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Abstract 

This paper is concerned with how diagrams can 
be used for reasoning about spatial interactions 
of objects. We describe a computational 
approach that emulates the human capability of 
predicting interactions of simple objects depicted 
in two dimensional diagrams. Three core aspects 
of this approach are a visual representation 
scheme that has symbolic and imaginal parts, the 
use of visual processes to manipulate the 
imaglnat part and to extract spatial information, 
and visual cases that encode experiential 
knowledge and play a central role in the 
generation of spatial inferences. These aspects 
are described and the approach is illustrated with 
an example. Then we show that reasoning with 
images is an emerging and promising area of 
investigation by discussing computational and 
cognitive research on imagery. 

1 Introduction 

Humans quite often make use of spatial information 
implicit in diagrams to make inferences. For example, 
anyone famlliar with the operation of gears will be able 
to solve the problem posed in Figure 1 by imagining 
the rotary motion of gear1 being transmitted to the rod 
through gear2, resulting in the horizontal translation of 
the rod until it hits the wall. In such situations humans 
reason about spatial interactions not only by using 
conceptual knowledge, but also by extracting 
constraints on such interactions from a perceived 
image. This integrated use of visual knowledge (about 
spatial configurations) from the diagram and 
conceptual knowledge (such as the rigidity or plasticity 
of objects involved) is a very interesting 
phenomenon, in this paper we illustrate a 
computational approach that emulates this capability 
for solving simple motion prediction problems. 

The class of problems we address is the following: 
given a two dimensional diagram of the spatial 
configuration of a set of objects, one or more Initial 
motions of objects and relevant conceptual 
information about them, predict the subsequent 
dynamics of the configuration. Figure 2 shows a 
typical example. 

2.2 Cognitive Inspiration 

There is considerable evidence in cognitive 
science for the use of mental images by people when 
solving problems [Kosslyn, 1981]. Furthermore, 
Introspective reports of people when given a diagram 
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like Figures 1 or 2 and asked to predict motions 
indicated that by looking at the diagram they were able 
to visualize the motion of one object causing that of 
another through physical contact. They appeared to 
be using (the image of) the diagram in front of them 
directly to simulate motions In their minds. These 
reports indicated the following. 
(1) Given a diagram depicting the problem, humans 
quite rapidly focus on localities of potential 
interactions. 
(2) People also seem to simulate or project the motion 
to determine the nature of interactions that will occur. 
(3) For reasoning about the dynamics (e.g., how will 
motion be transmitted after a collision?) humans bring 
conceptual knowledge (e.g., gears are rigid objects) 
and experiential knowledge (e.g., if an object collides 
with another, it typically transmits motion in the same 
direction) to bear on the problem. 
We have developed an approach that emulates these 
capabilities. 

2.3 Representation 

The specification of a motion prediction problem 
consists of a scene depicting the spatial configuration 
of the objects involved and conceptual information 
about their properties (see Figure 2). The spatial 
configuration is represented using a "visual 
representation" while conceptual information about 
object properties is represented declaratively and 
linked with corresponding object descriptions in the 
visual representation. In our computer model the 
visual representation of a problem specification is 
interactively constructed prior to problem solving, 
whereas in the case of humans perceptual processes 
deliver such representations. 

Mental representation of visual information and Its 
relation to the phenomenon of mental imagery have 
been the focl of considerable research in cognitive 
science [Biederman, 1990; Finke, 1989; Kosslyn, 
1981; Pyiyshyn, 1981]. A central issue here is the 
question of how mental imagery that appears to be 
analogic in nature can arise from underlying 
representations that are considered to be 
pro positional. One hypothesis regarding this issue 
[Chandrasekaran and Narayanan, 1990] is that 
representations for different sensory modalities are 
operated upon by interpreters that provide privileged 
operations specific to that modality, including binding 
the symbols in the representation to perceptual 
primitives in the corresponding sensory domain. Thus 
our answer to the above question is that symbolic 
representations of visual information are interpreted 
by mechanisms that are specialized to the visual 
modality and which provide operations tailored to this 

modality. These operations construct mental Images 
using perceptual primitives In the visual domain. Visual 
representations in our computer model are therefore 
structured as multi-level hierarchies that contain 
imaginal descriptions and symbolic descriptions of the 
object configuration. Each level of the hierarchy 
contains a symbolic description and an imaginal 
description of the configuration at a certain resolution. 
The symbolic description is built from parametrized 
shape primitives like circles, rectangles, etc., whereas 
the imaginal description is a two dimensional pixel 
array of fixed width and height in which a configuration 
is depicted by object boundaries and is implemented 
as a bitmap. In the rest of the paper we will use the 
term "diagram" to refer to this boundary-based 
rendering of the object configuration. Thus the visual 
representation is dual (symbolic and imaginal) in 
nature. The two types of mental representations 
(surface images and deep encodings) that Kosslyn 
[1981] proposes reflect a similar duality. 

The most interesting property of this 
representation is that it simultaneously provides 
abstract symbolic descriptions of an object 
configuration and directly captures, in the imaginal 
descriptions, specific spatial information about the 
object configuration (the extent of contact between 
two surfaces, for example). The justification for our 
decision to structure the symbolic descriptions in 
terms of parametrized shape primitives stems from 
shape representation theories that utilize primitives 
like geons [Biederman, 1990] and generalized cones 
[Marr and Nishihara, 1976], Multiple levels of 
description are provided in the representation to allow 
visual processes to operate at different levels of 
resolution. 

2.4 Reasoning 

The basic model of reasoning Is as follows. The 
system goes through a sequence of deliberative 
states. This sequence corresponds to the changes 
that the initial object configuration undergoes due to 
motion and interaction of objects. Each deliberative 
state represents a particular configuration that the 
objects assume at some point during this evolution of 
behavior. What distinguishes a deliberative state from 
other states is that it represents a configuration in 
which an interaction (such as collision) has occurred 
that will change the subsequent behavior of objects. 
The term deliberative refers to the necessity of 
"deliberation" that arises at these states in order to 
predict future behavior of objects. A significant 
characteristic of this deliberation Is the combined use 
of perceptual information from the diagram and 
conceptual knowledge relevant to the situation. 
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The transition between deliberative states is 
accomplished by two groups of processes, in one, 
purely visual operations such as attention-focussing, 
scanning, boundary-tracking, and contact-detection 
are used to identify significant aspects of the current 
object configuration from the diagram (e.g., locating 
interesting regions, identifying surfaces of potential 
Interaction, etc.), to reason about how the 
configuration will evolve (e.g., project surface 
motions), and to detect the next deliberative state. A 
deliberative state is detected by watching out for 
certain events as the configuration depicted in the 
diagram changes. The establishment of a new contact 
between objects, the elimination of a previously 
existing contact, the establishment of a new support 
relationship between objects, and the removal of a 
support relationship are some examples of events 
which indicate a deliberative state. Motivations behind 
and justifications for these processes derive from the 
extensive literature on mental imagery, some of which 
are discussed in section 3, and the work of Chapman 
11990] and Uliman (19851 on visual routines. This 
group of processes corresponds to the human 
cognitive process of "imagining". 

The second group of processes accomplish the 
aforementioned task of deliberation. Here knowledge 
about how interacting physical objects tend to behave 
under various conditions is used to predict the 
behavior of objects following the current deliberative 
state. We take a specific position on the form in which 
this knowledge is available and the way In which it is 
utilized. This is described next. A process model of 
visual reasoning Is shown in Figure 3. 

We believe that the knowledge humans bring to 

bear on making spatial inferences in similar situations 
is mostly acquired through experience, and so In the 
computer model experiential knowledge has been 
given a central role In deciding how to proceed from a 
deliberative state. Experiential memory is considered 
to be an organized and indexed collection of cases 
[Schank, 1982] and case-based reasoning is a 
computational paradigm for modelling the role of 
experience in problem solving (Kolodner and 
Simpson, 1989]. Therefore, representational 
structures called "visual cases" have been developed 
to encode knowledge applicable at deliberative states 
and to facilitate Inferencing. Each case represents a 
typical spatial event. Since cases represent 
experiential knowledge, they may not be logically 
parsimonious or mutually exclusive. A visual case has 
three parts. One Is information about spatial 
configurations to which the case is applicable. Cases 
are called "visual" because this information is visual in 
nature and is the "key" by which relevant cases get 
selected during reasoning. It may also be viewed as 
an "abstract" image that depicts the essential aspects 
of configurations to which the case is applicable. 
Because of this abstractness a case can be matched 
with a variety of specific configurations. This property 
obviates the need for a large number of cases. The 
second part is non-visual Information that qualifies the 
visual part further and it is used for deciding the 
applicability of a case to a particular situation. The third 
part is a predicted event affecting objects In the spatial 
configuration represented by the case. This event 
may specify a state change (e.g., a directional force 
being applied on an object), a continuous change 
(e.g., an object moving in a particular direction), etc 

Humans are skilled at blending perceptual and 
conceptual Information in generating spatial 
Inferences. To illustrate this, first consider your 
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prediction about the motion of ob|ect2 after object 1 
collides with it, given the problem specification of 
Figure 2, and then notice how this prediction will 
change if the specifications were changed to indicate 
that object1 is non-rigid (say, made of rubber) and that 
object2 is fixed on surface3. The visual and non-visual 
parts of a case explicitly capture this aspect. Thus the 
intent of visual cases is to represent simple chunks of 
experiential knowledge about spatial events that 
humans typically have, and to model the blending of 
conceptual and perceptual information in making 
spatial inferences. An example of typical knowledge 
about spatial events is "a rigid object resting on a rigid 
flat surface, when collided by a moving rigid object, will 
tend to slide in the same direction". The schematic of 
a corresponding visual case is shown in Figure 4. 

After a deliberative state is detected, visual cases 
are retrieved and applied to predict events that follow. 
The retrieval of cases relevant to the spatial 
configuration in the diagram is based on visual cues. 
From among the retrieved cases, applicable ones are 
selected by using information about object properties 
(which is available as part of problem specification) to 
verify the non-visual parts of the cases. Events 
predicted by the applicable cases are further pruned 
by verifying, through visual processes, their feasibility 

in the current object configuration. The remaining 
events serve to guide subsequent steps of 
reasoning. Since a case brings conceptual knowledge 
to bear on visual reasoning, this mechanism of 
inference may be viewed as a computational 
realization of cognitive penetrability or the influence of 
tacit knowledge on mental imagery [Pylyshyn, 1981]. 

2.5 An Example 

In this section we present a problem solving episode 
in some detail. The specification of the problem, which 
Includes a depiction of an initial configuration of 
objects, an initial motion and relevant non-visual 
properties of the objects, is shown in Figure 2. The 
goal Is to predict all resulting motions by reasoning 
about spatial interactions that will occur among the 
objects. In our computer model control of reasoning is 
done by a procedure that generates goals and 
subgoals, and activates relevant processes to 
achieve them. Thus an execution trace will appear as 
a tree consisting of goals, subgoals, and processes. 
The goal generation follows the process model in 
Figure 3. 

Figure 5 shows a partial execution trace for this 
example. "Reason about spatial interactions" is the 
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top level goal and it has four subgoals as shown. 
Consider the first subgoal "locate interesting spatial 
regions". There is a set of heuristic criteria to locate 
interesting regions, one of which is that regions 
representing touching surfaces of multiple objects 
are interesting. The visual process corresponding to 
this subgoal focuses on each object in turn, tracks its 
boundary, and looks for regions that satisfy the 
criteria. In this example it finds the bottom surface of 
ob)ect2 as shown in Figure 6.a. Next, surfaces that 
have the potential for interaction are located (Figure 
6.b shows the surfaces identified for the current 
problem) and another process projects the motion of 
moving surfaces that are identified to have interaction 
potential while watching for the occurrence of 
deliberative states. The first deliberative state 
detected is the configuration in which contact occurs 
between objects 1 and 2 and the diagram is modified 
to depict this configuration, as shown in Figure 6.c. 
The next subgoal is to predict subsequent dynamics 
of this configuration and this is accomplished by the 
application of visual cases. Three visual cues (the 
presence of a rotating object and a stationary object, 
and the occurrence of a collision between the two) are 
used to retrieve cases, and visual keys of cases are 
matched with the current configuration by inspecting 
its visual representation. The availability of symbolic 
descriptions as well as diagrams In the visual 
representation allows the matching of visual keys to 
proceed at an abstract level without recourse to 
techniques like template matching. A visual case 
similar to the one shown in Figure 4 (except that the 
moving object is undergoing rotation) is found to be 
relevant and applicable, and the event that it predicts 
is found to be feasible in the current configuration. 
Non-visual conditions associated with this case are 
similar to those in Figure 4 and are easily verified from 
the problem specification. The resulting prediction is 
shown in Figure 6d. As the process model shows, 
after this step the entire cycle is repeated and in the 
next detected deliberative state object2 has collided 
with surface4. This time a case that predicts cessation 
of motion gets applied and Figure 6.e shows the final 
configuration. 

3 Related Work 

In this section we present computational and cognitive 
research which touches upon imagery, in support of 
our contention that imaginal reasoning is an emerging 
research area that is highly promising. Cognitive 
scientists have demonstrated not only the powerful 
role of imagery in human problem solving but also the 
advantages of incorporating similar reasoning 
capabilities in computer programs. For example, Larkin 
and Simon [1987] persuasively argue for the 
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computational advantages afforded by diagrammatic 
representations and perceptual inferences that such 
representations support, for solving physics and 
geometry problems. Koedinger and Anderson [1990] 
describe a model of geometric proof problem solving 
In which parsing of a diagram of the problem to detect 
specific diagram configurations is a key step. These 
configurations then cue relevant schematic 
knowledge for proceeding with the proof. Visual 
cases represent a generalization of this idea. 
Logicians have also noted the power of visual 
representations. Barwise and Etchemendy [1990] 
illustrate the role of visual representations in 
mathematical reasoning through a program called 
Hyperproof which allows the user to reason using 
sentential and pictorial forms of Information. 

Despite intuitively compelling evidence for the 
use of imagery by humans, there has not been much 
work In artificial intelligence toward endowing 
machines with a similar capability. An early program 
that utilized diagrams was WHISPER [Funt, 1977] 
which addressed rotation, sliding, and stability of 
blocks-world structures. More recently, work on using 
pictorial or "analogical" representations for simulating 
the behavior of strings and liquids in space has been 
reported [Gardin and Meltzer, 1989]. Shrager [1990] 
describes a computational model of understanding 
laser operation in which relnterpretation processes 
utilize event depictions in an iconic memory as well as 
In a proposltional memory. The research on 
computational modelling of the cognitive process of 
spatial reasoning with diagrams [Narayanan, 1991] is 
yet another step towards realizing the full potential of 
Imaginal reasoning by computers. 

4 Concluding Remarks 

We have described a novel approach to reasoning 
about spatial Interactions, Since our aim in this paper 
has been to provide the reader with an overview of all 
significant aspects of visual reasoning within the 
limited space available, the descriptions have been 
necessarily schematic in character. Further details on 
components of this approach - structure of visual 
representations, how visual processes are composed 
from basic visual operations, indexing and adaptation 
of visual cases, the computer program that 
implements this model, etc. - can be obtained from 
[Narayanan, 1991]. 

The advantages of using diagrams in this 
approach arise from the property that spatial 
information such as obstacles to motion or pathways 
that guide motion are directly evident in Images. Our 
approach is not only Intuitive, but flexible as well. 



Objects which have irregular shapes that will make 
their algebraic representations complex can be 
represented and reasoned about In the same way as 
regular objects If diagrams are used. 

As Forbus and colleagues rightly point out 
[Forbus et al., 1987] there can be no purely 
qualitative method for spatial reasoning. What is 
required is to integrate qualitative and quantitative 
methods so that qualitative ones provide approximate 
solutions that serve to focus the application of 
quantitative methods to only those aspects of the 
initial solutions that require more precision or further 
refinement. With this goal in mind, we are currently 
investigating the integration of visual reasoning with 
other qualitative and quantitative methods [Narayanan 
and Chandrasekaran, 1991]. 
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