
A Logically Complete Reasoning Maintenance System
Based on a Logical Constraint Solver

J.C. Madre and O. Couder t
Bull Corporate Research Center

Rue Jean Jaures
78340 Les Clayes-sous-bois FRANCE

Abs t rac t

This paper presents a logically complete as­
sumption based t ruth maintenance system
(ATMS) that is part of a complex blast fur­
nace computer aided piloting system [5]. This
system is built on an efficient and logically com­
plete propositional constraint solver that has
been successfully used for industrial applica­
tions in computer aided design.

1 In t roduc t i on

A reasoning maintenance system (RMS) is a critical part
of a reasoning system, since it is responsible for assuring
that the inferences made by that system are valid. The
reasoning system provides the RMS with information
about each inference it performs, and in return the RMS
provides the reasoning system with information about
the whole set of inferences.

Several implementations of reasoning maintenance
systems have been proposed in the past, remarkable ones
being Doyle's t ruth maintenance system (TMS) [6], and
De Kleer's assumption-based t ruth maintenance system
(ATMS) [7]. Both of them suffer from some limitations.
The TMS considers only one state at a time so it is not
possible to manipulate environments [6]. The ATMS is
intended to maintain multiple environments, but it is
limited to propositional Horn clauses [7], so it is not
logically complete with respect to full standard Proposi­
tional Logic.

This paper describes an original assumption-based
truth maintenance system that is logically complete.
The power of this system comes from the remarkable
properties of the typed decision graph canonical represen­
tation of propositional formulas [l] . This representation
originates from researches made in the field of formal
verification of hardware. It has been successfully used
in P R I A M [10), a formal verifier of digital circuits that
has been integrated in Bull's CAD system in 1988, and
is now used by all VLSI circuit designers at Bul l .

The paper is divided in 4 parts. Part 2 gives the logical
specifications of the reasoning maintenance system. Part
3 presents the typed decision graph representation. Part
4 describes the implementation of the RMS based on this
representation. Part 5 discusses the experimental results
that have been obtained with this system.

2 Funct ional Specifications

The reasoning maintenance system receives prepositional
formulas from the reasoning system [12]. These preposi­
tional formulas are built out of a countably infinite set of
propositional variables using the usual logical connectors

and We note by KB the knowledge base
of the system, which is the set of propositional formulas
that the RMS maintains. The RMS distinguishes two
kinds of variables, assumptions and data, the assump­
tions being the variables from which the data wil l be
deduced. An environment is a set of literals, each literal
being either a propositional variable or its negation.

Since any formula is a logical consequence of an incon­
sistent set of formulas, the first task of the RMS is to keep
the knowledge base KB consistent If KB = {f1,..., fn}
then it is consistent if and only if there exists at least one
assignment of truth values to the variables of f 1 , . . . , fn

for which these formulas all evaluate to True. A consis­
tent environment E is consistent wi th KB if (KB E) is
consistent. If this is not the case, the RMS can be asked
to compute the maximal consistent sub-environments of
E that are all the maximal subsets of the set E consistent
with KB.

It is critical for the reasoning system to know, at any
moment, which data can be believed and which cannot
be. The knowledge base KB and the environment E
are said to support the datum d if and only if d is a
logical consequence of the formulas in (KB E), which
is expressed by: KB, E d. If this is the case, the
RMS can be asked to compute all the minimal subsets of
the environment E, called the minima/ supporters, that
also support this datum. Finally the labels of a datum
d are all the minimal environments made of assumption
variables that support d.

3 Typed Decision Graphs

Several normal forms of Propositional Logic have been
used in the past as the basis of automated propositional
provers and constraint solvers [l l] . Some of these nor­
mal forms have the remarkable property of being canon­
ical. These canonical forms are very appealing because
they support very simple proof procedures. Two for­
mulas written in canonical form are equivalent if and
only if they are syntactically equal. More generally, since
Propositional Logic is sound and complete, the formula

294 Automated Reasoning

g can be deduced from the assumptions { h 1 , . . . , h n } ,
which is expressed {h1,..., hn g) if and only if the
formula ((h1 h n) g) is valid, which is the case
if and only if its canonical form is equal to True.

The computational cost of a proof procedure based
on canonical rewriting depends on the time needed to
rewrite the formula to be proved valid into its canoni­
cal form. This time is in the worst case. for all canonical
forms, exponential with respect to the size of the formula
to be rewritten. The problem is that this worst case was
very easily obtained for all the canonical forms that were
known unti l very recently [10]. We present here a new
canonical representation that has been shown by expe­
rience to support a very efficient and simple rewriting
process.

Typed decision graphs (TDG) are a new canonical
graph representation of Propositional Logic [l] . This
canonical form is directly inspired by Shannon's decom­
position theorem. This theorem states that any Boolean
function / (a t i , . . . , r „) from the set {0 ,1 } " to the set
{0,1} can be expressed in terms of a unique couple of
Boolean functions (/o, / i) from the set { 0 , 1 } " ^ to the
set {0,1} in the following way:

/ =

The decomposition or expansion process defined above
can be iterated unti l all variables are eliminated. It pro­
duces, for any Boolean function / and for any propo­
sitional formula /, a unique decomposition tree, called
Shannon's tree o f / , whose leaves are the constant False
and True. The problem is that the decomposition tree
of a formula f with n variables has 2 n - 1 vertices and 2n

leaves so it rapidly becomes too large to be computed
when n becomes large. However in many cases, a lot of
these vertices are redundant and can thus be eliminated.
The elimination rule is very simple: a vertex is useless if
and only if its left and right subtrees are identical, and
it can then be replaced by either of these subtrees. R. E.
Bryant showed in [3] that by sharing identical subtrees
that are embedded at different places in Shannon's tree
of a formula, the memory space required to store this
tree can be dramatically reduced, and that the resulting
graph representation, called the binary decision diagram
(BDD) is canonical.

Shannon's tree of a formula f and its binary decision
graph are canonical with respect to the decomposition
ordering that has been chosen. The size of this graph,
defined as the number of its vertices, heavily depends on
this variable ordering [3], For instance there exist for­
mulas that have a BDD whose size is linear with respect
to the size of the formula for the best variable ordering
and exponential for the worst variable ordering. Though
finding the best variable ordering is a NP-complete prob­
lem [9], good heuristics have been proposed to compute
a good variable ordering from the structure of the syn­
tactic tree of the formulas [13].

More recently, J. P. Billon defined a new canonical
graph representation of Propositional Logic, called the
typed decision graphs (TDG), that holds all the remark-
able properties of the binary decision diagrams in addi-
tion wi th the instantaneous negation [l] . Instantaneous

negation is obtained by using the same graph to rep-
resent a formula and its negation, and by using typed
edges in the graphs: a positive edge is a standard one,
a negative edge indicates that the pointed graph has to
be transformed by a negation operation to obtain the
equivalent BDD. Figure 1 shows the BDD and the TDG
of the formula Typed
decision graphs as well as binary decision diagrams sup­
port very efficient proof procedures, as well as efficient
resolution procedures of Boolean equations [11].

Typed decision graphs have been developed in the
framework of a research project on formal verification
of digital circuits. The automated propositional prover
that has been built on the typed decision graphs is the
kernel of an industrially used formal verifier of circuits
called P R I A M [10]. This tool, which has been integrated
in Bull's proprietary computer aided design system in
1988, automatically proves the correctness of circuits
with respect to their specification,

4 Implementation of the RMS
This section explains how the typed decision graph rep­
resentation makes easy and efficient the implementation
of the reasoning maintenance system. It gives, for each
of the basic tasks that the system must perform, the cor­
responding procedure and its computational complexity.

4.1 C o m p u t i n g the T D G o f a f o r m u l a

The first task of the system is to compute the typed
decision graphs of the formulas that it receives from the
reasoning system. The rewriting process takes as input a
propositional formula. It performs a depth first traversal
of the syntactic tree of this formula, and it computes its
T D G in a bottom-up manner by combining the typed de­
cision graphs of its embedded sub-formuias. The leaves
of the syntactic tree of the formula are variables whose
associated typed decision graphs have only one vertex.
These elementary graphs are then combined using the al­
gorithm given in [3], that has been extended to TDG's,
unti l the root of the syntactic tree is reached. The com-
plexity of this rewriting process is in the worst case ex-
ponential with respect to the size of the syntactic tree of
the formula to be rewritten.

Madre and Coudert 295

296 Automated Reasoning

This algorithm is a modified version of the algorithm
given in [2] for functions in disjunctive normal form.

Note that there exist Boolean functions whose TDG
has n vertices and that have 2n prime implicants. This
shows why typed decision graphs are a good representa­
tion of prepositional formulas, since it means that there
are formulas that have an exponential size with respect
to the number of their variables when represented in dis­
junctive or conjunctive (clausal) normal form and that
are represented by a T D G of polynomial size.

The computational cost of the minimal supporters
computation is the following. Computing Shannon's de­
composition of the formula P with respect to the variable
d is linear wi th respect to the size of the TDG of the for­
mula P. Computing the characteristic function x min is in
the worst case exponential with respect to the size of the
TDG of the formula P0, but this worst case has never
occurred in real world problems. Finally applying the
function Primes can also be in the worst case exponen­
tial wi th respect to the size of the TDG of the formula
Xmin- However in this case this exponential complexity
does not depend on the typed decision graph represen­
tation but on the size of the set to be computed.

The set of prime implicants that are generated by the

Madre and Coudert 297

Figure 3: A sample execution of the function
MaximalProducts

4.6 Labels
The variables that compose the formulas of the knowl­
edge base KB = { f 1 , . . . , fn} are the assumption vari-
ables a 1 , . . . , ap and the datum variables d1,..., dq. By
definition the datum variables have been deduced from
the assumption variables. The labels problem is to find
all the minimal environments made of assumption vari-
ables that support one of the datum variables.

The labels of the datum d are computed in three steps.
The first step consists in computing the characteristic
function Xmax of the set of environments built out of
the assumption variables that are consistent with the
knowledge base KB. This characteristic function, defined
by:

where we note by P the conjunction (ft • • fn), can
be computed using the procedure defined in Section 4.5.
The second step consists in computing the characteristic
function Xm i n of all the environments built out of the
assumption variables that support the datum d. This
characteristic function can be computed using the pro-
cedure given in Section 4.4. Finally the third step in
the labels computation consists in extracting these la­
bels from Xmax and Xmin* There are two ways to perform
this extraction, depending on whether the characteristic
function Xmax is used passively or actively:

• The minimal environments that support the datum
d can be extracted from the TDG of Xm i n using
the function Primes presented in Section 4.4. Some
of these minimal environments can be inconsistent
with the knowledge base KB. These minimal en­
vironments that are inconsistent with KB can be
eliminated using the characteristic function Xmax as
a. filter. In this case the characteristic function Xmax

is used passively because all minimal environments
that support d are computed, and inconsistent ones
are eliminated afterwards.

♦ Inconsistent environments can be eliminated as soon
as possible during the computation of the prime im-

plicants of the characteristic function Xmin- The
function Primes can be modified to take a second
argument that is the T D G of the characteristic func­
tion Xm a x ' During the bottom up generation pro­
cess, the TDG of Xmax is used to eliminate the incon­
sistent environments as soon as they are discovered.

The complexity of this procedure is the same as the com­
plexity of the procedure Primes given in Section 4.4.

5 Exper imenta l Results

The reasoning maintenance system presented in this pa­
per has been written in the C language and the results
given have been obtained on a Sun Sparc Station. The
reasoning maintenance system has an integrated garbage
collector that guarantees that the memory use is kept
minimal during execution. This garbage collector is in­
cremental which allows the RMS to be used in a real
time environment.

The first set of examples given here are minimal sup­
porters computations. We provided the RMS with n
environments that support the datum p1, and n envi­
ronments that support the datum q. The environment
{P,q} supports the datum r. Each of these environments
is made of n distinct assumptions variables. This means
that the number of assumptions variables used in each
of these examples is equal to 2 x n . The problem is
to find the n2 minimal supporters of r. Table 1 shows
the results for these examples. It gives, for each exam­
ple, the CPU time (C P U t ime) needed to compute the
solutions, the number of vertices (S i ze K B) of the TDG
that denotes the conjunction of all the formulas in the
knowledge base and the number of minimal supporters
(Suppor ters) to be found. Note that the size of this
graph and the CPU time needed to build the knowledge
base and to compute the solutions grow linearly with n.

It has been shown that an ATMS can be used as a
constraint solver [8]. An example of the use of an ATMS
as a constraint solver is the n queen problem. This prob­
lem is to place n queens on a n x n chessboard so that no
queen dominates any other one. In order to specify the n
queen problem, we introduce n2 propositional variables;
each one is associated with one square of the chessboard
and indicates whether there is a queen on this square.
The formulas or constraints of the n queen problem ex­
press that there are no more than one queen on each line,
each column and each diagonal of the chessboard.

Table 2 gives the results obtained for n = 4 to n = 9.
For each of these problems, the table gives the CPU time
(T i m e s) needed to build the knowledge base, the size

298 Automated Reasoning

(S ize K B) of the typed decision graph that represents
this base, the CPU time (T imes) required to compute
the solutions and the number of solutions (Solut ions),
These solutions are obtained through a maximal consis­
tent sub-environments request. Note that in this case
the size of the TDG that represents the knowledge base
grows exponentially with n, while the time needed to
compute the solutions grows linearly with the number of
solutions to be found.

6 Conclusion

This paper has presented an original implementation of a
logically complete assumption based truth maintenance
system. This implementation is based on a new canoni­
cal representation of Boolean functions called the typed
decision graphs. This canonical form, which is amongst
the most compact representations of Boolean functions
that are currently known, has remarkable properties that
give the system its efficiency. Our approach is quite dif-
ferent from the one followed by De Kleer who proposes
an ATMS as a constraint solver [8], since we use here a
constraint solver developed for other purposes to build
an ATMS. This ATMS has been integrated in the proto-
type version of a complex blast furnace computer aided
piloting system [5]. With in this system the RMS re­
ceives formulas from a reasoning system written in Kool
[4]. The piloting system is intended to be a real time
system so an incremental garbage collection scheme has
been developed that guarantees a continuous operation
of the RMS.

Acknowledgments
The authors would like to thank Jean Paul Billon for
many suggestions and good advice, Jerome Euzenat,
Philippe Kirsch, Libero Maesano and Jean Marc Pugin
from Bull Cediag for their help and very helpful crit i­
cisms.

References

[1] J. P. Billon. Perfect Normal Forms For Discrete
functions. Bull Research Report N°87019, June
1987.

[2] R, K. Brayton, G. D. Hatchel, C. T. McMullen and
A. L. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[3] R. E. Bryant. Graph-based Algorithms For Boolean
Functions Manipulation. IEEE transactions on
computers, C35(8):677-691, August 1986.

[4] Bull Cediag. Kool V2 Reference Manual Bull Ce­
diag, June 1989.

[5] Bull, ITM1, CSI. Consultation pour la realisation
d'un systeme d'aide a la conduite des hauls
foumeaux. Offre technique et Organisationnelle.
Projet Sachem, October 1990.

[6] J. Doyle. A Truth Maintenance System. Artificial
Intelligence, 12:231-271, 1979.

[7] J. de Kleer. An Assumption-based TMS. Artificial
Intelligence, 28:127-162, 1986.

[8] J- de Kleer, Comparison of ATMS and CSP Tech­
niques. In Proceedings of the 89 IJCAI Conference
pages 290-296, Detroit, Michigan, 1989.

[9] S. J. Friedman and K. J. Supowtit. Finding the Op­
timal Oredring for Binary Decision Diagrams. In
Proceedings of the 24th Design Automation Confer­
ence, June 1987.

[10] J. C. Madre and J. P. Billon. Proving Circuit Cor­
rectness using Formal Comparison Between Ex­
pected and Extracted Behaviour. In Proceedings of
the 25th Design Automation Conference, Anaheim,
California, June 1988.

[11] J. C, Madre and O, Coudert. A Complete Rea­
soning Maintenance System Based On Typed Deci­
sion Graphs. Bull Research Report N°90006, March
1990.

[12] L, Maesano. Specifications fonctionnelles de i'tnter-
face programmatique a un Systeme de Maintien du
Raisonnement Projet Sachem, June 1989.

[13] S, Minato, N. Ishiura and S. Yajima. Fast Tautology
Checking Using Shared Binary Decision Diagrams -
Experimental Results. In Proceedings of the Work­
shop on Applied Formal Methods for Correct VLSI
Design pages 107-111, Leuven, Belgium, November
1989.

[14] R. Reiter and J. de Kleer. Foundations for
Assumption-Based Truth Maintenance Systems.
Preliminary Report. In Proceedings of AAAI-87,
American Association for Artificial Intelligence Na­
tional Conference pages 183-188, Seattle, July 13-
17, 1987,

Madre and Coudert 299

