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Abstract

We present here a new formalization of beliefs,
which has a simpler semantics than the previous
formalizations, and develop an inference method
for it by generalizing the resolution method. The
usual prepositional formulas are embedded in our
logic as a special type of belief formulas. One
can obtain a non-monotonic logic of beliefs by
applying, say, circumscription to the basic belief-
logic developed here which is monotonic In
nature. One can also apply the technique repeat-
edly to construct a hierarchy of belief-logics
BL¢, k2 1, where BLy 2BLx4 and BLk can
handle formulas involving up to level k nested
applications of the belief operator B.

1. Introduction

The fundamental assumption in this paper is that the dis-
tinction between the notion of truth of the belief of a propo-
sition P and that of P lies in the underlying contexts of
worlds. In the case of beliefs, the context is a set of worlds
whereas in the case of propositions the context is a single
world. We say that P is believed by an agent in the context
W, which is a set of worlds, if P is true in every world W, €

W. Put another way, the agent believes in any thing unless
there is evidence to the contrary. Why does the context
being a sct of worlds make a significant difference? First,
the meaning of negation as in B—P is now different from
the meaning of negation as in ~BP.! By B—P = "believe in
negation of P", we mean that P is false in each w; € W,
which is quite different from ~BP, meaning that P is false
for at least one w; ¢ W. Thus, B—P # ~BP. Second, it 1s
possible that an agent believes neither P nor —P. It is also
possible that he believes both P and --P simultaneously,
1e., assert BP A B—P, which can happen only in the
extreme case W = . Note that ¢cvery thing is believed

when W = &, mcluding the propositional false-formuta,
denoted by (1.

nn

We use "-" for negations applied to beliefs, to distinguish

it from the negation "—" applied to propositions] formulas.
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In defining a logic for beliefs, one of the first ques-
tions that arises is what is its relationship to the standard
logic. For example, if @; and ¢, are two equivalent prepo-
sitional formulas, then is B¢y, considered to be equivalent to
Bi,? More generally, if ¢, is believed and ¢, logically
implies §,, then should ¢, be also believed? Note that if the
answer to the second question is ' yes', then the same is true
for the first question. For the belief-logic defined here, both
the answers are 'yes*. A different belief-logic is defined in
[Levesque, 1984] specifically to allow B¢, not to be
equivalent to B¢, even though ¢, and ¢, may be equivalent
as propositional formulas. This is achieved by considering
a general notion of a world W; in which the truth value ofa
proposition P may be true (T), false (F), undefined, or
simultaneously true and false (i.e., P does not have a unique
truth value). These general worlds are used for modeling
the "explicit" beliefs whereas the "implicit" beliefs are
modeled (for the most part) by the standard worlds, with
each proposition having a unique truth value.

For the logic of belief described here, only the stan-
dard worlds are considered. We do not distinguish thus the
explicit beliefs from the implicit beliefs. More importantly,
we consider each propositional formula § as a special kind
of belief-formula ¢" whose truth value is evaluated in the
same way as that of the general belief-formulas. This is not
the case in [Levesque, 1984]. Another interesting property
of the belief-logic given here is that one can apply the con-
struction repeatedly to obtain a hierarchy of belief-logics
BLk, k 2 1, where BL can handle formulas involving up
to level k nested applications of the belief-operator B.
Thus, the formula B{¢" v Bw) - note the use %' instead of &
- can be handled in BL,. The belief-logic in [Levesque,
1984] can consider such nested formulas directly. How-
ever, we feel that our formulation of belief-logic is actually
more natural in that it explicitly recognizes the inherent
higher complexity of the formulas with higher nested levels
of B and handles them in a higher level (larger value of k)
logic BL.

We give here a simple inference technique for the
new belief-logic (= BL{) by generalizing the resolution
method in propositional logic. A similar generalization of



the resolution rules for BL,_, immediately gives the reso-
lution rules for BL,, k = 2. In Part-], we present only the
basic monotonic form of the belief-logic BL,. The con-
struction of a non-monotonic form of BL; (and other BL,
k > 1) by using the circumscription is presented elsewhcre
(Kundu, 1991b]. Note that the separation of the non-
monotonic aspects from the monotonic aspects of beliefs

makes it easier to model a world and control the inferenc-
ing in tL

2. Basic Notions

We formally define a formula of the form B¢, where ¢ is a
propositional formula, to be an atomic belief-formula. A
general belief-formula 1s defined to be an atomic beliel-
formula or a formula which s obtained by logical combina-
tion of other belief-formulas via A, v, and ~. We use ""
as an abbreviation for the usual logical combination of v
and — (or ~). Thus, ~B—P v B(P — Q) is a behef-formula,
but BB—P is not. Note that the operator B 1s considered to
have higher precedence than A, v, and —.

Let {Py, P, ..., P, ] be the basic propositions in our
universe of discourse. We denote by £2, the set of 27 indi-
vidual worlds defined by the combination of T/F values of
the P;’s. For W c £, we say B¢ has the truth value T at W
if ¢ is true at each w; € W. In that case, the set W 1s said
10 be a model of Bé. The truth value of a complex belief-
formula is defined in the usual way by combining the truth
values of its subformulas via the connectives {A, v, -, and
—}. In particular, ~B¢ is true at W if and only 1f ¢ is false
at at least one world w; € W. Clearly, the only model of
B[ is the empty subset & ¢ £) and the models of ~B[J are
all non-empty subsets of £2. On the other hand, the models
of Bp A ~BO are the set of all non-empty models of B¢, 1.c,
the non-empty subsets of the set of models ol ¢; the only
model of Bd A B¢ is W = &. We write Q(B) for the set
of modcls of a belief-formula $ and write (¢) also for the
sct of models of a propositional formula ¢. By abuse of
notation, we let O denote also the false belief-formula,
which should not cause any confusion; similarly, we write
T = ~[0. The belief-formula f§ is said to be a rautology or
valid if Q(B) = 2. It is easy to se¢ that B¢ is valid if and
only if ¢ is a valid propositional formula. The notion of
satisfiability of a set of belicf-formulas and its modcls are
defined in the usual way.

We say a belief-formula B, is equivalent to another
betief-formula B, if they have the same models, in which
case we write i, = B,. Table 1 shows some simple
equivalences of belief-formulas. Note that BO # [ and, 1n
general, B, v B, # B(d; v ).

We say B, implies B, or B, can be inferred from f, i
B, — B, is valid. In symbols, we write B, = B,. Itis clear

that B¢, v Bo, implies B(¢, v ¢,), but as we noted above
the converse may not be true. One can derive [Bo; v Bé,l
= Blé, v d,] by repeated application of Theorem 1 below.
First, since &, = ¢, v ¢, we get Bo, = Bld, v §;] and,
similarly, Bo, = B¢, v ¢,]. In proposttional logic, we

TABLE 1. Some simple equivalences of belief-formulas.

By A Bo, = B9, A )
B, A (Bd, v Bdy) = [Bd;, A Bdy] v [Bo, A Bos]
B¢, v (B, A Bdy) =[Bo; v Bd,] A [Bd, v Bo,)
~~B¢, = B¢,
~1Bo; AB,) =~Bo, v ~Be,
~[Bd; v Bo,] = ~Bo A ~Bo,
By ABo, =By A By
B¢, v Bo, = Bo, v B,
B(v Bd =B
~B-{1 =(l1(i.e.,BT=T)

also have ¢, = y and ¢, = Y imphes [¢, v §,} = . The
same 1s true i ¢y, ¢,, and y are replaced by arbirary
belicf-formulas. By putting Bd, in place of ¢,, B, in place
of ¢, and B[, v 0,1} in place of y, we get that Bo, v B,
= Bl$; v ¢,]. The following Modus-ponens for belief-
formulas is also immediate from the definitions.

If B, and B, — B, are valid belief-formulas,
then (3, is a valid belief-formula.

Theorem 1. For any two propositonal formulas ¢,
and ¢,, we have

() &, = ¢, if and only if B¢, = B, 1if and
only if ~-B¢, = ~B#b,.

(2)  ~B{d; v o) = ~B{)) A ~Bigy).

(3) B{—¢,) A ~Bl[]l = ~B¢,.

Proof. Immediate from the definitions. W

The following theorem shows that belief formulas
are sufficiently powerful to describe any family K of sub-
sets of 2, i.e., K ¢ 29 In particular, if N = [Qf = 2%, then
the number of distinct (non-equivalent) belief-formulas
over the propositions {P, P5, ..., P} 18 27 whereas the
number of distinct propositional formulas is only 2¥.

Theorem 2. If K is an arbitrary family of subsets of
Q, then there is a belie{-formula By whose set of models
equals K, ie., Q(Bx) = K. Moreover, §} 1s unique up to
cquivalence.

Proof. If K = @&, then we take By = (0. Now let K =
(W,, W, ..., W, ). We first show that there is a belief-
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formula By, which has a unique model W for any W ¢ Q.
If W =@, then By = B[]. Now assume that W # &. For
each world w; € W = {w,, w;, ..., w,_}, let C; be the con-
junction of the form Z; A Z, A ... A Z,, where each Z; = P,

or —P;, such that the propositional formula C; has exactly
one model w;. The belief-formula By = B(C, v (v .. v
Cg) A ~B=Cy A~B=Cy A ... A~B-C, then has the unique
model W. If we write B; for the formula whose unique
model is W; € K, then By = §, v, v ... v §,, satisfies the
theorem. The uniqueness of By is immediate. W

The belief-formula By obtained in the proof of
Theorem 2 may be called the disjunctive normal form of a
belief-formula whose models are K = {W,, W,, ..., W, ].
Example 1 shows some families of subsets of (2, and the
associated disjunctive normal form belief-formulas. The
proof of Theorem 2 suggests the notation N¢ = -B—=(;| A
-B-CrA..A~-B=C, ,where¢=C, v(C,v..v(, 152
disjunctive normal form propositional formula. The for-
mula N¢, which may be read as "necessarily contains (or
implied by) ¢", has the models {W: Q(¢) c W). In partic-
ular, the models of NCJis 2 and thus NO=T.

Example 1. Consider the universe of discourse con-
sisting of two proposition {P,, P,). Thus Q= {wg, w;, w,,
wi}, where wy corresponds wo P, = F = P,, w, corresponds
toP,=Fand P,=T,etc. Table 2 shows some of the fami-
lies K ¢ 2 and their associated disjunctive normal form
belief-formulas By. Here, we writc P, A P, in short as
Png,*'LPl APzas—nP]Pz,Etc. |

TABLE 2. Examples of disjunctive normal form
belief-formulas in the propositions P and P .

——

K29 A_'Ihe disjunctive normal form 8

@ o ] ]

(&) BO

[{wo}} B(—P | —P5) A ~B(P VP 2)

((wo), {w1)) [B(—~P 1 =P3) A ~B(P VP )] v
[B(~P,P3) A ~B(P v—P2)]

{{wo, w,}) B(—F =P v =P Py A
~B(P,vP ;) A ~B(P ;v—P,)

{{wo), [wo, w}) | [B(=P1—=P) A ~B(P vP] v
[B(P =P, v =P Py) A ~B(P vP;}

A --B{{" yv—F5)]

In view of Theorem 2, we can associate a belief-
formula ¢" with each propositional formula ¢ in an one-1o0-
one fashion such that the set of models of ¢ is given by
L2007 = {{w;): w; € Q(¢)). In particular, I¥ = 0O though
T # T. The mapping from ¢ 0 ¢’ is consistent with the
logical operations A and v in the sense that

G1A0) =0 A0 and (B, Vo) =0 v,
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In general, (—0) # ~(¢"), which should not be surprising
since B(—¢) # ~B¢. Nevertheless, if ¢, and $, are two pro-
positional formulas and ¢, = ¢, L.e., =, Vv ¢, is a taut0l-
ogy in propositional logic, then we have ¢," = ¢, for the
associated belief formulss, i.e., ~($,") v ¢, is a tautology in
belief-logic. The following thcorem, where ¢ may also be
[T or a tautology, 1s immediate and is illustrated in Table 3,

Theorem 3. For any propositional formulas ¢, and
¢, we have ¢, = B¢, and B—¢, = ~(¢,"). Also, ¢, = ¢,
ifandonly if¢," = ¢,". B

TABLE 3. Illustration of Theorem 3 for the universe
of propositions {P |, P,); Q= {wg, wi, Wy, w3l.

Formula | Models

P [ {wa, w3)

—P; {we. W]

Py ({w2), (wa})

~(P,) 28— {{w,]), {wi}]

BP, (D, {w,}, (wi), {ws, wy]}
B—F, (@, {(wo}, (w1}, {wo, wi}}

3. Resolution Method for Beliefs

The inference problem in a belief-logic consists of deter-
mining whether a given goal belief-formula P, is implied
by a finite set of belief-formulas S = {B,, B,, .3, ], called
facts. We present a resolution method for inferencing in
the belief-logic, which is a generalization of the resolution
method for the proposiuonal logic. The derivation of [J in
the belief-logic often mvolves as a substep the derivation of
B, meaning that the facts which are believed are contrad-
iclory to each other (as in B¢ and B—¢). The final deriva-
ton of {3 shows that the beliefs themselves are in contrad-
1ction with each other (as in Bd and ~B¢).

We begin by defining the notion of literals, clauses,
and the resolvent. If C is a propositional-clause, including
the case C = [, then BC and ~BC are said to be belief-
literals, BC 1s said to be a positive literal and ~BC a nega-
tive literal. A belief-clause is a disjunction of zero or more
belief-literals. We sometumes use the term "literal” as a
short form of "belief-literal” and also of "propositional-
literal”, when no confusion is likely; similarly, the term
“clanse” i5 wused for both “belief-clause® and
"propositional-clause”. It is clear from Table 1 that each
belicf-formula is equivalent 1o a conjunction of belief-
clauses.

We define the nouon of subsumption between two
belief-clauses 3, and B, in such a way that the following
holds: If B, subsumes f3,, then each model of B, is a model
of B,, i.e., B; — P, is valid. This means, in particular, that



we can remove a clause B; from a set S if it is subsumed by
some other clause in § without affecting the satisfiability or
unsatisfiability of S. Formally, we define the subsumption
as follows:

(1) If C, and C, are two propositional clauses
such that C, subsumes C ,, then we say BC,
subsumes BC, and ~BC, subsumes ~BC,.
(It is not possible for a positive belief-literal
BC, to subsume a pegative belief-litera!
~BC, because O € Q(BC,) -~ Q(-BC,).
The only case where a negative belief-literal
subsumes a positive belief-literal is ~BT =
3 subsuming BC,, C, being arbitrary, and
~B(C, subsuming BT =T.)

(2) More generally, a belief-clause B is said to
subsume another belief-clause B, if each
literal in [3; equals or subsumes some literal
in B,. The empty belief-clause 01, which has
no literals in it, subsumes all other belief-
clauses.

Thus, ~BP, v BP, is subsumed by ~BP,; also, ~BP, is
subsumed by ~B(P, v P,) or, more generally, by a clause
of the form

~BP vC)v-BP vC)Pv..v~-BP,v()kzl

We first define two types of resolvents for belief-
literals, called Type-I and Type-II. These are then general-
1ized 1o the case of arbitrary belief-clauses. Finally, we
define a third type of resolvents, called Type-III. One can
actually generalize the other two resolvents to include the
Type-1I1 resolvent, but we choose to formulate it separately
for the sake of clarity. In each case, we make sure that the
resolvent is logically implied by the parent clauses from
which 1t 1s derived.

(1°) Type-I resolvent.
If BC, and BC, are two belief-literals such that €,
and C, are proposinonally resolvable, then we say
that BC, and BC, are resoilvable and we define therr
resolvent to be the literal given by (R.1).

(R.1) res(BC,, BC,) = B(res(C,, Cp)).

Thus, we have res(B(P v —-Q), BQ vR)) =B v
R). It is clear that BC; A BC, = B(res(C,, C2))
Note that this type of resolvent can be at best BOJ, but
not

(2°y  Type-II resolvent.
Let Cl =L1 VLZV us VL,, and Cz=Lj:+1 VLk+2 v
.. v L, v C’, be two propositional clauses, where 0

< k <m and each L; is a propositional literal; C’,
may be the empty clause. Then, we say that BC; and

~B( , are resolvable and we define their resolvent to
be the clause given by (R.2).

(R2) res(BC |, ~BC,) =~B(=L A~LoA..A—L,)
"“B(ﬂL I)V...V‘“B("\Lt )

=0, ifk=0.

it I

Two special cases of (R.2) that are worth noting are:
res(BO, ~-BCy) = O =res(BC,, ~BC,), and res(BC,,
~BO) = ~B(—L,) v ~B(Ly) v ... v ~B(=L, ). Once
again, we have BC| A ~BC, = res(BC,, ~BC,).

(3°} Generalizanon of (R.1) and (R.2).

Two belief-clauses B, =X, vX,v..vX,_ and§,=
Y, vY,;v .. vY, are said to be resolvable if there is
a literal in {3, (say, X,,) which can be resolved with a
literal in B, (say, ¥,) using (R.1) or (R.2). We define
the resolvent res(B,, B,) to be the clause given by
(R.3) below. We say (R.3) is of Type-1 or Type-11
according as res(X,_, Y,) 1s of Type-I or Type-II.
Note that 3, and B, may contain several pairs of
literals with respect to which we can form res(B,, B,)
and we may obtain different resolvents in this way.
(This is unlike the case of propositional logic, where
one obtamns a unique resolvent no matter how it is
resolved.)

R3)  res(Bp.B)= X, vXyV . v Xpy v
res(X, .Y )vY,v..vY,.

If the right hand side of (R.3) contains duplicate
literals, 1e., X; = Y; for some i< m-1andj22, or
res(X,.. Y,) equals some of the other literals, then we
simplify it by removing the duplicate literals. That
B A By = res(B;, B,) follows from the corresponding

properties of (R.1) and (R.2).

(4°) Type-IHI resolvent.
Lafp=X,vXyv..vX,,mz2 whereeach X; =
~B(C v C;) is a negative literal and C is the largest
common subclause of the propositional clauses [C v
C;: 1 £)<m]), ie., there is no literal common to all
C;. Then B is subsumed by —BC and we define the
resolvent res(f) to be the literal given by (R 4).

(R4)  res(P)=~BC.

A derivation of a belicf-clause 8 from a set § of
belief-clauses is defined to be a sequence D =(D,, Dy, ...,
D_), where cach D, € S or is a resolvent of some previous
clause(s) in the sequence D and D,, = . A refutation proof
of a goal By from a set of facts (B, B, .... B} i a denva-
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tion of [J from the union of the sets of clauses obtained
from B;, 1 € j S k, and the clauses obtained from —f,.
There is no restriction on how the clanses of B; and of ~8,
are formed.

Example 2. Shown below are the minimal
unsatisfiable sets of clauses S in a single proposition P,
which do not contain 0.2

(1) BOand one of {~BP, ~B-P, ~B[1}

(2) ([~BP,BP}

(3) {~B—P, B-P)

@) |(BP,~B[J, B—P)

(5) [~BPvBQO,BPvB-P,~B—Pv B0, ~B]}

It is easy to see that [ can be derived in each case. There
are three ways of deriving O in case (4). One of the many
possible ways of deriving [J in case (5) is shown in Fig. 1.
If we replace one or more of the input clauses by thew
alternate representations (e.g., repiace ~BP v B[ by ~BP v
B—P), then one can still derive []. &

~BPvBO BPvB-P -B-PvBO -~BO

N/

BOv B—P

B[]

O

Figure 1. A derivation of {J from the belief-clauses
(~BP v BO, BP v B-P, ~B—~P v BO, ~B[]}.

Example 3. Suppose our universe of discourse con-
sists of the basic propositions P = "Tweety has wings” and
Q = "Tweety flies". Let B be the belief operator "Kundu
believes ...". We consider the following facts (1)-(2) and

the goal (3):

(1) "Kungu believes that if Tweety has wings,
then Tweety flies”. This is represented by
B(P - Q)=B(-PvQ).

(2) "Kundu does not believe that Tweety does
not have wings". This IS represented by
~B—P.

2 The minimality of S means that § does not contain a
proper subset which is also unsatisfiable. In particular, no
clause in § is subsumed by another clause in S.
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(3) "Kundu does not believe that Tweety cannot
fiy". This is represented by ~B—Q.

One expects that perhaps (3) can be proved from
(1)-(2). Fig. 2 shows a refutanon proof of (3). If we
replace (2) by the stronger fact BP A ~B(], then we can
indeed stull prove the goal (3). We first resolve BP with
B(—P v Q), giving the resolvent BQ. Now, obtain B[] =
res(BQ, B—Q), which can be then resolved with ~BO to
obtain the desired empty-clause [ Note the use of ~BO]
here, without which we cannot obtain [J in this case. This
1S hot surprising because the empty set of worlds @ is a
mode] for {BP, B(P — Q), B~Q}. We can actually derive
a stronger goal BQ A ~BO in this case.

~B(=P) B(-PvQ) B(-Q)

N

B(~P)

Cl/

Figure 2. An illustration of resolution proof for beliefs.

If we consider the goal (3") = BQ = "Kundu believes
that Tweety flies”, which 1s stronger than (3), then it may
not be so obvious if (3"} can be proved from (1)-(2). Fig. 3
shows all possible resolvents that can be obtained from
{(1), (2), =(3")) and, in particular, that O cannot be derived.
The set of worlds W = {TT, FF}, where TT means P=T =
Q and similarly for FF, forms a model of {(1), (2), ~(3)}.
N

~BQ B(~Pv Q)

\/ \ /—-B—-.P

~BP ~B-Q

AN’

~BP v "'"B_"IQ

Figure 3. An example where (J cannot be derived.

The main result of this paper is the following
theorem. We omit the proof for want of space, but it can be
found in [Kundu, 1991a], We point out that the resolution
rules given here can be seen to be closely related to that for
predicate logic (without function symbols). One could
almost say that the completeness of the belief-logic infer-
ence method follows from that of predicate logic without
function symbols, except for the slight difference of the
empty set of worlds being a possible model for a given
belief-formulas.



Theorem 4 (Completeness and soundness of the
resolution method). Let S be an arbitrary finite set of
belief-clauses. The set S is unsatisfiable if and only if there
is a derivation of [(Jfrom S. B

4. Conclusion

We have presented here a new belief-logic for proposi-
tional facts (i.e., without variables and quantifiers), includ-
ing a resolution proof method for this logic, which can be
thought of as a generalization of the resolution method for
propositional logic. Our formulation of the belief-logic
differs from the other belief-logics in two fundamental
ways: (1) The ordinary propositional logic is imbedded
within our belief-logic. Each propositional formula ¢ is
mapped to a belief-formula ¢ in an one-to-one to fashion
in such a way that if ¢ implies W as propositional formulas,
then &" implies W' as belief-formulas, and conversely.
Also, the truth value of 9" iis evaluated in the same way as
for general belief-formulas. (2) The belief-logic developed
here is mono tonic in nature and its construction can be
applied repeatedly to obtain a hierarchy of belief-logics
BL, k2 1, such that BLy, =BLi.1 and BLy can handle
all belief-formulas involving up to level k nested applica-
tions of the belief-operator B. We obtain a non-monotonic
belief-logic from BLy by applying circumscription to it,
for instance. This is the approach taken in [Kundu, 1991D].
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Appendix: Consider the universe QQ = {w, w,) of a single
proposition P, Shown below are all the belief-literals
and their models. There arc only three belief-clauses
which are not equivalent to a belief-literal or T, namely,
~BP v B0 = ~BP v B—P, ~B—P v B[ = ~B-P v BP,
and BP v B—P. The set of models for these clauses are
given by (D, {wy], twe wi) ), G, {wi}, {(wo will,
and (B, {wg}, {w ]}, respectively.

The belief-literals in proposition P.

BO ~BO BP -BP B—P  -B-P
B {wy] @ (wo) @ (w))
(w,] fwi}  {wo,w))  (wg)

[“"Dv w ]

The following diagram shows the subsumption relation-
ships among the belief-clauses other than T, where a clause
B, is shown below another clause B, if B, subsumes B,.

The subsumption relationships among the
belief-clauses in a single proposition P,
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