Moving Target Search

Toru Ishida
NTT Communications and
Information Processing Laboratories
1-2356, Take, Yokosuka,
238-03, JAPAN
ishida%nttkb.ntt.jp@relay.cs.net

Abstract

We consider the case of heuristic search where
the location of the goal may change during the
course of the search. For example, the goal may
be a target that is actively avoiding the problem
solver. We present a moving target search algo-
rithm (MTS) to solve this problem. We prove
that if the average speed of the target is slower
than that of the problem solver, then the prob-
lem solver is guaranteed to eventually reach the
target. An implementation with randomly po-
sitioned obstacles confirms that the MTS algo-
rithm is highly effective in various situations.

1 Introduction

All existing heuristic search algorithms assume that the
goal state is fixed and does not change over the course of
the search. For example, in the problem of driving from
the current location to a desired goal location along a
network of roads, it is assumed that the goal location
Is fixed and does not change during the drive. In this
paper, we relax the assumption of a fixed goal, and allow
it to move over time. In the road navigation example,
instead of driving to a particular address, the task may
be to reach another vehicle which is in fact moving as
well.

There is no assumption that the target will eventually
stop, but the goal is achieved when the position of the
problem solver and the position of the target coincide.
In order to have any hope of success in this task, the
problem solver must be able to move faster than the
target. Otherwise, the target could evade the problem
solver indefinitely, even in a finite problem space, merely
by avoiding being trapped in a dead-end path.

Existing search algorithms can be divided into two
classes, off-line and real-time. Off-line algorithms, such
as A*[l], compute an entire solution path before exe-
cuting the first step in the path. Real-time algorithms,
such as Real-Time-A*[2], perform sufficient computation
to determine a plausible next move of the problem solver,
execute that move in the physical world, then perform
further computations to determine the following move,
etc., until the goal is reached. These algorithms do not
find optimal solutions, but can commit to actions in con-
stant time per move.

204 Automated Reasoning

Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, Ca. 90024, U.S.A.

korf@lanai.cs.ucla.edu

If one were to use an off-line algorithm such as A*
for the moving goal problem, by the time an optimal
path was found to the current position of the goal, and
the path was executed, the goal would have moved to a
new position. If one were then to repeat the algorithm
with the new current state and the new goal position,
one could follow the target. In fact, this approach would
work if the time to perform the search was negligible.
However, we assume that search takes time, and thus
even if the problem solver could move faster than the
target, if it has to stop periodically to plan a new path,
its speed advantage over the target may be lost.

Therefore, we must consider real-time algorithms that
can rapidly react to each move of the target, and always
make the best move toward the current location of the
target. The next section briefly reviews previous work
on such algorithms for the case of a fixed goal location.

2 Previous Work: LRTA*

Learning-real-time-A*(LRTA*)[2] is a real-time search
algorithm for fixed goal states. As such, it commits to
individual moves in constant time, and interleaves the
computation of moves with their execution. It builds
and updates a table containing heuristic estimates of
the distance from each state in the problem space to
the fixed goal state. Initially, the entries in the table
correspond to heuristic evaluations, or zero if none are
available, and are assumed to be lower bounds on actual
distance. Through repeated exploration of the space,
however, more accurate values are learned until they
eventually equal the exact distances to the goal.

The LRTA™ algorithm repeats the following steps until
the problem solver reaches a goal state. Let x be the
current position of the problem solver.

1. Calculate f(x') = h(x) 4- k(x,x') for each
neighbor x' of the current state, where
h(x') is the current heuristic estimate of
the distance from x' to a goal state, and
K(x,x') Is the cost of the edge from x to
X .

2. Move to a neighbor with the minimum
f(x') value. Ties are broken randomly.

3. Update the value of h(x) to this minimum
f(x') value.

The reason for updating the value of h(x) is that since

the f(x) values represent lower bounds on the actual
distance to the goal through each of the neighbors, the
actual distance from the given state must be at least as
large as the smallest of these estimates.

In a finite problem space with positive edge costs, in
which there exists a path from every node to a goal,
LRTA™* is complete in the sense that it will eventually
reach a goal. Furthermore, if the initial heuristic values
are lower bounds on the actual values, then over repeated
problem-solving trials, the values learned by LRTA™* will
eventually converge to their exact values along every op-
timal path to the goal. LRTA™, however, requires that
the position of the goal state be fixed.

3 Problem Formulation

In this section we give a precise characterization of the
moving target search problem. We represent the problem
space as a connected graph. The graph is undirected, al-
lowing motion of either the problem solver or the target
along any edge in either direction. To simplify the fol-
lowing discussions, we assume that all edges in the graph
have unit cost. Given a graph with non-uniform but ra-
tional edge costs, we can convert it to a graph with unit
edge costs, without changing the topology of the graph,
by choosing the unit to be the lowest common denomi-
nator of the edge costs, and then inserting into any edge
with a larger value enough intermediate nodes of degree
two so that each edge has unit cost.

There is an initial position of the problem solver and
an initial position of the target. We assume the prob-
lem solver and the target move alternately, and can tra-
verse at most one edge in a single move. The problem
solver has no control over the movements of the target.
The task is accomplished when the problem solver and
the goal occupy the same node. The problem is further
characterized by the following constraints.

Speed of the problem solver and the target:

Given unit edge costs, we reduce the speed of the
target by assuming that periodically the target will
make no move, and remain at its current position.
Thus, the target can move at the same speed as the
problem solver for only so long before losing a step
by skipping a turn to move. We will slightly relax
this assumption in Section 7.

Available
space:

information about the

target and problem

We start with the assumption that the problem
solver always knows the target's position, but will
generalize this later in Section 7. We do not as-
sume that the problem solver knows the topology cf
the problem space in the vicinity of the target po-
sition, nor the topology in the vicinity of the prob-
lem solver, other than the locations of the immedi-
ate neighbors of the current location of the problem
solver. In other words, the problem solver does not
have a map of the problem space.

A heuristic static evaluation function:

Another assumption is that there also exists a
heuristic static evaluation function that returns an

estimate of the distance between any pair of states.
The only constraint placed on the static evaluation
function is that it be admissible, meaning it never
overestimates the actual distance between any pair
of points. For example, a function returning the Eu-
clidean distance in the plane is admissible, but so is
a heuristic function that returns zero for every pair
of points. Thus, we do not assume that the heuristic
static evaluation function provides any useful infor-
mation.

4 Moving Target Search Algorithm

In this section, we present the algorithm, called moving-
target search (MTS). It is a generalization of LRTA™* to
the case where the goal can move. MTS must acquire
heuristic information for each goal location. Thus, MTS
maintains a matrix of heuristic values, representing the
function h(x,y) for all pairs of states x and y. Con-
ceptually, all heuristic values are read from this matrix,
which is initialized to the values returned by the static
evaluation function. Over the course of the search, these
heuristic values are updated to improve their accuracy
In practice, we only store those values that differ from
their static values. Thus, even though the complete ma-
trix may be very large, it may be quite sparse, and sparse
matrix techniques may be used for time and space effi-
ciency.

There are two different events that occur in the algo-
rithm: a move of the problem solver, and a move of the
target, each of which may be accompanied by the updat-
iIng of a heuristic value. The problem solver and target
alternate moves, and heuristic values are updated as nec-
essary, until the position of the problem solver and the
target are equal. In the description below, x is the cur-
rent position of the problem solver, and y is the current
position of the target.

When it is the problem solver's turn to move, it calcu-
lates /(x', y) — h(x’, y) -f 1 for each of its neighbors
x' of x, and chooses a neighbor w with the smallest
f value to move to. Ties are broken randomly. If
flw, y) > h(x, y), then h(x, y) is updated to f(w, y).
The reason is that since any path from x to y must
go through one of its neighbors x', the cost of the
minimum path from x to y must be as large as the
minimum cost path through any of its neighbors x .

When it is the ftarget's turn to move, the problem solver
observes its move from y to its neighbor y', cal-
culates h(x,i/), and compares it to h(x,y), where
X is the current state of the problem solver. If
h(x,y') > h(x,y) + 1, then h(z,y) is updated to
h(x,y') - 1. The reason is that since the old and
new positions of the target are at most one unit,
apart, the distance to the old position must be at
least as large as the distance to the new position
minus one unit.

The algorithm is described more succinctly below.

When the problem solver moves from x:

1. Calculate f(xy) = h(x\y)+l
neighbor x' of x.

for each

Ishida and Korf 205

2. Move to the neighbor with the min-
imum f(z',y). Ties are broken ran-

domly.
3. Update the value of h(z, y) as follows:
| h(z,y)
h(x,y) - mar{ min,,r{h(:c',y) + 1} }

When the target moves from y to y':

1. Calculate h(z,y’) for the target’s new
position y’.
2. Update the value of h(z, y) as follows:

h(z,
h(z,y) «— maz { h%x,g')) o }

It should be emphasized that this is only one algo-
rithm to solve this problem. In particular, it was de-
signed to perform the minimum amount of computation
necessary to guarantee success. Performance of the algo-
rithm could be considerably improved by updating more
heuristic values with each move. For example, the up-
date of (X, y) performed with each move of the problem
solver could also be similarly applied to h(x,z) for values
of z other than the target position y. The drawback of
this Is that such computation requires time and mem-

ory, and may not be of any use if the target never visits
position z.

5 Completeness of Moving Target
Search

In this section, we prove that a problem solver execut-
ing MTS is guaranteed to eventually reach the target,
as long as the target periodically skips a move. We be-
gin by showing that the updates preserve admissibility
of the heuristic values. Then, we define a positive quan-
tity called heuristic disparity, which is a combination of
the difference between the current heuristic values and
their exact values, and the current estimated heuristic
distance from the problem solver to the target. We show
that in any pair of moves of the problem solver and the
target, this quantity can never increase, and decreases
whenever the target does not move. Since it cannot be
negative, and if it ever reaches zero the problem is solved,
the algorithm must eventually terminate successfully.

Lemma:

Updating in MTS preserves admissibility of heuris-
tic values.

Proof:

Assume that the current values are admissible.
There are two types of updates, those occurring with
moves of the problem solver, and those accompany-
iIng moves of the target.

In the case of problem solver moves, if h(x,y) is
updated, it is set equal to h(w,y) + I, where h(w,y)
is the minimum of h(x’, y) for all neighbors x' of x.
Since any path from x to y must go through one of
Its neighbors x', and each neighbor is one unit away,
the cost of the minimum path from x to y must be
one greater than the minimum cost path from any

206 Automated Reasoning

neighbor x' to y. If h(x\y) is a lower bound on
the cost from x' to y, then h(w, y) is a lower bound
on the cost from any neighbor x' to y, and hence
h(w, y) + 1 must be a lower bound on the cost from
x to y. Thus, this update preserves admissibility.

In the case of moves of the target, if h(x, y) is up-
dated, it is set equal to h(x,y')) — 1, where y' is the
new position of the target. Since y is at most one
unit away from y', the distance from x to y can only
differ from the distance from x to y' by at most one
unit. Thus if y' is at least h(x,y’) units from x, then
y must be at least h(x,y) — 1 units from x. Thus,
this update preserves admissibility as well.

By induction on the total number of updates, up-
dating preserves admissibility.

Theorem:

In a finite problem space, in which a path exists
between every pair of nodes, starting with non-
negative admissible initial heuristic values, a prob-
lem solver executing MTS will eventually reach the
target, if the target periodically skips moves.

Proof:

Define the htunstic error at a given state of the
computation as the sum over all pairs of states a
and b of h*(a, b) — h(a,b) where h*(a, b) is the length
of the shortest path between a and 6, and h(a,b) is
the current heuristic value. Define the heuristic dis-
tance as h(x, y), the current heuristic value between
the current state of the problem solver, x, and the
current state of the target, y. Define the heuristic
disparity as the sum of the heuristic error and the
heuristic difference.

First, consider a move of the problem solver from x
to x. If h(xy) < h(x,y), then no update occurs,
and the heuristic distance from problem solver to
target after the move, h(x\y), is at least one unit
less than the heuristic distance between them be-
fore the move, h(x,y). Thus, the move causes the
heuristic distance and hence the heuristic dispar-
ity to decrease by at least one unit. Conversely,
if h(xy) > h(xy), then h(x,y) is increased to
h(xy) -t 1. As a result, the total heuristic error
decreases by h(x’, y)+ 1 — h(x, y), while the heuris-
tic distance increases by h(x',y) — h(x, y), for a net
decrease of one unit in the heuristic disparity. Thus,
In either case, the heuristic disparity decreases by at
least one unit.

Now consider a move of the target from y to y.
If hxy) < h(xy) -f 1, then there is no update
and the heuristic difference and the heuristic dis-
parity increase by at most one unit. Conversely,
if h(x, y) > h(x, y) + 1, then h(x, y) is increased to
li(x, y)— 1. Thus, the total heuristic error decreases
by h(x, y) — 1 — h(x, y), but the heuristic difference
increases by h(x, y) — h(x, y), for a total increase in
the heuristic disparity of one unit. In either case,
the heuristic disparity increases by at most one unit.

Since a move by the problem solver always decreases
the heuristic disparity by one unit, and a move by
the target can only increase it by at most one unit,

in a pair of moves by problem solver and target
the heuristic disparity cannot increase. When the
target eventually skips a move, the heuristic dis-
parity will decrease by at least one unit. With re-
peated skipped moves by the target, heuristic dis-
parity must continue to decrease over time.

Since there is a path between every pair of states,
h*(a, b) is finite for all a and 6, and since there are a
finite number of states, total heuristic error is finite.
Similarly, since all heuristic values are admissible
and hence finite, heuristic difTerence is also finite.
Therefore, heuristic disparity is finite. Since all
heuristic values are admissible, total heuristic error
IS non-negative, and since heuristic values are non-
negative, heuristic difTerence is non-negative. Thus,
heuristic disparity is non-negative. Either the algo-
rithm terminates successfully, or the heuristic dis-
parity reaches zero, meaning that both total heuris-
tic error and heuristic difference are zero. At that
point, all heuristic values are exact, and the heuris-
tic distance between problem solver and target is
zero, meaning they are in the same location. This
constitutes a successful termination.

6 Efficiency of Moving Target Search

6.1 Space Complexity

An upper bound on the space complexity of moving tar-
get search is N?, where N is the number of states in the
problem space. The reason is that in the worst case,
heuristic values between every passible pair of states
would have to be stored. In practice, however, the space
complexity will usually be much lower. Since there ex-
ists a function which computes the static heuristic value
between any pair of points, it is only necessary to store
in memory those values that differ from the static values.
When a heuristic value is needed, if it is not in the table,
then it is computed by the function. Since at most only
one update occurs per move of the problem solver or
target, we never need more memory that the total num-
ber of moves of problem solver and target combined. In
fact, we may need considerably less since an update does
not necessarily occur with every move. Thus, the overall
space complexity is the minimum of N? and the total
number of moves of the problem solver and target.

6.2 Time Complexity

The worst-case time complexity of MTS is N°, where
N is the number of states in the problem space. This
can be obtained by investigating the maximum heuristic
disparity. The total heuristic error is upper bounded by
N°, because there are N’ heuristic values between every
possible pair of states, and the maximum heuristic value
of each state is N. On the other hand, if no updates of
heuristic values occur, then the maximum number moves
of the problem solver to reach the target is N/S, where
S is the fraction of moves that are skipped by the tar-
get. This is because the maximum heuristic difference is
TV, and it must decrease by at least one every time the
target skips a move. Thus the overall time complexity,
which is the sum of these two terms, is still N° in the

worst case. The worst case assumes initial heuristic val-
ues of zero everywhere. In this case, the learning cost
for correcting heuristic error is the major component of
the time complexity of MTS.

6.3 Learning Over Multiple Trials

Over the course of a single problem solving episode, MTS
gradually learns more accurate heuristic values, until the
target is reached. If we choose new initial states for both
the problem solver and the target, but start with the set
of heuristic values left over from the previous problem
solving episode, the knowledge learned from previous tri-
als is immediately transferable to the new episode, with
the result being better performance than if we started
with the initial heuristic values. If we continue to pre-
serve heuristic values from one episode to another, even
tually the heuristic values will converge to their exact
values for every pair of states. At that point, the prob-
lem solver will always make the best possible moves in
pursuing the target, and the time complexity of an in
dividual trial reduces to N/S. Of course, for complete
learning, N° space is required to store all heuristic val-
ues.

7/ Relaxing Some Constraints on MTS

7.1 Speed of the Problem Solver and the
Target

In previous sections, we assumed that the problem solver
can move faster than the target, but this is not strictly
necessary. A weaker condition is that the target can
move as fast as the problem solver, but occasionally
makes errors in avoiding the problem solver. For this
purpose, we define an apparently optimal move of the
target to be one that increases the distance from the
problem solver by at least one unit, according to the
heuristic values. If the heuristic values are exact, then
an apparently optimal move is in fact an optimal move
However, if there is error in the heuristic values, then
an apparently optimal move may or may not be in fact
optimal, and an optimal move may or may not appear
to be optimal. In order for it to be possible for the prob-
lem solver to catch the target, we assume that the target-
periodically makes apparently suboptimal moves.

Even in this case, a problem solver executing MTS
will sill eventually reach the target. This is because an
apparently suboptimal move by the target is one that
does not increase the heuristic difference. Thus, there is
no update and the heuristic disparity does not increase.
An apparently suboptimal move of the target, coupled
with a move of the problem solver, decreases the heuris-
tic disparity by at least one unit. Thus, the heuristic
disparity continues to decrease over time.

7.2 Available Information about the Target

We previously assumed that the problem solver always
knows the position of the target. This assumption can
also be relaxed by only requiring that the problem solver
know the position of the target at some point before the
problem solver reaches the last known position of the
target. This generalization allows the problem solver to

Ishida and Korf 207

Target

Problem Solver

Target

Problem Solver

(b)

Figure 1: Sample Tracks of MTS

temporarily lose sight of the target, and thus may be
more practical in real applications.

Suppose the problem solver and the target have moved
at most t times between the target being observed at y
and then at z. In this case, the updating of the heuristic
values is generalized as follows.

1. Calculate h(x,z) for the target's new po-
sition z.

2. Update the value of h(x, y) as follows:

e —mae [200)

The update is admissible, because y is at most t units
away from z, and the distance between x and y can only
differ from the distance between x and z by at mostt
units. Thus if z is at least h(x,z) units from x, then y
must be at least h(x, z) — t units from x.

To prove the completeness of the generalized MTS,
we must slightly modify the proof in Section 5. |If
h(x,z) < h(x,y) -M, then there is no update and the
heuristic difference and the heuristic disparity increase
by at most t units. Conversely, if h(x,z) > h(xy) +t,
then h(x,y) is increased to h(x, z) — t. Thus, the total
heuristic error decreases by h(x, z) — t h(x,y), but the
heuristic difference increases by h(x,2) — h(x,y), for a
total increase in the heuristic disparity of t units. In
either case, the heuristic disparity increases by at most
t units. Since a move by the problem solver always de-
creases the heuristic disparity by at least one unit, the
heuristic disparity decreases by t units in the period be-
tween when the target is observed at y and then at z.
On the other hand, a move by the target from y to z
can only increase it by at most t units. Thus, in the
combined sequence of t moves by the problem solver and
the target, the heuristic disparity cannot increase.

208 Automated Reasoning

8 Experimental Evaluation

We have implemented MTS in a rectangular grid prob-
lem space (100 x 100) with randomly positioned obsta-
cles. We allow motion along the horizontal and verti-
cal dimensions, but not along the diagonal. Interesting
target behavior was obtained by allowing a human user
to indirectly control the motion of the target. The user
moves a cursor around the screen using a mouse, and the
target always moves toward the current position of the
cursor, using static heuristic values for guidance. Figure
1 shows the experimental setup along with sample tracks
of the target and problem solver with manually placed
obstacles. In Figure 1(a), the user's task is to avoid the
problem solver, which is executing MTS, for as long as
possible, while in Figure 1(b), the task is to meet the
problem solver as quickly as possible.

8.1 Experiments on Different Target Response
Modes

Figure 2 illustrates the search cost represented by the to-
tal number of moves of the problem solver for various re-
sponse strategies of the target. The response modes are:
1) the target actively avoids the problem solver (Avoid),
2) the target moves randomly (Random), 3) the target
moves cooperatively to try to meet the problem solver
(Meet), and 4) the target remains stationary (Station-
ary). In Meet and Avoid, the target, also performs MTS:
iIn Meet, the target moves to decrease the heuristic dis-
tance to the problem solver, while in Avoid, the target
moves to increase the heuristic distance.

The speed of the target is set to 80% of the problem
solver. In other words, it skips one of every five moves.
To erase problem space boundaries, we formed a torus
by connecting the opposite boundaries. The problem
solver and the target are initially positioned as far apart

0 5 10
Obstacle Ratic (%)

15 20 25 30 35

—O— Avoid
Random

D
—o— Meet
—i—

Stationary

Figure 2: Performance with Different Target Response
Modes

as possible in the torus, i.e., 100 units in Manhattan
distance. Obstacles are randomly positioned. For exam-
ple, an obstacle ratio of 20% means 2000 junctions in
the 100 x 100 grid are randomly replaced by obstacles.
With high obstacle ratios (more than 20%), obstacles
join up and form walls with various shapes. When the
ratio reaches 40%, the obstacles tend to disconnect the
problem space, separating the target from and the prob-
lem solver. Euclidean distance is used as the heuristic
static evaluation function. The number of moves in the
figures are obtained by averaging 100 trials.

8.2 Experiments on Different Target Response
Modes

As shown in Figure 2, with relatively few obstacles, the
target that is easiest to catch is one that is trying to
Meet the problem solver, and the most difficult target to
catch is one that is trying to Avoid the problem solver,
as one would expect. When the obstacles become mole
numerous, however, it becomes harder to catch a target
making Random moves and one that is trying to Meet the
problem solver, than a target trying to Avoid the prob-
lem solver or a stationary target. At first, this result
seems counterintuitive. If one is trying to avoid a faster
pursuer as long as possible, however, the best strategy
IS not to run away, but to hide behind obstacles. Both
Meet and Random approximate this strategy better than

No of Moves

0 5 10 15 20 35
Obstacle Ratio (%)

—o— High

—0— LOow

I —e— Tracking

Figure 3: Performance with Various Problem Solver Sen-
sitivities

Avoid. The reason Avoid is more effective than remain-
ing stationary is that Avoid makes the problem solver
spend more time learning new heuristic values.

8.3 Experiments on the Problem Solver's
Sensitivity

As discussed in Section 7.2, the generalized MTS algo-
rithm allows the problem solver to temporarily lose sight
of the target. In other words, even if the problem solver
always knows the target's location, it can ignore some of
this information. Can this improve the performance of
the problem solver?

One possibility is for the problem solver to always keep
track of the current position of the target, or (High)
sensitivity. Another possibility is that, the problem solver
only observes the target position when it reaches the
previous position of the target, or (Low) sensitivity. We
also implemented a approach called Tracking, in which
MTS is not utilized: the problem solver first moves to
the initial position of the target, keeping track of all
moves made by the target in the meantime, and once
the initial state of the target is reached, the problem
solver simply follows the target by repeating each of its
moves. While this approach can be applied only when
the problem solver always knows the target's position, it
is worth comparing it to MTS.

Figure 3 shows the empirical results, in which the tar-

Ishida and Korf 209

get behaves in the Avoid mode. Experiments were done
In the same setting as shown in Figure 2. The Tracking
approach works relatively well when the obstacle ratio is

low, while as the ratio increases, this approach becomes
the worst.

When the obstacle ratio is low, High sensitivity is ef-
ficient, while as the ratio increases, Low sensitivity per-
forms better. It says that in the presence of obstacles,
pursuit behavior is improved by only sampling the po-
sition of the target periodically, and ignoring the inter-
mediate moves. One possible explanation for this is that
when the distance between the target and problem solver
Is large, trying to react to each individual move of the
target is counterproductive, and it is better to simply
move toward the general vicinity of the target.

9 Conclusions and Further Work

We have presented an algorithm for reaching a goal that
changes position over time. The main property neces-
sary to guarantee success is that the target moves slower
than the problem solver. We have proven that under
this condition, the problem solver will eventually reach
any target. The algorithm has been implemented and
tested in the cases of pursuing a fleeing target, reaching
a randomly moving target, and meeting a cooperatively
moving target. An empirical result shows that in pur-
suing a fleeing target, better performance is obtained by
ignoring some moves of the target and only sampling its
position periodically.

More generally, this work can be viewed as a case
study of problem solving in a dynamic and unpredictable
environment. In this case, the unpredictability stems
from the motion of the goal. However, additional un-
certainty could be introduced without any modifications
of the algorithm. For example, new obstacles could be
dynamically added to the space during the course of the
search. While this will cause performance to degrade ini-
tially, the existence of these new obstacles will eventually
be reflected in the learned heuristic values.

Acknowledgment

The authors wish to thank Tsukasa Kawaoka and Ryohei
Nakano for their support during this work at NTT Lab-
oratories. This research benefitted from discussions with
Kazuhiro Kuwabara, Yoshiyasu Nishibe, and Makoto
Yokoo. The bulk of this research was performed while
the second author was a visitor at, and supported by,
NTT Laboratories. Additional support to the second
author was provided by an NSF Presidential Young In-
vestigator Award, NSF grant IRI-8801939, and a grant
from Rockwell International.

References

[1] P. E. Hart, N. J. Nilsson and B. Raphael, "A for-
mal basis for the heuristic determination of mini-
mum cost paths", [EEE Transactions on Systems
Science and Cybernetics, SSC-4, No. 2, pp.100-107,
1968.

210 Automated Reasoning

[2] R. E. Korf, "Real-Time Heuristic Search", Artifi-

cial Intelligence, Vol. 42, No. 2-3, March 1990, pp.
189-211. 1990.

[3] J. Pearl, Heuristics: Intelligent Search Strategies
for Computer Problem Solving, Addison-Wesley,
Reading, Mass., 1984.

