containing two negations.

3 Three-valued Logics, Continous and
Local Default

Let us consider a fixed language L containing the follow-

ing symbols (as the usual language for first-order theo-
ries):

(a) primitive connectives: = (negation), V (disjunc-
tion), A (conjunction), — (implication),

(b) quantifiers: ¥ (universal), 3 (existential)

(c) a denumerable stock of variables, constants, func-
tions symbols and predicate symbols.

We denote the collection of all well-formed formulas
by Wi{f and a well-formed formula by wff.

All the usual syntactic definitions such as substitution,
etc. (with their usual proviso on variables) hold also
here.

We define now the calculus of continuous truth-default
CD and the calculus of heal truth default LD as three-
valued systems in the language L, whose interpretation
Is given by the following logical matrices:

1. Logic values:
nated.,

T, F, I, of which T and | are desig-

2. The connectives A, V, and —» are interpreted by the
following tables:

AlT 1 F] V|1 I F
T T I F| "TT I T,
i1Y1 I F IVr 1 i
F|F F F FIT I F
—~ | T I F
' T | T 1 F
T |7 I F
FlT I T

and the two negations, respectively, in CD and LD
are interpreted by the negation of continuous default
-C, and by the negation of local default -L.:
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We call a 8-valuation for CD (respectively, for LD)
any function extended from the atomic sentences to all
sentences by these tables. We assume that the reader is
familiar with the usual definitions of many-valued struc-
tures A; it is sufficient to know that the routine syntactic
and semantic notions can be defined for those logics. In
particular, L(A) stands for the extended language ob-
tained from A by adding new constants as names for all
elements of the universe A\ of A- For both systems,

the valuations for the quantified case are extended as
follows:

if » 18 3-valuation then

v(VzA) = max{v(A;[t]) : i € L(A)]}
and

o ] if there exists ¢ in L{A)
v{dzA) = { such that v(A ;] =T

e min{v(A.[i]) : ¢ € L(A)} otherwise
where T < 1 < F.

These conditions are sufficient to characterize com-
pletely a many valued logic in terms of syntactic rules
for which these tables are sound and complete (see
[Carnieffi, 1987]).

In order to make clear that we are referring to CD
or LD we underline the connectives and quantifiers, and
write C orCorlLforthe negations.

We want to argue that the logic values and the matri-
ces for CD and LD can be viewed as a basis for a model
of reasoning by default, inspired by suggestions of Ep-
stein in [Epstein, 1990]. For this purpose consider the
following interpretation of the logic values:

1. F means definitely false, and thus a sentence A re-
ceives values F only when there is positive evidence
of falsehood,;

2. Duble negations are reducible, that is, A and =—A
receive the same logic value.

3. There cannot be positive evidence of falsehood for
both A and -A.

4. We assume that T is assigned to A (resp., to ->A)
when there is positive evidence of falsehood for ~*A
(resp., to A) and in this case -"A (resp., to A) re-
ceives value F.

5. We further assume that positive evidence of trueness
iIs not possible; BO this implies that a sentence of the
form A or -A receives value X by default when there
is positive evidence ofthe falsehood of the other one;
that is, T is the default value, which is assumed to
hold if there is no other indication.

6. If it happens that neither A nor -A have positive
evidence of falsehood, we accept that in principle A

Is not yet determined, thus assigning to it the value
I
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/. As a final assumption, we agree that positive in-
formation for falsehood of negated sentences may
be obtained in the future, but not for positive sen-
tences, i.e. ones not beginning with T (this can be
justified, for example, imagining a process of lim-
ited resources, where after a first attempt to find
evidence for the positive sentences, we concentrate
our efforts on the negative ones).

If we are careful reasoners we should keep track of
our deductions made on the basis of I values; we thus
agsume that any valuation which relates to I is assigned
I unless it 18 granted by some value F': this is clearly
guaranteed by the tables for v, A and — above, and by
the interpretation of the quantifiers.

This explains why we do not define, in the tables for
“VVand “—" ITVI=T,IvTl=T,I1-+T=T,F =
I =T. The intuitive idea 1s that I 18 the indeterminated
value, which can be turned into T or F in the presence of
further information, but also that we want to be able to
keep track of all wif's which somehow involve I values.

The reader will notice that, defiomg I'VIi = IVI =T,
for example (which incidentally would give the relevant
system RM3 of relevant logic [Anderson and Belnap,
1975]) would make we too loose this property of keeping
track of I values.

As a consequence of our assumptions, it follows that
neither T nor F can be changed, but the value I can be
changed in the hight of future information. There are two

possibilities for the course of events of a given sentence
A having value [:

case {a) This situation continues forever, and thus - A
18 also evaluated ag [; this explains the table for

~¢ and justifies calling CD a logic for continuous
default.

case {b) As aconsequence of assumption (7) above, in a
given moment A stops being regarded as I, but gains
the status of T, because new positive information
on the falsehood of - A has been obtained. Thus
—A has to be evaluated as F, and this explains the
table for ~ and justifies calling LD a logic for local
default,

We want to remark that while LD is a three-valued
version of classical logic, CD is a genuinely new gystem:
it does not coincide with any of the well-known three-
valued systems.

We can regard the union (in the obvious sense as sim-
ply a logic In L(~y, =¢,V, A, =)} LCD of CD and LD
as a three-valued logic also, and all the definitions (like
J~valuations, etc.) extend to LCD.

4 Paraconsistent Backgrounds

Paraconsistent logics are formal systems designed to
serve as the basis for inconsistent but non-trivial the-
ories, with the additional characteristic of being as con-
servative as possible with respect to the postulates of
classical logic. We refer to [da Costa, 1974] and [Alves,
1984] for the axiomatics of C; and its first-order exten-
sion Cj.



We are using here the version of [Alves, 1984] where
(-=A « A) I8 an axiom.

The semantic interpretation of CT is described as fol-
lows: if L is & language of CT (1.e., the basic alphabet plus
a class of function symbols, predicate symbols, variables
and constants), we define a structure in the usual way
as a nonempty domain |.4 | plus the interpretations for
the elements of L. £(A) as explained above, denotes the
extended language. Here 1 and j denote names.

A paraconstsient valuation based on the siructure A is
a function v from a wif to {4, f} such that:

L if p* = pay - - an then v(p*) = ¢ iff pa(A(ar), -,
A(an)) for p a predicate, py its interpretation, a;
variable-free terms and .A(aq;) their interpretations;

. v(A—-B)y=tiff v(A)=foruv(B)=1t
v(AVB)=tiff v(A)=1orv(B)=1
v(AAB)=tift v(A)=1 and v(B) =1t

. v{~A) =1t iff v(A) =t

. if v(A) = f then v(—~A) =1

cif v(B®) = v(A — B) = v(4 — -B) =t then
v(A) =t

where X° is defined as ~({X A-X) for any
wit X.

8§ if v(A®°) = v(B°) =1 then v((Af§ BY)=tfor § n
{v,A =)

9. v(VzA) =t iff v(A,[i]) =1 for all ¢ in L(.A)
10. v(3zA) =t iff v(A[z]) =t for some i in L(.A)
11. if v(VzA°) = then v((VzA)°) = v((32A)°) =t

12. v(A) = v(A") if A and A’ are variants obtained by
renaming variables.

Note that from (6) and (7) it follows that v(A) #
v(—~A) ifl v(A°) = ¢. Thus, in the cases where v(A®) = f
we do have v(A) = v(—A) = t, since clause (6) forbids
v(A) =v(-A)=Ff.

The proof of completeness given in [Alves, 1984] for
CT (i.e. CY plus the predicate = for equality) can be
modified in minor details to show that Cy is correct and
complete with respect to the paraconsistent valuations.

NS g N

Theorem 4.1 The syslems C; and CT are nol finile
many-valued logics.

Proof : 1t is sufficient to show that the propositional
system C; is not finite many-valued.

The proof is an adaptation of the proof by (Godel
[Godel, 1932] about the non-characterizability of the
intuitionistic propositional calculus by many-valued
logics, using the following logic matrix M, whose
logic values are the ordinals in w + 1 and w the set

of distinguished logic values and whose operations
V, A, -, — are defined by:

1. 2\ y = min{z,y}
2. z Ay = maz{z,y}

wife=10
3. =z = { 0if z =w

r + 1 otherwise

¥ f rzmweandy < w

maz{r,y} o z,y€w
4. g oy = w ¥ s<wandy=w
0 if z=zy=w

O

The previous theorem shows that paraconsistent logic

(at least the systems C; and C¥ and their cognates) can-
not be interpreted as a finite many-valued logic. The
relationship between paraconsistent and many-valued
logics 18, however, much more subtle: we prove that
paraconsistent semantics can be characterized by classes
of translations involving simultaneously more than one
many-valued systems, as explained in section (5).

5 Contradictions and Contextual
Negation

A translaiion between CT and LCD = CDULD is a func-

tion T from the language of C} into the union of the

languages of CD and LD such that the following condi-

tions hold (underlined symbols belong to the common
language of CD and LD):

1. For p* an atomic formula:

(a)} T(p*} = p*, where p* is an atomic sentence in

£(LCD)

N - (T{p*)) or
) Ty = { G0

2. For non—atomie formulas

(a) T(A3 B)=T(A)§ T(B) where § € {V,A,—};
(b) T(QzA) = QzT(A)for @ € {V,3};

- T(QzA) if T(~A) =~ T(A)
| and zis free in A
(c) T(-QrA)= =1 T(QzA)or ~¢ T{QzA)

otherwise

(d) If T(~A) =~ T(A) and T(~B) =~ T(B) then
T~(A} By==T(A{ B)

A translation 7 is called a Cy—transiatson if 1t 1s sub-
jected to the following conditions:

1. T(=nA) = ~¢ ~¢T(A) or T(-—A) =~ 7 T(A4);
2. H7(—A) = ~¢T(A) then

T(~(AA-A)) = (T{(AA~A))and

T(~(~A A A)) = ~ (T(~A A A))
In intuitive terms, the above definitions mean:

(a) translations of double neighbour negations cannot
mix, and
(b) for the sentences of the form A°, if the internal nega-

tion is regarded as continuous default then the ex-
ternal one has to be local default.

Note that a translation will not be determined by
the atomnic level: thus, for example, all the following
formulas can be obtained by distinct translations of
~(~AV B): ~c(~cAVB), ~c( AV B), 7 (~cAV B)
and ""rl_(—l—nLA v B) for A, B atomc.
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All the above clauses which treat negation make clear
that the negation in (T is being translated into two dis-
tinct coniezis (namely, the distinct negations in LD and
CD).

Given a Cy-translation 7 and a 3-valuation v In
LCD, we say that (7,v) satisfies a CY-sentence X 1ff
v(T(X)) € {T,1}; this is denoted in symbols as

(T, v)E X

The sentence X is said to be valid in the translation
T (respectively, valtd in the valuation v} if there exists
a valuation v (respectively, a translation 7) such that
(T,v) E X ; and X is a taulology if it 1s valid for all
translations 7 and valuations v.

The following theorem can be proved:

Theorem 5.1 Let 7 be a Cf-iranslation. Then each

model (7,v) delermines a paraconsisient valuation v
such that (T,v) | A ff v(A) = ¢, for all wff’s A. 0

Now 1t remains to prove that we can define a 3-
valuation and an appropriate translation based on para-
consistent valuations.

Theorem 5.2 Fach paraconsistent valuation v (based
on the structure A) delermines a C} -translation model
(T,v) such that v(A) = t ff (T,v) E A, for all sen-

lences A.

Proof : Let L(A) and v be the given structure and
paraconsistent valuation; the proof is carried out by
constructing simultaneously a 3-valuation 1 and a
Cy-translation 7 having the desired property, by
induction on the length of formulas:

1. For atomic sentences p*, define

{ Fifv(p')=f
v(ip*) =< Tifv(p™) =1 and v(~p*) =1
Tifv(p*) =t and v(—p*)= f

and set T(p*) = p*.
holds.

2. For non-atomic cases the proof involves a de-
tatled analyses by cases, defining inductively
(on the length of formulas) the required val-
uation v and Cy-translation 7.

Then clearly the result

0

‘Theorems (5.1) and (5.2) establish then the proposed
translation semantics for CY. This offers a meaning for
the negation 1n CT as a contextual negation: each m-
stance of negation in this logic is interpreted differently
according to which logic scenario the reasoner 18 accept-
ing for this particular instance (namely, CD or LD).

6 Applications

The deep significance of this idea i1s that we can use the
two usual logic values { and f, and almost all the usual
logic laws (as guaranteed by the axioms of C7).

When contradiction of the form v(A) = { and v(—-A) =
t occurs, this is interpreted by the system (by virtue of
the translation semantics) as a situation where 4 and
—A would take the value I, interpreted as a situation
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caused by each of information. The system is prepared,
then, not only to support such a situation, but also to
correct it in the light of further information.

We Dbelieve that our analysis gives a precise and intu-
itively acceptable account of a theory of reasoning which
supports local inconsistency, with both theoretical and
practical interest. As for applications, in [Carnielli and
Lima Marques, 1990] we give examples of automated rea-
soners who can, for example, discover a liar in a group
interview, or who can handle paradoxes like the Barber's
Paradox.

An application of our analysis consists in obtaining a
clear account of the method of analysis of contradictions
which we have developed in [Carnielli and Lima Mar-
ques, 1990]. We give here a example (the same given in
the mentioned paper) of how such ideas can be applied
to a controversial investigation:

Suppose that in the course of an investigation there is
some information concerning three persons &, A, ¥; the
system has to answer who, among «, £, %, are the men
and who the women, based on the following knowledge,
which is possibly incomplete and contradictory:

All men are using hats.
. All persons using earrings are women.
. Each person is either a man or a woman.

. [ is sure not to be using a hat.

1.

2

3

4

5. 7 is using an earring.
6. Either B is using an earring or r is a man.
7. If 7 is using an earring, then B is not.

8

. It is sure that no two of a, B, 7 are women

Note that, according to the analysis of section (3),
clauses (4) and (8) are the only to be prefixed with F;
the remaining clauses are assumed to be true by default.

Using the tableau version of C;* developed in [Carnielli
and Lima Marques, 1990], where the prefixes T and F
are interpreted as it is true that and it is false that re-
spectively, these conditions are formalized as follows:

. T(V2(M(z) = H(z))

. T(Vz(E(z) — W(z))

. T(Vz(M(z) v W(z))

. F(H(7))

. T(E(v))

. T(E(B)V M(7))

T(E(y) — —E(B))

F(W({a) AW(B)}V (W(a)AW(y)) V(W(B)AW(1))

Analysing this set of formulas using the tableau
method referred to above, we obtain as a solution the
following information:

T{M(a)), T(M(8)), T(W(7)), T(E(B)), F(E(B)")

meaning that:

oo =1 O O A Qo B e

l. @ and S are men

2. ¥ 18 a woman



and the extra information T(E(/3)) and F(E(B)°) convey
that B is using an earring, but this has to be revised.

These examples show that the system can identify the
critical points where contradictions appear, and give a
solution taking the critical points into consideration, in
accordance with the clauses of the problem.

Problems of this sort and their solutions show the
real applicability of the systems supporting contradic-
tion when they are based on an intuitively clear and well
founded semantics. Since such semantics, in the way we
have studied, are based on the idea of translations, it
also suggests the interest about investigating other log-
ics from this point of view.
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