
M o v i n g Target Search

T o r u I s h i d a
N T T Communications and

Information Processing Laboratories
1-2356, Take, Yokosuka,

238-03, JAPAN
ishida%nttkb.ntt.jp@relay.cs.net

R i c h a r d E . K o r f
Computer Science Department

University of California, Los Angeles
Los Angeles, Ca. 90024, U.S.A.

korf@lanai.cs.ucla.edu

A b s t r a c t

We consider the case of heuristic search where
the location of the goal may change during the
course of the search. For example, the goal may
be a target that is actively avoiding the problem
solver. We present a moving target search algo­
r i t hm (MTS) to solve this problem. We prove
that if the average speed of the target is slower
than that of the problem solver, then the prob­
lem solver is guaranteed to eventually reach the
target. An implementat ion w i th randomly po­
sitioned obstacles confirms that the MTS algo­
r i t hm is highly effective in various situations.

1 I n t r o d u c t i o n

Al l existing heuristic search algorithms assume that the
goal state is fixed and does not change over the course of
the search. For example, in the problem of dr iv ing from
the current location to a desired goal location along a
network of roads, it is assumed that the goal location
is fixed and does not change dur ing the drive. In this
paper, we relax the assumption of a fixed goal, and allow
it to move over t ime. In the road navigation example,
instead of dr iv ing to a particular address, the task may
be to reach another vehicle which is in fact moving as
well.

There is no assumption that the target wi l l eventually
stop, but the goal is achieved when the posit ion of the
problem solver and the position of the target coincide.
In order to have any hope of success in this task, the
problem solver must be able to move faster than the
target. Otherwise, the target could evade the problem
solver indefinitely, even in a f inite problem space, merely
by avoiding being trapped in a dead-end path.

Exist ing search algorithms can be divided into two
classes, off-line and real-t ime. Off-line algorithms, such
as A * [l] , compute an entire solution path before exe­
cuting the first step in the path. Real-time algorithms,
such as Real-Time-A*[2] , perform sufficient computation
to determine a plausible next move of the problem solver,
execute that move in the physical wor ld, then perform
further computations to determine the fol lowing move,
etc., un t i l the goal is reached. These algorithms do not
f ind opt imal solutions, but can commit to actions in con­
stant t ime per move.

If one were to use an off-line algor i thm such as A*
for the moving goal problem, by the t ime an opt imal
path was found to the current position of the goal, and
the path was executed, the goal would have moved to a
new posit ion. If one were then to repeat the algorithm
w i th the new current state and the new goal position,
one could follow the target. In fact, this approach would
work if the time to perform the search was negligible.
However, we assume that search takes t ime, and thus
even if the problem solver could move faster than the
target, if it has to stop periodically to plan a new path,
its speed advantage over the target may be lost.

Therefore, we must consider real-time algorithms that
can rapidly react to each move of the target, and always
make the best move toward the current location of the
target. The next section briefly reviews previous work
on such algorithms for the case of a fixed goal location.

2 P rev i ous W o r k : L R T A *

Learning-real- t ime-A*(LRTA*)[2] is a real-time search
algori thm for fixed goal states. As such, it commits to
individual moves in constant t ime, and interleaves the
computation of moves wi th their execution. It builds
and updates a table containing heuristic estimates of
the distance from each state in the problem space to
the fixed goal state. In i t ia l ly , the entries in the table
correspond to heuristic evaluations, or zero if none are
available, and are assumed to be lower bounds on actual
distance. Through repeated exploration of the space,
however, more accurate values are learned unt i l they
eventually equal the exact distances to the goal.

The L R T A * algor i thm repeats the fol lowing steps unt i l
the problem solver reaches a goal state. Let x be the
current position of the problem solver.

1. Calculate f(x') = h(x') 4- k(x,x') for each
neighbor x' of the current state, where
h(x') is the current heuristic estimate of
the distance f rom x' to a goal state, and
k(x,x') is the cost of the edge f rom x to
x' x .

2. Move to a neighbor w i th the m in imum
f(x') value. Ties are broken randomly.

3. Update the value of h(x) to this min imum
f(x') value.

The reason for updat ing the value of h(x) is that since

204 Automated Reasoning

the f(x') values represent lower bounds on the actual
distance to the goal th rough each of the neighbors, the
actual distance f rom the given state must be at least as
large as the smallest of these estimates.

In a f in i te prob lem space w i t h posit ive edge costs, in
which there exists a pa th f r om every node to a goal,
L R T A * is complete in the sense tha t i t w i l l eventually
reach a goal. Fur thermore, if the in i t ia l heuristic values
are lower bounds on the actual values, then over repeated
problem-solv ing t r ia ls , the values learned by L R T A * wi l l
eventual ly converge to their exact values along every op­
t ima l pa th to the goal. L R T A * , however, requires that
the posi t ion of the goal state be f ixed.

3 P r o b l e m Fo rmu la t i on

In th is section we give a precise character izat ion of the
mov ing target search prob lem. We represent the problem
space as a connected graph. The graph is undirected, al­
lowing mot ion of either the prob lem solver or the target
along any edge in either d i rect ion. To s impl i fy the fol­
lowing discussions, we assume tha t al l edges in the graph
have un i t cost. Given a graph w i t h non-uni form but ra­
t ional edge costs, we can convert it to a graph w i th unit
edge costs, w i t hou t changing the topology of the graph,
by choosing the un i t to be the lowest common denomi­
nator of the edge costs, and then insert ing in to any edge
w i t h a larger value enough intermediate nodes of degree
two so tha t each edge has un i t cost.

There is an in i t ia l posi t ion of the problem solver and
an in i t ia l posi t ion of the target. We assume the prob­
lem solver and the target move al ternately, and can t r a -
verse at most one edge in a single move. The problem
solver has no contro l over the movements of the target.
The task is accomplished when the problem solver and
the goal occupy the same node. The problem is fur ther
characterized by the fo l lowing constraints.

Speed of the problem solver and the target:
Given un i t edge costs, we reduce the speed of the
target by assuming tha t periodical ly the target w i l l
make no move, and remain at i ts current posi t ion.
Thus , the target can move at the same speed as the
p rob lem solver for only so long before losing a step
by sk ipping a t u rn to move. We wi l l s l ight ly relax
th is assumption in Section 7.

Available information about the target and problem
space:
We star t w i t h the assumption tha t the problem
solver always knows the target 's posi t ion, but wi l l
generalize this later in Section 7. We do not as­
sume tha t the prob lem solver knows the topology cf
the prob lem space in the v ic in i ty of the target po­
s i t ion , nor the topology in the v ic in i ty of the prob­
lem solver, other than the locations of the immedi ­
ate neighbors of the current location of the problem
solver. In other words, the problem solver does not
have a map of the prob lem space.

A heuristic static evaluation function:
Another assumption is tha t there also exists a
heurist ic stat ic evaluat ion funct ion that returns an

estimate of the distance between any pair of states.
The only constraint placed on the static evaluation
funct ion is tha t it be admissible, meaning it never
overestimates the actual distance between any pair
of points. For example, a funct ion return ing the Eu­
clidean distance in the plane is admissible, but so is
a heuristic funct ion tha t returns zero for every pair
of points. Thus, we do not assume that the heuristic
stat ic evaluat ion funct ion provides any useful infor­
mat ion .

4 M o v i n g Target Search A l g o r i t h m
In this section, we present the a lgor i thm, called moving-
target search (M T S) . It is a generalization of L R T A * to
the case where the goal can move. M T S must acquire
heuristic in format ion for each goal locat ion. Thus , M T S
maintains a mat r ix of heuristic values, representing the
funct ion h(x,y) for all pairs of states x and y. Con­
ceptual ly, al l heuristic values are read f rom this matr ix ,
which is ini t ial ized to the values returned by the static
evaluat ion funct ion. Over the course of the search, these
heuristic values are updated to improve their accuracy
In practice, we only store those values tha t differ f rom
their static values. Thus , even though the complete ma­
t r i x may be very large, it may be quite sparse, and sparse
mat r i x techniques may be used for t ime and space effi­
ciency.

There are two different events tha t occur in the algo­
r i t h m : a move of the problem solver, and a move of the
target, each of which may be accompanied by the updat­
ing of a heuristic value. The problem solver and target
alternate moves, and heuristic values are updated as nec­
essary, un t i l the posit ion of the problem solver and the
target are equal. In the descript ion below, x is the cur­
rent posit ion of the problem solver, and y is the current
posit ion of the target.

When it is the problem solver's turn to move, it calcu­
lates / (x ' , y) — h(x', y) -f 1 for each of i ts neighbors
x' of x, and chooses a neighbor w w i t h the smallest
f value to move to. Ties are broken randomly. If
f(w, y) > h(x , y) , then h(x , y) is updated to f(w, y).
The reason is that since any path from x to y must
go through one of its neighbors x ' , the cost of the
m in imum path f rom x to y must be as large as the
m in imum cost path through any of its neighbors x .

When it is the target's turn to move, the problem solver
observes its move f rom y to its neighbor y', cal­
culates h (x , i /) , and compares i t to h (x , y) , where
x is the current state of the problem solver. If
h(x,y') > h (x , y) + 1, then h(z,y) is updated to
h(x,y') - 1. The reason is that since the old and
new positions of the target are at most one unit,
apart , the distance to the old posit ion must be at
least as large as the distance to the new position
minus one uni t .

The a lgor i thm is described more succinctly below.

When the problem solver moves from x:
1. Calculate f(x',y) = h(x',y)+l for each

neighbor x' of x.

Ishida and Korf 205

It should be emphasized that this is only one algo­
r i t hm to solve this problem. In part icular, it was de­
signed to perform the min imum amount of computation
necessary to guarantee success. Performance of the algo­
r i t hm could be considerably improved by updating more
heuristic values w i th each move. For example, the up­
date of (x , y) performed w i th each move of the problem
solver could also be similarly applied to h(x,z) for values
of z other than the target position y. The drawback of
this is that such computat ion requires t ime and mem­
ory, and may not be of any use if the target never visits
position z.

5 Completeness of Mov ing Target
Search

In this section, we prove that a problem solver execut­
ing M T S is guaranteed to eventually reach the target,
as long as the target periodically skips a move. We be­
gin by showing that the updates preserve admissibil ity
of the heuristic values. Then, we define a positive quan­
t i ty called heuristic disparity, which is a combination of
the difference between the current heuristic values and
their exact values, and the current estimated heuristic
distance f rom the problem solver to the target. We show
that in any pair of moves of the problem solver and the
target, this quant i ty can never increase, and decreases
whenever the target does not move. Since it cannot be
negative, and if it ever reaches zero the problem is solved,
the algori thm must eventually terminate successfully.

Lemma:
Updat ing in M T S preserves admissibil ity of heuris­
tic values.

Proof:
Assume that the current values are admissible.
There are two types of updates, those occurring wi th
moves of the problem solver, and those accompany­
ing moves of the target.
In the case of problem solver moves, if h(x,y) is
updated, it is set equal to h (w ,y) + l, where h(w,y)
is the m in imum of h(x', y) for all neighbors x' of x.
Since any path f rom x to y must go through one of
its neighbors x', and each neighbor is one uni t away,
the cost of the m in imum path f rom x to y must be
one greater than the min imum cost path from any

neighbor x' to y. If h(x',y) is a lower bound on
the cost f rom x' to y, then h(w, y) is a lower bound
on the cost f rom any neighbor x' to y, and hence
h(w, y) + 1 must be a lower bound on the cost f rom
x to y. Thus , this update preserves admissibi l i ty.
In the case of moves of the target , if h(x, y) is up­
dated, it is set equal to h(x,y') — 1, where y' is the
new posi t ion of the target. Since y is at most one
un i t away f r om y ' , the distance f rom x to y can only
differ f rom the distance f rom x to y' by at most one
un i t . Thus if y' is at least h(x,y') uni ts f rom x, then
y must be at least h(x,y') — 1 uni ts f rom x. Thus,
this update preserves admissibi l i ty as wel l .
By induct ion on the to ta l number of updates, up­
dat ing preserves admissibi l i ty.

Theorem:
In a f in i te problem space, in which a path exists
between every pair of nodes, s tar t ing w i t h non-
negative admissible in i t ia l heuristic values, a prob­
lem solver execut ing M T S wi l l eventual ly reach the
target , i f the target per iodical ly skips moves.

Proof:
Define the htunstic error at a given state of the
computat ion as the sum over all pairs of states a
and b of h*(a, b) — h(a,b) where h*(a, b) is the length
of the shortest pa th between a and 6, and h(a,b) is
the current heuristic value. Define the heuristic dis­
tance as h(x, y) , the current heuristic value between
the current state of the problem solver, x, and the
current state of the target, y. Define the heuristic
disparity as the sum of the heurist ic error and the
heuristic difference.
F i rs t , consider a move of the problem solver f rom x
to x'. If h(x',y) < h(x,y), then no update occurs,
and the heuristic distance f rom problem solver to
target after the move, h(x',y), is at least one uni t
less than the heuristic distance between them be­
fore the move, h(x,y). Thus , the move causes the
heuristic distance and hence the heurist ic dispar­
i t y to decrease by at least one un i t . Conversely,
if h(x',y) h(x,y), then h(x,y) is increased to
h(x',y) -f 1. As a result, the to ta l heurist ic error
decreases by h(x', y) + 1 — h(x, y) , while the heuris­
tic distance increases by h(x', y) — h(x, y) , for a net
decrease of one un i t in the heuristic dispari ty. Thus,
in either case, the heurist ic d ispar i ty decreases by at
least one un i t .
Now consider a move of the target f rom y to y'.
If h(x,y') h(x,y) -f 1, then there is no update
and the heurist ic difference and the heuristic dis­
par i ty increase by at most one un i t . Conversely,
if h(x, y') > h(x, y) + 1, then h(x, y) is increased to
/ i (x , y')— 1. Thus , the to ta l heurist ic error decreases
by h(x, y') — 1 — h (x , y) , bu t the heurist ic difference
increases by h(x, y') — h(x, y) , for a to ta l increase in
the heurist ic d ispar i ty of one un i t . In either case,
the heuristic d ispar i ty increases by at most one uni t .
Since a move by the problem solver always decreases
the heuristic d ispar i ty by one un i t , and a move by
the target can only increase it by at most one uni t ,

206 Automated Reasoning

in a pair of moves by problem solver and target
the heuristic d ispar i ty cannot increase. When the
target eventual ly skips a move, the heuristic dis­
pa r i t y w i l l decrease by at least one un i t . W i t h re­
peated skipped moves by the target, heuristic dis­
par i t y must continue to decrease over t ime.

Since there is a pa th between every pair of states,
h*(a, b) is f in i te for al l a and 6, and since there are a
f in i te number of states, to ta l heuristic error is f ini te.
S imi lar ly , since all heuristic values are admissible
and hence finite, heurist ic difTerence is also finite.
Therefore, heurist ic dispari ty is finite. Since all
heurist ic values are admissible, to ta l heuristic error
is non-negative, and since heuristic values are non-
negative, heurist ic difTerence is non-negative. Thus,
heurist ic d ispar i ty is non-negative. Ei ther the algo-
r i t h m terminates successfully, or the heuristic dis-
par i t y reaches zero, meaning that bo th tota l heuris-
t ic error and heurist ic difference are zero. At that
po in t , al l heuristic values are exact, and the heuris­
t ic distance between problem solver and target is
zero, meaning they are in the same locat ion. This
const i tutes a successful te rminat ion.

6 Efficiency of Mov ing Target Search
6 .1 Space C o m p l e x i t y

An upper bound on the space complexi ty of moving tar­
get search is N2, where N is the number of states in the
problem space. The reason is tha t in the worst case,
heuristic values between every passible pair of states
would have to be stored. In practice, however, the space
complexi ty w i l l usually be much lower. Since there ex­
ists a funct ion which computes the static heuristic value
between any pair of points , it is only necessary to store
in memory those values tha t differ f rom the static values.
W h e n a heurist ic value is needed, if it is not in the table,
then it is computed by the funct ion . Since at most only
one update occurs per move of the problem solver or
target , we never need more memory tha t the to ta l num­
ber of moves of prob lem solver and target combined. In
fact, we may need considerably less since an update does
not necessarily occur w i t h every move. Thus , the overall
space complex i ty is the m i n i m u m of N2 and the to ta l
number of moves of the problem solver and target.

6.2 T i m e C o m p l e x i t y

The worst-case t ime complexi ty of M T S is N3, where
N is the number of states in the problem space. This
can be obta ined by invest igat ing the m a x i m u m heuristic
dispari ty. The to ta l heurist ic error is upper bounded by
N3, because there are N7 heurist ic values between every
possible pair of states, and the m a x i m u m heuristic value
of each state is N. On the other hand, if no updates of
heurist ic values occur, then the m a x i m u m number moves
of the prob lem solver to reach the target is N/S, where
S is the f ract ion of moves tha t are skipped by the tar-
get. Th is is because the m a x i m u m heuristic difference is
TV, and it must decrease by at least one every t ime the
target skips a move. Thus the overal l t ime complexity,
which is the sum of these two terms, is st i l l N3 in the

worst case. The worst case assumes in i t ia l heuristic val-
ues of zero everywhere. In this case, the learning cost
for correcting heuristic error is the major component of
the t ime complexi ty of M T S .

6.3 L e a r n i n g O v e r M u l t i p l e T r i a l s

Over the course of a single problem solving episode, MTS
gradual ly learns more accurate heuristic values, unt i l the
target is reached. If we choose new in i t ia l states for both
the problem solver and the target , but star t w i th the set
of heuristic values left over f rom the previous problem
solving episode, the knowledge learned f rom previous t r i ­
als is immediate ly transferable to the new episode, wi th
the result being better performance than if we started
w i t h the in i t ia l heuristic values. If we continue to pre-
serve heuristic values f rom one episode to another, even
tual ly the heuristic values wi l l converge to their exact
values for every pair of states. At that point , the prob­
lem solver wi l l always make the best possible moves in
pursuing the target, and the t ime complexi ty of an in
d iv idual t r ia l reduces to N/S. Of course, for complete
learning, N2 space is required to store all heuristic val­
ues.

7 Relaxing Some Constraints on M T S
7.1 S p e e d o f t h e P r o b l e m S o l v e r a n d t h e

T a r g e t

In previous sections, we assumed tha t the problem solver
can move faster than the target, but this is not str ict ly
necessary. A weaker condi t ion is that the target can
move as fast as the problem solver, but occasionally
makes errors in avoiding the problem solver. For this
purpose, we define an apparent ly op t ima l move of the
target to be one that increases the distance from the
problem solver by at least one un i t , according to the
heuristic values. If the heuristic values are exact, then
an apparent ly op t ima l move is in fact an opt imal move
However, if there is error in the heuristic values, then
an apparently op t ima l move may or may not be in fact
op t ima l , and an opt imal move may or may not appear
to be op t ima l . In order for it to be possible for the prob­
lem solver to catch the target, we assume that the target-
periodical ly makes apparent ly subopt imal moves.

Even in this case, a problem solver executing MTS
wi l l sil l eventually reach the target. This is because an
apparently subopt imal move by the target is one that
does not increase the heuristic difference. Thus, there is
no update and the heuristic dispari ty does not increase.
An apparent ly subopt imal move of the target, coupled
wi th a move of the problem solver, decreases the heuris-
t ic dispari ty by at least one uni t . Thus, the heuristic
dispari ty continues to decrease over t ime.

7.2 A v a i l a b l e I n f o r m a t i o n a b o u t t h e T a r g e t

We previously assumed that the problem solver always
knows the posit ion of the target. Th is assumption can
also be relaxed by only requir ing that the problem solver
know the posi t ion of the target at some point before the
problem solver reaches the last known posit ion of the
target. Th is generalization allows the problem solver to

Ishida and Korf 207

temporari ly lose sight of the target, and thus may be
more practical in real applications.

Suppose the problem solver and the target have moved
at most t times between the target being observed at y
and then at z. In this case, the updat ing of the heuristic
values is generalized as follows.

1. Calculate h(x,z) for the target's new po­
sit ion z.

2. Update the value of h(x, y) as follows:

The update is admissible, because y is at most t units
away f rom z, and the distance between x and y can only
differ f rom the distance between x and z by at most t
units. Thus if z is at least h(x,z) units f rom x, then y
must be at least h(x, z) — t units f rom x.

To prove the completeness of the generalized MTS,
we must sl ightly modify the proof in Section 5. If
h(x,z) h(x,y) - M , then there is no update and the
heuristic difference and the heuristic disparity increase
by at most t uni ts. Conversely, if h (x , z) > h(x,y) +t,
then h(x,y) is increased to h(x, z) — t. Thus, the to ta l
heuristic error decreases by h(x, z) — t — h(x,y) , but the
heuristic difference increases by h (x ,2) — h (x , y) , for a
to ta l increase in the heuristic disparity of t units. In
either case, the heuristic disparity increases by at most
t units. Since a move by the problem solver always de­
creases the heuristic disparity by at least one unit , the
heuristic disparity decreases by t units in the period be­
tween when the target is observed at y and then at z.
On the other hand, a move by the target f rom y to z
can only increase it by at most t units. Thus, in the
combined sequence of t moves by the problem solver and
the target, the heuristic disparity cannot increase.

8 Experimental Evaluation
We have implemented M T S in a rectangular grid prob­
lem space (100 x 100) wi th randomly positioned obsta­
cles. We allow motion along the horizontal and verti­
cal dimensions, but not along the diagonal. Interesting
target behavior was obtained by allowing a human user
to indirectly control the motion of the target. The user
moves a cursor around the screen using a mouse, and the
target always moves toward the current position of the
cursor, using static heuristic values for guidance. Figure
1 shows the experimental setup along wi th sample tracks
of the target and problem solver w i th manually placed
obstacles. In Figure 1(a), the user's task is to avoid the
problem solver, which is executing MTS, for as long as
possible, while in Figure 1(b), the task is to meet the
problem solver as quickly as possible.

8.1 E x p e r i m e n t s o n D i f f e r e n t T a r g e t Response
M o d e s

Figure 2 il lustrates the search cost represented by the to­
tal number of moves of the problem solver for various re­
sponse strategies of the target. The response modes are:
1) the target actively avoids the problem solver (Avoid),
2) the target moves randomly (Random), 3) the target
moves cooperatively to t ry to meet the problem solver
(Meet), and 4) the target remains stationary (Station­
ary). In Meet and Avoid, the target, also performs MTS:
in Meet, the target moves to decrease the heuristic dis­
tance to the problem solver, while in Avoid, the target
moves to increase the heuristic distance.

The speed of the target is set to 80% of the problem
solver. In other words, it skips one of every five moves.
To erase problem space boundaries, we formed a torus
by connecting the opposite boundaries. The problem
solver and the target are in i t ia l ly positioned as far apart

208 Automated Reasoning

as possible in the torus, i.e., 100 uni ts in Manhat tan
distance. Obstacles are randomly posit ioned. For exam­
ple, an obstacle ra t io of 20% means 2000 junct ions in
the 100 x 100 gr id are randomly replaced by obstacles.
W i t h high obstacle ratios (more than 20%), obstacles
jo in up and fo rm walls w i th various shapes. When the
ra t io reaches 40%, the obstacles tend to disconnect the
problem space, separat ing the target f rom and the prob­
lem solver. Eucl idean distance is used as the heuristic
stat ic evaluat ion func t ion . The number of moves in the
figures are obtained by averaging 100 tr ials.

8.2 E x p e r i m e n t s o n D i f f e r e n t T a r g e t R e s p o n s e
Modes

As shown in Figure 2, w i t h relat ively few obstacles, the
target tha t is easiest to catch is one that is t ry ing to
Meet the problem solver, and the most dif f icult target to
catch is one tha t is t r y i ng to Avoid the problem solver,
as one would expect. When the obstacles become mole
numerous, however, it becomes harder to catch a target
mak ing Random moves and one tha t is t r y ing to Meet the
problem solver, than a target t r y i ng to Avoid the prob­
lem solver or a stat ionary target. At f i rst, this result
seems counter in tu i t ive. If one is t r y ing to avoid a faster
pursuer as long as possible, however, the best strategy
is not to run away, bu t to hide behind obstacles. Both
Meet and Random approximate this strategy better than

Avoid. The reason Avoid is more effective than remain-
ing stat ionary is that Avoid makes the problem solver
spend more t ime learning new heuristic values.

8.3 E x p e r i m e n t s o n t h e P r o b l e m So l ve r ' s
S e n s i t i v i t y

As discussed in Section 7.2, the generalized MTS algo­
r i t h m allows the problem solver to temporar i ly lose sight
of the target. In other words, even if the problem solver
always knows the target 's locat ion, it can ignore some of
this in format ion. Can this improve the performance of
the problem solver?

One possibi l i ty is for the problem solver to always keep
track of the current posit ion of the target, or (High)
sensit ivity. Another possibil i ty is that, the problem solver
only observes the target position when it reaches the
previous posit ion of the target, or (Low) sensitivity. We
also implemented a approach called Tracking, in which
M T S is not ut i l ized: the problem solver first moves to
the in i t ia l posit ion of the target, keeping track of all
moves made by the target in the meantime, and once
the in i t ia l state of the target is reached, the problem
solver simply follows the target by repeating each of its
moves. Whi le this approach can be applied only when
the problem solver always knows the target's posit ion, it
is wor th comparing i t to M T S .

Figure 3 shows the empir ical results, in which the tar-

Ishida and Korf 209

get behaves in the Avoid mode. Experiments were done
in the same sett ing as shown in Figure 2. The Tracking
approach works relatively well when the obstacle rat io is
low, while as the rat io increases, this approach becomes
the worst.

When the obstacle rat io is low, High sensitivity is ef­
ficient, while as the rat io increases, Low sensitivity per­
forms better. It says that in the presence of obstacles,
pursuit behavior is improved by only sampling the po­
sit ion of the target periodically, and ignoring the inter­
mediate moves. One possible explanation for this is that
when the distance between the target and problem solver
is large, t ry ing to react to each indiv idual move of the
target is counterproductive, and it is better to simply
move toward the general v ic ini ty of the target.

9 Conc lus ions a n d F u r t h e r W o r k

We have presented an algor i thm for reaching a goal that
changes posit ion over t ime. The main property neces­
sary to guarantee success is that the target moves slower
than the problem solver. We have proven that under
this condit ion, the problem solver wi l l eventually reach
any target. The algor i thm has been implemented and
tested in the cases of pursuing a fleeing target, reaching
a randomly moving target, and meeting a cooperatively
moving target. An empirical result shows that in pur­
suing a fleeing target, better performance is obtained by
ignoring some moves of the target and only sampling its
position periodically.

More generally, this work can be viewed as a case
study of problem solving in a dynamic and unpredictable
environment. In this case, the unpredictabi l i ty stems
from the mot ion of the goal. However, additional un­
certainty could be introduced wi thout any modifications
of the algor i thm. For example, new obstacles could be
dynamically added to the space during the course of the
search. Whi le this wi l l cause performance to degrade ini­
t ial ly, the existence of these new obstacles wi l l eventually
be reflected in the learned heuristic values.

A c k n o w l e d g m e n t

The authors wish to thank Tsukasa Kawaoka and Ryohei
Nakano for their support dur ing this work at N T T Lab­
oratories. This research benefitted from discussions wi th
Kazuhiro Kuwabara, Yoshiyasu Nishibe, and Makoto
Yokoo. The bulk of this research was performed while
the second author was a visitor at, and supported by,
N T T Laboratories. Addi t iona l support to the second
author was provided by an NSF Presidential Young In ­
vestigator Award , NSF grant IRI-8801939, and a grant
f rom Rockwell Internat ional .

References

[1] P. E. Har t , N. J. Nilsson and B. Raphael, "A for­
mal basis for the heuristic determination of min i ­
m u m cost paths" , IEEE Transactions on Systems
Science and Cybernetics, SSC-4, No. 2, pp.100-107,
1968.

210 Automated Reasoning

[2] R. E. Korf, "Real-Time Heuristic Search", Artifi­
cial Intelligence, Vol. 42, No. 2-3, March 1990, pp.
189-211. 1990.

[3] J. Pearl, Heuristics: Intelligent Search Strategies
for Computer Problem Solving, Addison-Wesley,
Reading, Mass., 1984.

