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Abs t rac t 

This paper presents a logically complete as­
sumption based t ruth maintenance system 
(ATMS) that is part of a complex blast fur­
nace computer aided piloting system [5]. This 
system is built on an efficient and logically com­
plete propositional constraint solver that has 
been successfully used for industrial applica­
tions in computer aided design. 

1 In t roduc t i on 

A reasoning maintenance system (RMS) is a critical part 
of a reasoning system, since it is responsible for assuring 
that the inferences made by that system are valid. The 
reasoning system provides the RMS with information 
about each inference it performs, and in return the RMS 
provides the reasoning system with information about 
the whole set of inferences. 

Several implementations of reasoning maintenance 
systems have been proposed in the past, remarkable ones 
being Doyle's t ruth maintenance system (TMS) [6], and 
De Kleer's assumption-based t ruth maintenance system 
(ATMS) [7]. Both of them suffer from some limitations. 
The TMS considers only one state at a time so it is not 
possible to manipulate environments [6]. The ATMS is 
intended to maintain multiple environments, but it is 
limited to propositional Horn clauses [7], so it is not 
logically complete with respect to full standard Proposi­
tional Logic. 

This paper describes an original assumption-based 
truth maintenance system that is logically complete. 
The power of this system comes from the remarkable 
properties of the typed decision graph canonical represen­
tation of propositional formulas [ l ] . This representation 
originates from researches made in the field of formal 
verification of hardware. It has been successfully used 
in P R I A M [10), a formal verifier of digital circuits that 
has been integrated in Bull's CAD system in 1988, and 
is now used by all VLSI circuit designers at Bul l . 

The paper is divided in 4 parts. Part 2 gives the logical 
specifications of the reasoning maintenance system. Part 
3 presents the typed decision graph representation. Part 
4 describes the implementation of the RMS based on this 
representation. Part 5 discusses the experimental results 
that have been obtained with this system. 

2 Funct ional Specifications 

The reasoning maintenance system receives prepositional 
formulas from the reasoning system [12]. These preposi­
tional formulas are built out of a countably infinite set of 
propositional variables using the usual logical connectors 

and We note by KB the knowledge base 
of the system, which is the set of propositional formulas 
that the RMS maintains. The RMS distinguishes two 
kinds of variables, assumptions and data, the assump­
tions being the variables from which the data wil l be 
deduced. An environment is a set of literals, each literal 
being either a propositional variable or its negation. 

Since any formula is a logical consequence of an incon­
sistent set of formulas, the first task of the RMS is to keep 
the knowledge base KB consistent If KB = {f1,..., fn} 
then it is consistent if and only if there exists at least one 
assignment of truth values to the variables of f 1 , . . . , fn 

for which these formulas all evaluate to True. A consis­
tent environment E is consistent wi th KB if (KB E) is 
consistent. If this is not the case, the RMS can be asked 
to compute the maximal consistent sub-environments of 
E that are all the maximal subsets of the set E consistent 
with KB. 

It is critical for the reasoning system to know, at any 
moment, which data can be believed and which cannot 
be. The knowledge base KB and the environment E 
are said to support the datum d if and only if d is a 
logical consequence of the formulas in (KB E), which 
is expressed by: KB, E d. If this is the case, the 
RMS can be asked to compute all the minimal subsets of 
the environment E, called the minima/ supporters, that 
also support this datum. Finally the labels of a datum 
d are all the minimal environments made of assumption 
variables that support d. 

3 Typed Decision Graphs 

Several normal forms of Propositional Logic have been 
used in the past as the basis of automated propositional 
provers and constraint solvers [ l l ] . Some of these nor­
mal forms have the remarkable property of being canon­
ical. These canonical forms are very appealing because 
they support very simple proof procedures. Two for­
mulas written in canonical form are equivalent if and 
only if they are syntactically equal. More generally, since 
Propositional Logic is sound and complete, the formula 
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g can be deduced from the assumptions { h 1 , . . . , h n } , 
which is expressed {h1,..., hn g) if and only if the 
formula ((h1 h n ) g ) is valid, which is the case 
if and only if its canonical form is equal to True. 

The computational cost of a proof procedure based 
on canonical rewriting depends on the time needed to 
rewrite the formula to be proved valid into its canoni­
cal form. This time is in the worst case. for all canonical 
forms, exponential with respect to the size of the formula 
to be rewritten. The problem is that this worst case was 
very easily obtained for all the canonical forms that were 
known unti l very recently [10]. We present here a new 
canonical representation that has been shown by expe­
rience to support a very efficient and simple rewriting 
process. 

Typed decision graphs (TDG) are a new canonical 
graph representation of Propositional Logic [ l ] . This 
canonical form is directly inspired by Shannon's decom­
position theorem. This theorem states that any Boolean 
function / ( a t i , . . . , r „ ) from the set {0 ,1 } " to the set 
{0,1} can be expressed in terms of a unique couple of 
Boolean functions ( /o, / i ) from the set { 0 , 1 } " ^ to the 
set {0,1} in the following way: 

/ =  

The decomposition or expansion process defined above 
can be iterated unti l all variables are eliminated. It pro­
duces, for any Boolean function / and for any propo­
sitional formula /, a unique decomposition tree, called 
Shannon's tree o f / , whose leaves are the constant False 
and True. The problem is that the decomposition tree 
of a formula f with n variables has 2 n - 1 vertices and 2n 

leaves so it rapidly becomes too large to be computed 
when n becomes large. However in many cases, a lot of 
these vertices are redundant and can thus be eliminated. 
The elimination rule is very simple: a vertex is useless if 
and only if its left and right subtrees are identical, and 
it can then be replaced by either of these subtrees. R. E. 
Bryant showed in [3] that by sharing identical subtrees 
that are embedded at different places in Shannon's tree 
of a formula, the memory space required to store this 
tree can be dramatically reduced, and that the resulting 
graph representation, called the binary decision diagram 
(BDD) is canonical. 

Shannon's tree of a formula f and its binary decision 
graph are canonical with respect to the decomposition 
ordering that has been chosen. The size of this graph, 
defined as the number of its vertices, heavily depends on 
this variable ordering [3], For instance there exist for­
mulas that have a BDD whose size is linear with respect 
to the size of the formula for the best variable ordering 
and exponential for the worst variable ordering. Though 
finding the best variable ordering is a NP-complete prob­
lem [9], good heuristics have been proposed to compute 
a good variable ordering from the structure of the syn­
tactic tree of the formulas [13]. 

More recently, J. P. Billon defined a new canonical 
graph representation of Propositional Logic, called the 
typed decision graphs (TDG), that holds all the remark-
able properties of the binary decision diagrams in addi-
tion wi th the instantaneous negation [ l ] . Instantaneous 

negation is obtained by using the same graph to rep-
resent a formula and its negation, and by using typed 
edges in the graphs: a positive edge is a standard one, 
a negative edge indicates that the pointed graph has to 
be transformed by a negation operation to obtain the 
equivalent BDD. Figure 1 shows the BDD and the TDG 
of the formula Typed 
decision graphs as well as binary decision diagrams sup­
port very efficient proof procedures, as well as efficient 
resolution procedures of Boolean equations [11]. 

Typed decision graphs have been developed in the 
framework of a research project on formal verification 
of digital circuits. The automated propositional prover 
that has been built on the typed decision graphs is the 
kernel of an industrially used formal verifier of circuits 
called P R I A M [10]. This tool, which has been integrated 
in Bull's proprietary computer aided design system in 
1988, automatically proves the correctness of circuits 
with respect to their specification, 

4 Implementation of the RMS 
This section explains how the typed decision graph rep­
resentation makes easy and efficient the implementation 
of the reasoning maintenance system. It gives, for each 
of the basic tasks that the system must perform, the cor­
responding procedure and its computational complexity. 

4.1 C o m p u t i n g the T D G o f a f o r m u l a 

The first task of the system is to compute the typed 
decision graphs of the formulas that it receives from the 
reasoning system. The rewriting process takes as input a 
propositional formula. It performs a depth first traversal 
of the syntactic tree of this formula, and it computes its 
T D G in a bottom-up manner by combining the typed de­
cision graphs of its embedded sub-formuias. The leaves 
of the syntactic tree of the formula are variables whose 
associated typed decision graphs have only one vertex. 
These elementary graphs are then combined using the al­
gorithm given in [3], that has been extended to TDG's, 
unti l the root of the syntactic tree is reached. The com-
plexity of this rewriting process is in the worst case ex-
ponential with respect to the size of the syntactic tree of 
the formula to be rewritten. 
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This algorithm is a modified version of the algorithm 
given in [2] for functions in disjunctive normal form. 

Note that there exist Boolean functions whose TDG 
has n vertices and that have 2n prime implicants. This 
shows why typed decision graphs are a good representa­
tion of prepositional formulas, since it means that there 
are formulas that have an exponential size with respect 
to the number of their variables when represented in dis­
junctive or conjunctive (clausal) normal form and that 
are represented by a T D G of polynomial size. 

The computational cost of the minimal supporters 
computation is the following. Computing Shannon's de­
composition of the formula P with respect to the variable 
d is linear wi th respect to the size of the TDG of the for­
mula P. Computing the characteristic function x min is in 
the worst case exponential with respect to the size of the 
TDG of the formula P0, but this worst case has never 
occurred in real world problems. Finally applying the 
function Primes can also be in the worst case exponen­
tial wi th respect to the size of the TDG of the formula 
Xmin- However in this case this exponential complexity 
does not depend on the typed decision graph represen­
tation but on the size of the set to be computed. 

The set of prime implicants that are generated by the 
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Figure 3: A sample execution of the function 
MaximalProducts 

4.6 Labels 
The variables that compose the formulas of the knowl­
edge base KB = { f 1 , . . . , fn} are the assumption vari-
ables a 1 , . . . , ap and the datum variables d1,..., dq. By 
definition the datum variables have been deduced from 
the assumption variables. The labels problem is to find 
all the minimal environments made of assumption vari-
ables that support one of the datum variables. 

The labels of the datum d are computed in three steps. 
The first step consists in computing the characteristic 
function Xmax of the set of environments built out of 
the assumption variables that are consistent with the 
knowledge base KB. This characteristic function, defined 
by: 

where we note by P the conjunction (ft • • fn), can 
be computed using the procedure defined in Section 4.5. 
The second step consists in computing the characteristic 
function Xm i n of all the environments built out of the 
assumption variables that support the datum d. This 
characteristic function can be computed using the pro-
cedure given in Section 4.4. Finally the third step in 
the labels computation consists in extracting these la­
bels from Xmax and Xmin* There are two ways to perform 
this extraction, depending on whether the characteristic 
function Xmax is used passively or actively: 

• The minimal environments that support the datum 
d can be extracted from the TDG of Xm i n using 
the function Primes presented in Section 4.4. Some 
of these minimal environments can be inconsistent 
with the knowledge base KB. These minimal en­
vironments that are inconsistent with KB can be 
eliminated using the characteristic function Xmax as 
a. filter. In this case the characteristic function Xmax 

is used passively because all minimal environments 
that support d are computed, and inconsistent ones 
are eliminated afterwards. 

♦ Inconsistent environments can be eliminated as soon 
as possible during the computation of the prime im-

plicants of the characteristic function Xmin- The 
function Primes can be modified to take a second 
argument that is the T D G of the characteristic func­
tion Xm a x ' During the bottom up generation pro­
cess, the TDG of Xmax is used to eliminate the incon­
sistent environments as soon as they are discovered. 

The complexity of this procedure is the same as the com­
plexity of the procedure Primes given in Section 4.4. 

5 Exper imenta l Results 

The reasoning maintenance system presented in this pa­
per has been written in the C language and the results 
given have been obtained on a Sun Sparc Station. The 
reasoning maintenance system has an integrated garbage 
collector that guarantees that the memory use is kept 
minimal during execution. This garbage collector is in­
cremental which allows the RMS to be used in a real 
time environment. 

The first set of examples given here are minimal sup­
porters computations. We provided the RMS with n 
environments that support the datum p1, and n envi­
ronments that support the datum q. The environment 
{P,q} supports the datum r. Each of these environments 
is made of n distinct assumptions variables. This means 
that the number of assumptions variables used in each 
of these examples is equal to 2 x n . The problem is 
to find the n2 minimal supporters of r. Table 1 shows 
the results for these examples. It gives, for each exam­
ple, the CPU time ( C P U t ime) needed to compute the 
solutions, the number of vertices (S i ze K B ) of the TDG 
that denotes the conjunction of all the formulas in the 
knowledge base and the number of minimal supporters 
(Suppor ters) to be found. Note that the size of this 
graph and the CPU time needed to build the knowledge 
base and to compute the solutions grow linearly with n. 

It has been shown that an ATMS can be used as a 
constraint solver [8]. An example of the use of an ATMS 
as a constraint solver is the n queen problem. This prob­
lem is to place n queens on a n x n chessboard so that no 
queen dominates any other one. In order to specify the n 
queen problem, we introduce n2 propositional variables; 
each one is associated with one square of the chessboard 
and indicates whether there is a queen on this square. 
The formulas or constraints of the n queen problem ex­
press that there are no more than one queen on each line, 
each column and each diagonal of the chessboard. 

Table 2 gives the results obtained for n = 4 to n = 9. 
For each of these problems, the table gives the CPU time 
( T i m e s ) needed to build the knowledge base, the size 
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(S ize K B ) of the typed decision graph that represents 
this base, the CPU time (T imes) required to compute 
the solutions and the number of solutions (Solut ions), 
These solutions are obtained through a maximal consis­
tent sub-environments request. Note that in this case 
the size of the TDG that represents the knowledge base 
grows exponentially with n, while the time needed to 
compute the solutions grows linearly with the number of 
solutions to be found. 

6 Conclusion 

This paper has presented an original implementation of a 
logically complete assumption based truth maintenance 
system. This implementation is based on a new canoni­
cal representation of Boolean functions called the typed 
decision graphs. This canonical form, which is amongst 
the most compact representations of Boolean functions 
that are currently known, has remarkable properties that 
give the system its efficiency. Our approach is quite dif-
ferent from the one followed by De Kleer who proposes 
an ATMS as a constraint solver [8], since we use here a 
constraint solver developed for other purposes to build 
an ATMS. This ATMS has been integrated in the proto-
type version of a complex blast furnace computer aided 
piloting system [5]. With in this system the RMS re­
ceives formulas from a reasoning system written in Kool 
[4]. The piloting system is intended to be a real time 
system so an incremental garbage collection scheme has 
been developed that guarantees a continuous operation 
of the RMS. 
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