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Abstract

We demonstrate the technological value of non-
monotonic logics by an example: We use prior-
itized defaults for candidate generation in diag-
nosis from first principles. We implement this
non-monotonic logic by TMS similar to default
logic. Prioritized defaults allow an easy formu-
lation of a diagnosis problem including state-
ments such as ‘eletrical parts are more reliable
than mechanical ones' or ‘prefer correct mod-
els to fault models’ since defaults are put into
different levels of reliability. These preferences
prune some counterarguments in TMS and thus
lead to areduced network. Moreover, the label-
ings of this network are exactly the preferred
subtheories of its prioritized default theory.

1 Introduction

Although the development of non-monotonic formalisms
has been triggered by practical problems most work in
this area has been devoted to the study of formal proper-
ties of non-monotonic inference. The technological value
of non-monotonic formalisms is often ignored or ques-
tioned. We argue that non-monotonic logics can serve
as Iintermediate formalisms in the development of ap-
plications for problems that require the generation and
retraction of hypotheses. Good examples are diagnosis
and configuration. Thus, we would decompose the de-
sign of an application into two steps:

1. Representation: First concentrate on the relevant
representational decisions (e.g. what statements are
encoded by hypotheses, defaults, priorities, coun-
terarguments etc.) without being concerned with
technical details. The result of this step should be a
comprehensive and implementation-independent so-
lution in terms of a non-monotonic formalism. Like
a data-base scheme, it can be kept if the implemen-
tation is changed. This step also clarifies whether
some properties of non-monotonic logics (e.g. multi-
ple extensions) are really problems or can be useful
for applications.

2. Implementation: Different techniques can be
used for implementing a non-monotonic logic. If
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they are already available the main task is to se-
lect techniques which are efficient for the special
case under consideration. Thus, we can benefit
from a lot of techniques (e.g. truth maintenance,
dependency-directed backtracking) without being in
trouble with technical details. Non-monotonic log-
ics serve as a specification for these techniques and
show exactly how and in what circumstances they
can be applied.

We illustrate this approach by developing a TMS-
based system for generating candidates for diagnosis.
There are already several (A)TMS-based diagnosis sys-
tems (e.g. [de Kleer and Williams, 1987], [Struss and
Dressier, 1989], [Dressier and Struss, 1990]). These
works contain a lot of innovations how to do diagno-
sis. Unfortunately, parts of their results are hidden in
the code and expressed in system-specific terms like jus-
tifications and labels.

Therefore, we consider an intermediate logic to do di-
agnosis (similar as [Poole, 1989]). We choose prioritized
default logic [Brewka, 1989] where defaults are put into
different levels of reliability. This allows to express pref-
erences such as ‘adders are more reliable than multipli-
ers'ox 'prefer correct models to fault models’. We discuss
this topic in sections 2.2 and 2.3.

In a second step, we provide a general implementation
of level-based default theories using TMS. Since they are
equivalent to the special case of prioritized circumscrip-
tion implemented in [Baker and Ginsberg, 1989] we get
an alternative method for handling prioritized circum-
scription. It does not need such notions as rebut and re-
fute. We just map every level of the default theory into
a subnetwork of a TMS using the translation in [Junker
and Konolige, 1990].

To verify our translation, we need some results on com-
ponents of TMS-networks. For this purpose, we split
networks into independent components which can be la-
beled in isolation. Extensions of the complete network
can be composed of extensions of the subnetworks. The
precise results are presented in section 3,2. They are of
their own interest because they enable a kind of divide-
and-conquer strategy for computing extensions. Thus
we have extended the work of Goodwin [Goodwin, 1987
who uses strongly connected components to guide the
search in a particular labeling algorithm.
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Figure 1: Removing Backpointing Justifications

By linking the subnetworks of every level we obtain
a TMS-network that reflects the level-structure of the
default theory. Its extensions can be split in the same
way as the preferred subtheories of the level-based de-
fault theory. This network is also obtained if we first
ignore the levels and translate the defaults according to
[Junker and Konolige, 1990]. Then we remove all justi-
fications leading from a higher level to a lower level (as
illustrated in figure 1). It is difficult to imagine how a
direct, ad-hoc approach to diagnosis could yield such a
regular TMS-network.

2 From Diagnosis to Defaults
2.1 Prioritized Defaults

In this section, we introduce the non-monotonic formal-
iIsm which will be used to solve the diagnosis problem.
We consider prioritized defaults [Brewka, 1989] which
have been introduced by Gerd Brewka to extend the
simple formalism of David Poole [Poole, 1988]- Unlike to
Poole's Theorist, defaults can there be ordered into dif-
ferent levels L; of reliability. Defaults in L; have higher
priority than defaults in L;j..

To formulate this precisely, consider a first-order lan-
guage L including a special unsatisfiable constant ..
The first-order consequences of a subset X of L are de-
fined as Th{X)} :={q€ £ | X E ¢}.

Defaults are represented by a name ¢ (¢ is an atomic
ground formula from £) and a premise ¢ O ¢ (where ¢
is an arbitrary formula of £):

Definition 2.1 A level-based default theory A =
(W, L) consisis of a set W C L of classical premises and
a tupel L ;= (Ly,..., L) of disjoint levels L; containing
atomic ground formulas from L.

Preferred subtheories of level-based default theories are
defined recursively. A preferred subtheory of level i +
1 1s obtained from a preferred subtheory of level # by
adding elements of L;4; as long as consistency with W
Is ensured:

Definition 2.2 Let A = (W,(Lq,..., L)) be a level-
based defeult theory. 1" 1s a preferred subtheory of level

i iff
1. T=§ t'fi = {
2. T is the union of a preferred subtheory T" of level
i —1 and @ mazrimal subset of L; s.t. TUW £ L of
ie{l,... .k}

The preferred subtheories of A are the preferred subthe-
ories of level k.

We obtain Poole's Theorist if we consider only a sin-
gle level. Furthermore, if we already know a preferred
subtheory T' of level i we could determine a subthe-
ory of the next level by supplying Theorist with T' as
a set of premises and L;.; as a set of hypotheses. This
view helps us to get a link to Reiter's default logic and
from this to Doyle's TMS using the existing translation.
Poole has shown that his simple hypotheses g correspond
to prerequisite-free normal defaults m* in Reiter's default

logic. We define
Dy:={-lg€L) (1)

Then T is a preferred subtheory oflevel i+1 iff T consists
of elements of levels and Th(TW W) is an extension of
a default theory (DA.A. IV U T') a la Reiter which is
supplied with a preferred subtheory T* of level i.

2.2 Diagnosis by Prioritized Defaults

In this section, we sketch how diagnosis problems can
be formulated by level-based default theories. Tins in-
cludes statements for ranking different kinds of models
(e.g. ‘'adders are more reliable than multipliers’or ‘prefer
correct models to fault models).

In the sequel, let O be a set of objects or components.
Their normal and faulty behaviour is described by sev-
eral models’ that exclude each other. The models of
o € O are named by atomic formulas rm{o). For the
sake of simplicity, we assume that every component has
exactly k models. A first-order theory W is used to de-
scribe the following facts:

« definition of the models (i.e. the hehaviour of the

single components)

« connections of pins or relationship between at-
tributes of different components

« values of the pins/attributes (including supplied in-
put values, as well as observed output values)

o exclusion of models (Yz.~m;(z)V —-m;(z) for i # j)
e completeness of models (Yz.m(2) V...V my(2))

We are interested in sets of hypotheses which explain
the observed behaviour (i.e. the values of the output
pins). A usual approach selects as many model as possi-
ble without violating consistency (models arc selected by
adding their names to the theory above). This method
treats every model in the same manner. However, we
at least want to prefer normal models to fault models
as in [Dressier and Struss, 7990]. A fault model should
only be selected if a normal model is inconsistent with
the current selection. Furthermore, it is useful to fo-
cus the diagnosis process to components that are more
likely to fail. For example, cable connections often fail
whereas TTL-circuits are reliable. We can easily ex-
press these preferences in a level-based default theory
consisting of the first-order theory W and different lev-
els (Lq,...,Z,i,£,-+!, . ..,Li+k-1) containing the names
of models:

" Models in the sense of model-based diagnosis.
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 rank normal models of the components in O accord-
iIng to their reliability and distribute them among
the levels L. ., L;.

* include the j-th fault model m, (o) of every compo-
nent into Li+j.;.

Thus, we have also ranked the different fault models.
Other rankings could be used for other approaches to
diagnosis. Each preferred subtheory of this level-based
default theory corresponds to a diagnosis candidate as
defined in [Reiter, 1987] and [de Kleer and Williams,
1987], To be more precisly, the negation of the correct
models of the failing components are derived from the
preferred subtheory. It is a maximal consistent subset
of the set of models. Due to the preferences we do not
obtain every candidate. Thus, diagnosis is focused to
luss robust components. A similar effect is achieved in
[de Kleer, 1990] by preferring diagnoses with less faults.

2.3 Formulating Davis' Familiar Example

We illustrate our approach by the well-known adder-
multiplier circuit of Davis. It consists of two adders
A1, A2 and three multipliers M1, M2, M3

adder( Al multiplier(M3) (2),
adder(A2) (M2) W

multiplier(M1)
multiplied

These components are connected as follows:

inlJ(MI)=A mAMD=C out(Ml)=X
iml(M2) = B mAM2)=D out{M)=Y
tnf(M3)=C wmAMD=FE oM =2 (3
mi(Al)=X m&Al)=Y out(Al)=F
ml(A2)=Y mHA2)=2Z2 oul(A2)=C

The correct models are described by a predicate ok and:

Vr.adden(z) A ok(z) D inl(z} + in2(z) = out(r)
Vz.mulipher{z) A ok(z) O tni{x) + 1m2{z) = oul(z)

(4)

Tle supplied input and observed output values are:
A=2 B=2 (=3 D=3 E=2 5
F=10 G=12 ( )

In this example, we don’t consider fault models. Let

W be a first-order theory including the formulas above
and further axioms for reasoning with equality and
arithmetics?, Now, we built up a level-based default the-
ory A jpe = (W, L) where L := (L, L) consists of two
levels. As a heuristc, we assume that adders are more
reliable than multipliers:

Ly := {ok{ A1), ok{ A2)} (6)
Lo := {ok{ M), o(M2), ol{ M3}

A ire has two preferred subtheories, namely:

T := {ok{ A1), 0k{ A2), ok{ M 2}, ok{ M 3)} (7)
Ty := {0k Al), 0k A2), ok{ M 1}}

Thus, only two of the four diagnosis candidates in
[de Kleer and Williams, 1987] are obtained, namely

*In practical systems, we realize equality and arithmetics
using attached calls of lisp functions and simple propagation
rules as in Steele's constraint-system.
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{~ok(M1)} and {—ok(M2),~okM3)}. Thus, prefer-
ences have a similar effect as the fault probabilities in
[de Kleer and Williams, 1987]: They focus the diagno-
sis process to candidates which are more likely to fail.
Since we use a non-monotonic logic other candidates (e.g.
{—~ok(A1}}) are obtained if additional observations (e.g.
X =6and Y = 6) are added. Other approaches to diag-
nosis including fault models [Struss and Dressler, 1989)
could be realized by adding these models to higher levels
which have a lower priornty.

3 Results for Doyle’s TMS

Before we are able to map level-based default theories to
TMS, we need some properties of TMS.

3.1 Relevant Properties of Doyle’s TMS

In [Junker and Konolige, 1990], we developed a compact
description of Doyle’s TMS that is based on closures of
operators. For a detailed discussion, we refer the reader
to this work. We cite only the prerequisites for the the-

orems below: An operator apply : 9L , oL mapping
subsets of £ to subsets of £ is monotonic and compact
1ff
if X CY then apply(X) C apply(Y)
if ¢ € apply(Y) then 3X CY : X is finite  (8)
and ¢ € apply(X)

From this, we obtain a closurc operation apply” as fol-
lows: apply”(X) i1s the minimal superset of X that 1s
closed w.r.t. apply. Sometimes, apply depends only on
a (relevant) part R of its input. In this case, it is suf-
ficient to 1terate if on the relevant part to get (the rel-
evant part of) the closure. Hence, we take a restricted

operator, which 18 expressed by the lambda-expression
(A(X).apply(X) N R):

Lemma 3.1 Let apply . 9L . 9L be o monotonic
and compact operator and K C L s.i. apply(X) =
apply(X N R} for all X C L£. Then apply*(0)N R =
(AM(X).apply(X) N R)*(0).

We obtain particular instances of such operators if we
consider justification networks (N, J) of Daoyle’s TMS.
N is a set of (arbitrary) nodes ¢ from £ that are justi-
fied by non-monotonic justifications in J having the form
{in(I),out(O) — gq). Their inlists I and outlists O are
both finite subsets of N. We obtain a monotonic and
compact operator for applying justifications if we use an
extra-index to check the outlist:

apply ;v (X} :=  {e| {in(1), out(O) — ¢) € J, (9)
ICXand ONY = 8}

In contrast to the TMS-translation of unprioritized
defaults, we supply justification networks with an input
X C N, which 1s included 1n every TMS-extension:

Definition 3.1 Let v = {N,J) be a justification nel-
work and X C N. T i3 an extension of »» and X iff
T = apply) 7(X). If v has no exlension it is incoher-
ent.

If X = 0 we just say that T is an extension of . The
extra input X does not make the computation of exten-
sions more difficult. 1ts elements just get a fixed IN-label.



Now, we consider a set Q of nodes and denote their
justifications by

J9 = {(in(I),0ut(0) =) € J | c € Q) (10)

If we are only interested in the part of the result of
apply ; y that is in Q we apply only justifications in J9:

apply ; y (X) N Q = apply ;o y(X) (11)

3.2 Clusters in TMS

In the sequel, we explore the structure of TMS-networks.
More precisely, we decompose a justification network
into components which can be labeled in isplation. These
components must not depend on the remaining network.
A part of a justification network depends on another part
if they are linked by a justification:

Definition 3.2 Let v = (N,J) be s justification nei-
work, and Cy, Cy be {wo subsets of N. C, depends on
Cy if JC* contains a justification {in(I), out O) — ¢) s.1.
(U O) NC, # d.

An independent component consists of nodes that
have no justification depending on the rest of the net-
work.

Definition 3.3 Let v = (N, J) be a justification nel-
work. Then C C N 15 an independent component of v

iff C does not depend on N — .

In the sequel, we explore properties of components.
Nodes of an independent component C can only be de-
rived from nodes in this component.

apply ye y{(X) = apply ;o (X NC) (12)
apply jc y(X) = apply jc yne(X)

Due to femma 3.1 and equation 11, these properties
can be extended to the closure of apply; -

appx‘y;,ly(@) NC = app*fy:',a,y (@)
apply;c v (8) = applyye yro(9)

This allows to state one important property of inde-
pendent components: Every extension of the compiete
network can be split into an extension of the component
and an extension of the remaining hetwork and the first
extension:

Theorem 3.2 Let v = (N, J) be a justification network,
C be an independeni componeni of v. T is an exlension

of v iff
1. TNC s an extension of (C,J°)
2. T is an extension of (N, J¥ =) and TN C.

Hence, we get an extension of T if we first find an
extension of an independent component and then extend
1t further. In general, there is no guarantee that we find
such an extension of an extension because the remaining
network may be incoherent {due to odd loops). For Jevel-
based default theories we will however obtain coherent
subnetworks.

Networks which can be split into two independent
components have an even nicer property: Their exten-
sions can be split completely. Hence, we can ignore the
extensions of (C,JC) if we determine an extension of

(N - C,JN-€)

(13)

Theorem 3.3 Let v = (N, J) be a justification network
that can be split into two independent components C and
N —C. T s an extenston of v iff

1. TNC is an extension of (C,JC)
2. TN(N =) ts an extension of (N - C, JN'C)

Due to these results we can take a divide-and-conquer
approach for computing extensions, We can compute ex-
tensions of independent subnetworks first, record them
and then proceed to get extensions of dependent com-
ponents, Furthermore, we can combine extensions of
different independent components without problems.

4 From Prioritized Defaults to TMS

In ihe next section, we consider the transiation of a de-
fault theory a la Reiter to a TMS-network and modify
it slightly to handle changing premise sets that are ob-
tained as results of lower levels.

4.1 Translating Default Logic to TMS

In Dunker and Konolige, 1990] we extracted two sets
of formulas from Reiter’s defaults. Let A = (D, W)
be a default theory. We consider the set of consequents
of defaults and the set of relevant formulas consisting
of prerequisites and negated consistency assumptions of
defaults:

Cp= {cl|(a:by, - bfe)e D)
Lp= {ql(a:bl,-“,b;/C)ED, (14)
g € {a,—by, ... . ~b})}

Defaults and classical proofs are translated separately
into justifications. Every default yields a non-monotonic
justification:

NMp = {{in(a),out(—by,...,~bg) — ¢} {

(@: by, - by/e) € D) (15)

Furthermore, we need all proofs of relevant formulas
from premises W and consequents Cp. For this purpose,
we define a set Mw (U, R) of monotonic yustifications for
a domain / C £, arange RC L, and a theory W C L:

Mw(U,R) = {{in(Q) — ¢) | Q is a minimal (16)
subset of U s.t. QU W | ¢}

As pointed out in [Junker and Konolige, 1990], these
minimal arguments for a goal ¢ can be determined by
consequence-finding algorithms based on linear-ordered
resolution. The justifications in Mw (U, R) are sufficient
to check for every element of R whether it can be derived
from any subset of [/.

In {Junker and Konolige, 1990], we have considered
Mw:(Cp, Lp) for a default theory A = (DD, W’). Here,
we take a slightly changed encoding since we want to
Liandle default theories with different premises. For this
purpose, we split W' into a a fixed part W and a chang-
ing part X which is a subset of an upper bound C'. Thus,
we obtain a set of default theories for D, W, and C:

S:={{(D,WUX)]|XCC) (17)

These default theories have a common TMS-network. Its
non-imonotonic justifications are NMp and its monotonic

justifications are Mw (Cp UC, Lp):
VD W.C = (CpLLpLC, NMpUMw{(CpUC, Lp)) {18)
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To regain the relevant part of an extension we supply
the network with the additional premises X C C of the
selected default theory:

Theorem 4.1 Let W and C be subseis of L and D be
¢ sel of defaults over £. Let X C C. There ertsis a
bijective mapping of the setl of extensions of (D, W U X))
to the set of TMS-eztensions of vp we and X.

Using this network, we can handle default theories
which differ in some part of their premise sets.

4.2 Mapping Levels to Clusters
Now, we are ready to map a level-based default theory

(W,(L1,..., L)) to TMS. We map every level to a TMS-
network getting the nodes of lower levels as wput. It
18 important that the different subnetworks are disjoint
(1.e. don’t share any node). The transiation profits from
the results in [Junker and Konolige, 1990]: We relate
every level to a default theory and map it to a TMS-
network using the translation in section 4.1. According
to the results of section 3.2 we obtain the extensions of
the complete TMS-network by a recursive characteriza-
tion which 1s very similar to the definition of a preferred
subtheory. Hence, 1t 18 not difficult to show that the
extensions of this network are exactly the preferred sub-
theories of the level-based default theory.

Below, we elaborate this In detail. Let A =
(W,(L1,...,Lz)) be a level-based default theory. A pre-
ferred subtheory of level t is asubset of L] := L U. . .UL;.
As pointed out in section 2.1, we obtain for every level
L; different default theories A; := (Dg,,W;) having a
varying premise set W;. Such a set W; consists of W
and a preferred subtheory of the next lower level which
18 a subset of L!_,. Then we get the following result:

Theorem 4.2 Let A = (W,(Ly,..., L)) be a level-
based default theory. Let & := {(Dy, WUT) |T' 15 a
preferred subtheory of level s —1}. Then T is a preferred
subtheory of level s sff T 15 an extenston of a default the-
ory in &;.

In section 4.1, we extended the TMS-translation of
default theories to capture changing premise sets. For
level 4, the changing part 18 Cp_, containing all conse-

quents of defaults of lower level;. ll'ﬂhrrt»s: that Cp L, = L
and Cp,, = L; since the defaults in Dy, have the sim-

ple form -:' for ¢ € L;. Thus, we obtain the network
vi = vp, w.ur_ . 1f we supply it with a preferred sub-
theory of level t — 1 we get a preferred subtheory of level
1 as an extension of ;.

Thus, we could get the preferred subtheories of the
level-based default theory if we link the networks of its
levels. Let »; be equal to (N;, J;). First, we consider the
nefworks for the levels 1 to 1:

vai = (NU...UN;, J;U...UJ) (19)

The complete network v, is equal to va ;.

Now, we would like to apply the resulis of section 3.2
in order to relate the extensions of subnetworks to the
preferred subtheories of a certain level. First, we have
to 1dentify independent components. Since every default
1s positive and occurs in exactly one level the sets N; of
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Figure 2: lllustration for theorem 4.4

nodes are mutually disjoint. Hence, there 1s no justifica-
tion ieading from N;— (N, U.. .UN;_1) to NyU.. .UN;_1:

Lemma 4.3 Let A = (W,(Ly,..., L)) be a level-based
default theory. Then the set NiU.. .UN,;_, of the nodes
of va j—1 1§ an independent component of v ;.

After getting all technical prerequisites, we are able
to apply theorem 3.2 to the subnetworks of the level-
based default theory. Thus, we can prove the following

theorem by induction on ¢ using the theorems 4.2, 4.1,
and 3.2 (cf. figure 2):

Theorem 4.4 Let A = (W,(L1,...,Lz)) be a level-
based defaultl theory. Then there extsis a bijective map-

ping of the sel of ertenstons of the subnetwork va; to
the sel of preferred sublheories of level 1.

The mapping 18 indeed very simple: Just take the nodes
of an extension that are in L] to obtain a preferred sub-

theory. In turn, we get the main result of this paper:

Theorem 4.5 (Main) Let A = (W,(Ly,...,Li)) be a
level-based defaull theory. Then there exssts a bijective
mapping of the sel of extensions of the nelwork va 1o
the sel of preferred sublheories of A.

Thus, we have translated a level-based default theory
into a TMS-network. It reflects the level-structure of
the defaunit theory. It could also be obtained from the
network of a level-free default theory by removing justi-
fications leading from a subnetwork of a higher level to
a subnetwork of a lower level.

Our approach can also be applied to a restricted
kind of prioritized circumascription which is obtained by
adding unique names assumption and domain closure.
Due to [Baker and Ginsberg, 1989}, such a circumscrip-
tion theory can be mapped to a level-based default the-
ory, which 18 in turn translated to a TMS-network. For
circumscription, goal-direcied reasoning is required. To
prove a goal ¢ € £ we need further justifications for
proofs of g. After that, we can get rid of a large part of
the network. According to theorem 3.2, we can focus our
attention to the minimal independent component con-



taining the goal ¢ because the remaining subnetwork is
coherent in this case.

4.3 Network for Davis’ Familiar Example

Consider again the circuit example of section 2.3. In
this section, we translate the default theory A ;.. into
a TMS-network. The relevant first-order proofs can be
extracted from the conflict sels, i.e. minimal sets of hy-
potheses that are inconsistent in conjunction with the
premises. According to [de Kleer and Williams, 1087],
we get two conflict sets:

{o{M1), ol{M2), o{ A1)} UW |= L
{0k M1), o M3), ok(A1), ok A2} UW |z L (20)

We get the arguments for the relevant formulas —ok{e)
by applying the deduction theorem to the conflict sets.

Next, we consider the subnetworks for both levels.
The first level contains only adders leading to two non-
monotonic justifications. p; consists of

{out(~ok(A1)) — ok{A1)) (21)
(out(—~ok(A2)) — ok(A2))

We don’t get monotonic justifications in the first level
because every conflict set contains some multiplier which
belongs to a higher level. For the second level, we obtain
a non-monotonic justification for each multiplier;

{(out(—ok{M1)) — ok(M1))
(out(—:nk(m'.?)) — ok{ M 2)) (22)
(out(—~okM(M3)) — ok(M3})

Additionally, 2 contains justifications for the negations
of correct models of multipliers that are obtained from
the conflicts of equation 20:

{in(ok(Al), o(M2)) — —ok(M 1)}
{(in(ok{Al), 0k{ A2), ok{M 3)) — —ok({M 1))
(in{ok({ A1), ok(M1)) — —ok(M2))
{in(ok( A1), ok( A2), 0k{ M 1}) — —0k{M3))

(23)

This network has two non-monotonic loops sharing
-ok(M1). To find labelings, we choose a label for this
node and proceed with propagation. In general, we first
consider networks for lower levels. Since the network
lacks rnonotonic loops no groundedness check is neces-
sary as in [Junker and Konolige, 1990].

5 Conclusion

We pointed out how prioritized default theories [Brewka,
1989] can be used to obtain a TMS-based system for
generating preferred diagnoses. To achieve this goal, we
showed three results, which are of their own interest:

 Prioritized defaults allow to express preferences be-
tween models of behaviour in diagnosis from first
principles. Thus, the diagnosis process can be fo-
cused to candidates that should be investigated first.

« Extensions of TMS-networks having independent
components can be split into extensions of subnet-
works. Hence, divide-and-conquer methods may be
used to compute extensions. An example for this is
Goodwin's TMS-algorithm [Goodwin, 1987].

 Levels of defaults are mapped to TMS according
to [Junker and Konolige, 1990] and then linked to-
gether using the result above. Thus, we get a TMS-
based prover for prioritized defaults which is an al-
ternative to Baker's and Ginsberg's prioritized cir-
cumscription prover [Baker and Ginsberg, 1989].

Priorities on general defaults have also been considered
in [Brewka, 1989], Our TMS-translation carries over to
these defaults provided they don't share components.
This condition ensures disjoint subnetworks.

An issue for future work is to see whether prioritized
defaults can substitute fault probabilities [de Kleer and
Williams, 1987], [de Kleer, 1990] in practical problems.
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