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In this paper we enlarge our methodology to well-founded 
domains (WFD) that are not necessarily constructed with a 
help of constructors, and which may introduce EQV in the 
definitions. We explain in [Franova, 88a] that finding a strat
egy for a proof of an atomic formula is one of basic problems 
of mechanizing inductive proofs. We therefore limit ourselves 
here only to this particular problem, even if the simple 
example we solve here (Manna&Waldinger's "How to Clear a 
Block" problem [87]), illustrates our overall methodology. 

2 CM-methodology 

One of the main differences of our method, in comparison 
with other approaches in inductive theorem proving [Boyer 
and Moore, 79; Bundy et al, 90] is actually very deep since it 
takes place in the basic step of any theorem proving 
methodology, viz. in the way atomic formulae are proven. In 
[Franova, 88a] we have shown the consequences of the 
choices done at such a low level on the way subproblems are 
generated during the course of a complete proof. 

Classical methods for proving by induction atomic for
mula can be classified as simplification1 (or rewrite) methods, 
i.e., they attempt to transform the atomic formula into 
simpler and simpler form, until the formula TRUE is reached. 

Our method for proving atomic formulae can rather be 
qualified as a "complication" method, stressing so that we 
rather progressively build more and more large sets of con
straints describing the condition at which the formula is 
TRUE. The proof is completed when these conditions are 
proven to be implied by those of the problem. 

We call our way of proving an atomic formula a 
Constructive Matching formula construct ion, or CM-
formula construction. 

Let us give a brief motivation for this name. If F is an 
n-ptace predicate symbol and t1 tn are terms, then 
F(t1 tj is an atomic formula. This definition of an 
atomic formula shows that an atomic formula is 
"constructed", or "build up", from a predicate name and terms 
in the following manner: We take an n-place symbol F 
providing the syntactical scheme F( _ , _ _ ) , where "_" 
represent empty positions (or arguments) to be filled up by 
concrete terms, so that finally F(l1 tn is obtained. In 
classical thinking, this process of "f i l l ing up" empty 
argument places is mentally performed in one step, i.e., we 
start from F( _ ,..., _) and reach immediately F(t1 tn). 

As opposed to this one step operation, we consider a 
piece-wise construction of an atomic formula. We start with 
the syntactical scheme F( _ , ...., _. We then take the first 
term t1 and we f i l l up the first empty argument of our scheme 
by this term, so we have F(t1, _ _ ). Then, we fill up 
the first empty argument in the last scheme by t2, obtaining 
F(t1, t2, ..„ _ ), etc. 

We thus construct (purely syntactically) in n steps Che 
formula F(t1 . . .»Q. However, in theorem proving, we need 
to speak of the validity of a given formula in a theory T made 
from the axioms. This is why we wi l l consider axioms 
defining the predicate F. These axioms allow us to change the 
above syntactical construction into a construction which, if 
successfully performed, provides a proof for F(t1..., tn). 

ritamHW 

5 [Beyer and Moore, 79] is an example of a simplification method. 
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to two similar subproblems. Firstly, it is necessary to show that there 
is an element b such that 3=a(b}. Mere, we succeed since b-2 Then 
it is necessary to prove 0<2. Here, once again we "forget* the formula 
1<3 and we concentrate our effort to the formula 0<2 Using (1) this 
simplifies to TRUE, because them is an element b (b-=1) such that 
2=(b). This prows our original formula. 

This simplification approach proves the formula in a top-
down manner, but the final leaf is TRUE in the case of 
success. Therefore, as opposed to our method, there are no 
final bottom-up steps in the simplification approach. 

It may seem that our "constructive" method makes the 
proof more complicated (as compared to the simplification 
methods) without anything to gain. Recall, however, that 
simplification procedures have been developed for theorems 
without EQV. Therefore, our method which is suitable for 
specification theorems, is more powerful, even if it may 
seem more awkward and non-useful for theorems with 
universally quantified variables only. As compared to 
classical simplification thinking, it may seem also more 
artificial, because, by our method, we may generate an 
existentially quantified lemma when proving a universally 
quantified theorem. The simplification methods are built in 
such a manner that all the subproblems generated are 
universally quantified, while this restriction is not necessary 
to our CM-methodology, 

Program synthesis methodologies ([Manna and Waldinger, 
80; Kodratoff and Picard, 83; Bibel and HOrnig, 84; 
Dershowitz, 85; Smith, 85; Perdrix, 86; Biundo, 88]) do not 
consider the problem of strategy for proving an atomic 
formula as the main problem. In fact, these methods take the 
whole specification, say Q1(x,z) & ... & Qn(x,z), where 
Q1...,Qa are literals, and perform transformations on this 
complex formula*. As opposed to such a treatment of a given 
specification, our method deals firstly7 with Q1(x,z), 
performing the CA-formula construction it finds conditions 
for a validity of this formula. After this step has been 
completed, arid assuming the conditions obtained, our method 
starts taking care of Q2(x,z), and so on, until the last literal 
Qn(X,Z) is treated 

Thus, as a summary, let us state that, in order to prove an 
atomic formula F(t1,t2), created from a predicate F and two 
terms t1 and t2, we start by building an abstract formula 

with an abstract argument The definition of F 
provides conditions for the validity of the formula Let 
us denote by C the set of all for which is true, i.e., 
C= is true}. We are then left with checking if the 
replacement of by t2 preserves the validity of i.e., 
we have to check whether t2 C 

3 CM-formula construction for WFD 

In the previous section we pointed out that the main reason 
for performing the CW-formula construction is its suitability 
for proving specification theorems. We also described the way 
to proceed when a given specification is a conjunction of 
atomic formulae. Therefore, in this section, we shall 

See (Franova. 91c] for mote detail* about differences between our 
method and the other program synthesis methods. 
7 There are heuristics which suitably order literals in a given 
specification, For instance, if x is an input and z is an output, then the 
specification ordered(z) & permui(x,z) is reordered to permul(x,z) &. 
ordered(z) Moreover, in such a reordered specification, Q1(x,z) must be 
an atomic formula. 
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11 Thus in thi i step we try to concretize the abstract argument by 
expressing it in terms of variablesof the theorem under consideration 
and/or of induction hypotheses corresponding to this theorem. It may 
happen that a given theory allows a direct replacement of E by 
lomething more explicit provided some condition C if verified. If C is 
TRUE and we succeed in performing steps 4 and 5 of our procedure, 
then it meant that the given theorem is provable without the use of 
induction. If C if not TRUE, then we obtain a conditional solution 
which, in the case of specification theorems, provides non-recursive 
pans of programs (as illustrated in section 4). 

It is assumed that we are in a world of bocks in which objects are a 
table and blocks. These blocks are all the same size, so that only one 
block can fit directly on top of another. It it also assumed that the 
robot arm may lift only one clock at a time. 

whether the block is already clear or, if it is known not to be 
clear, how many blocks are above it. We adopt here the plan 
theory developed by Manna and Waldinger [87] (further 
referred to as the row-plan theory) for describing situational 
logic events in terms of classical logics, and their notation. 

4.1 Notations 
For a given blocks a, u and v 
clear (a) is true if the block a is clear 
on (u, v) is true if the block u is on the object v 
hat (a) is the block directly on a, if it exists 
put(u,v) is the action which places block u on top of v 

In situational logic we have to consider the value of a func
tion or a predicate with respect to a state, i.e., we have to 
introduce an explicit state argument w for them. For 
example, for the predicate clear and the function hat we have 
CIcar(w.a) is true if the block a is clear in state w 
hat'(w,a) is the block on top of the block a in state w 

Actions are represented as functions that yield states; for 
example put'(w,u,v) is the state obtained from state w by 
putting block u on object v. 

4.2 Axioms for mw-plan theory 

THE FUNCTION ":" 
If s is a state and e an object, then s;e denotes the object 

designated by e in state s. 
To any n-ary function symbol f a new n+1 -ary symbol f 

is associated with the property 
w:f(u1....,un) = f'(w,w:u l , ..., w:u„) (object linkage) 

for example, a fixed block w:hat(u) can be expressed 
equivalenuy by hat'(w,w:u). 

THE RELATION""" 
This relation is analogous to ":", but the relation :: is for 

predicates. If s is a state and e is a proposition, then s::e is a 
proposition denoting the truth-value designated by e in state 
s. E.g., s::clear(d) is true if the block s:d is clear in state s. 

Analogously to the object linkage, the propositioned iinkage 
linkage axiom is introduced. To any n-ary predicate symbol r 
a new n+l-ary symbol R is associated with the property 
w : : r ( u 1 . . . . . , u n ) = R(w,w;u1,......,w.un) (prepositional Linkage) 
for example, s:;clear(d) = Clear(s,s:d), i.e., s:xlear(d) is true 
if the block s:d is clear in state s. 

THE EXECUTION FUNCTION ";" 
If s is a state and p a plan, s;p denotes the state obtained 

by executing plan p in state s. E.g., s;put(a,d) is the state 
obtained by putting clock a on object d in state s. 

Analogously to the above linkage axioms, the plan linkage 
linkage axiom is introduced. To any n-ary plan symbol g a 
new n+l-ary symbol g' is associated with the property 

w ; g ( u 1 . . . , u n ) = g ' (w ,w :U 1 , ..., w : u n ) (planLinkage) 
for example, w;put(u,v) = put'(w,w:u,w:v). 

The empty plan A is taken to be a right identity under the 
execution function. This is formalized by the axiom. 

w ; A = w (empty plan) 

There are objects that do not depend on states considered. 
For instance, the constant table always denotes the same 
object. These objects are called rigid designators, i.e., an 
object u is a rigid designator, if for all states w 

w:u = u (rigid designator) 

THE PLAN COMPOSITION FUNCTION "ii" 
This notion of composing plans is introduced in the 

following way. If p1 and p2 are plans, p1;;p2, is the 
composition of p. and p, where it is understood that P1 is 
executed first ana then only p2 is executed. This is expressed 
by the pirn composition axiom 

W;(P 1 ; ;P 2 ) = (W;P1);P2 (plan composition) 
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5 Conclusion 

In all our previous work we presented the CM-
construction of atomic formulae as a method which helps to 
solve strategic aspects of inductive theorem proving applied 
to program synthesis. This paper shows that our Constructive 
Matching methodology can be applied and adapted to other 
well-founded theories, not only to CD, even though the 
present implementation works only for CD. 

Summarizing, wc have illustrated in this paper the 
following characteristic features of our CM methodology: 
G It provides a couple (what has to be achieved; what it has to be 
achieved from) at any step of an inductive proof. This is the main 
characteristic. Mote that this feature reduces the search space of a proof, 
the last is the main problem of deductive approach to program synthesis. 

G For the induction step, it uses the general induction scheme and a kind 
of 'forced' application of this scheme (more details are given in section 4). 

G If necessary, it applies the Cm-formula construction to formulae 
obtained as conditions lor the validity of F (see step 2'). 

CM methodology can be compared to the notion of a plan 
in Bundy's reconstruction [Bundy, 88] of Boyer&Moore 
methodology. Our methodology could create one of the most 
general plans in Bundy's reconstruction, because it comprises 
most of Bundy's "reconstructed" tactics14. A deep analogy 
between Bundy's approach and our methodology is illustrated 
by the importance of universally quantified induction 
hypotheses acknowledged by both approaches [Franova, 85; 
Bundy et al., 901 

similar lo verifying the correctness of the given axioms. Besides, the 
relation hat(b) < b seems to be a reasonable well-founded relation for 
induction proofs in blocks world problems. However, analogously to 
constructible domains, for particular problems, how the well-founded 
relation looks, depends always on the given axioms (or the given 
theory). In other words, we cannot know in advance the well-founded 
relation which is lo be used in blocks world problems, since it depends 
on the available definitions. 

For instance, all examples presented in fBundy et al., 90] are  
successfully solved by our methodology. This shows that our way of 
constructing a formula provides a solution for the problem of making 
possible the application of induction hypotheses, this problem being 
the topic of Bundy's "rippling-out" tactics. Since we prove also 
theorems containing existential quantifiers, our approach is clearly 
more general than Bundy's. 

Moreover, a "rational reconstruction" of our methodology 
would allow the introduction of existential quantifiers into 
Bundy's improved system, thus recognizing program 
synthesis as an inductive theorem proving problem, or, in 
other words, bringing program synthesis back where it 
belongs classically - inductive theorem proving. 

In [Franova, 91c] wc describe in detail the strengths and 
weaknesses of our methodology viewed as a program 
synthesis methodology. 

Acknowledgments 

We express our thanks lo an anonymous referee for many 
constructive critics. 

References 
JBbel and Horn®, 84] W. B ibe l , K. M. Hdmig; LOPS - A System Based on a 
Strategical Approach to Program Synthesis: in A. Biermann, G. Guino.Y. Kodnaioff 
(ed): Automatic Program Construction Techniques, Macmillan Publishing Company, 
London. 1984,69-91. 
[Biundo, 68] S Biundo: Automated synthesis of recursive algorithms as a theorem 
proving tool: in [Kodratoff. 88], 553-558 
(Boyer and Moore, 79] R. S. B o y , J S Moore: A Computational Logic, Academic 
Press, 1979. 
[Bundy, 88] A Bundy: The use of Explicit Plans to Guide Inductive Proofs: in E. Lusk, 
R. Overbook, (ed): 9th International Conference on Automated Deduction] LNCS 
310, Springer-Verlafl. Berlin, 1988, 111-120. 
Bundy et al., 90] A. Bundy, F. van Harmelen, A. Smaill, A. Ireland: Extensions to the 
Rippling-Out Tactic for Guiding Inductive Proofs; in M E. Siickel. {ed.}: (ed) 
International Conference on Automated Deduction; Proceedings, Lecture Notes in 
Artificial Intelligence No. 449, Springer-Veriag, 1990, 132-146 
[Burstall and Darlington, 77] R M. Burstall, J.Darlington: A trans formation system 
for developing recursive programs; J ACM 24,1, January, 1977.44-67. 
[Dershowitz, 85] N. Dershowitz: Synthesis by Completion; in [Joshi, 85], 208-214. 
[Franova and Kodratoff, 91a] M. Franova, Y. Kodratoff: Solving "How to Clear a 
Block" with CONSTRUCTIVE MATCHING methodology, extended version of this 
paper, Rapport de Recherche LRI., July, 1991. 
[Franova and Kodratoff, 91b] M. Franova, Y. Kodratoff: Program Synthesis is 
Theorem Proving; Rapport de Recherche LR. I., July, 1991. 
[Franova, 85] M Franova: CMstrategy : A Methodology for Inductive Theorem 
Proving or Constructive WelI-Generalized Proofs; in [Joshi, 85], 1214-1220 
[Franova, 88a] M. Franova: Fundamentals for a new methodology for inductive 
theorem proving: CM-construction of atomic formulae; in [Kodratoff, 88], 137-141. 
[Franova, 88b] M. Franova: Fundamentals of a new methodology for Program 
Synthesis from Formal Specifications: CM-constructton of atomic formulae; Thesis, 
Universite Paris-Sud, November, Orsay, France, 1988. 
[Franova, 91a] M. Franova: Generating induction hypotheses by Constructive 
Matching methodology for Inductive Theorem Proving and Program Synthesis 
revisited; Rapport de Recherche No.647, L R l , Universite de Paris-Sud, Orsay, 
France, February, 1991. 
[Franova, 91b] M. Franova: Failure analysis in Constructve Matching methodology; 
Rapport de Recherche LRI., July, 1991. 
[Franova, 91c] M. Franova: Constructive Matching methodology for Inductive 
Theorem Proving and Program Synthesis revisited; RR L.R.I., July, 1991. 
[Joshi, 85] A. K. Joshi, (ed): Proceedings of the Ninth International Joint 
Conference on Artificial intelligence. August, Los Angeles, 1985. 
[Kodratoff and Picard, 83} Y. Kodratoff, M. Pcard: Completion de sysiemes de 
reecriture et synthase de programmes a partir de leurs specifications; Bigre No 35, 
October, 1983. 
[Kodratoff, 88] Y. Kodratoff, (ed): Proceedtngs of the 8th European Conferance 
on Arlificial Intelligence, August 1-5, Pitman, London, United Kingdom, 1988. 
[Manna and Waldinger, 80) Z. Manna, R.Waidinger: A Deductive Approach to 
Program Synthesis; ACM Transactions on Programming Languages and Systems, 
Vol. 2., No.1, January, 1980,90-121. 
[Manna and Waldinger, 87] Z Manna, R. Waldinger: How to Clear a Block: A Theory 
of Plans; Journal of Automated Reasoning 3,1987,343-377 
[Perdrix, 86] H Perdnx: Program synthesis from specifications; in ESPRIT'85, 
Status Report of Continuing Wort, North-Holland, 1986, 371-385. 
[Smith, 85) 0. R. Smith: Top-Down Synthesis of Simple Divide and Conquer 
Algorithm; Artificial Intelligence, vol. 27. no. 1,1985,43-96. 

Franova and Kodratoff 237 


