
Proof Transformation with 

Christoph Lingenfelder 
IBM Deutschland GmbH 

Institute for Knowledge Based Systems 
P.O. Box 103068 

D-6900 Heidelberg 
phone: 49 6221 404 359 

email: LINGENF@DHDIBMl.bitnet 

Abstract 

One of the main reasons why computer generated proofs 
are not widely accepted is often their complexity and in­
comprehensibility. Especially proofs of mathematical 
theorems with equations are normally presented in an 
inadequate and not intuitive way. This is even more of a 
problem for the presentation of inferences drawn by au­
tomated reasoning components in other Al systems. For 
first order logic, proof transformation procedures have 
been designed in order to structure proofs and state them 
in a formalism that is more familiar to human mathe­
maticians. In this report we generalize these approaches, 
so that proofs involving equational reasoning can also 
be handled. To this end extended refutation graphs are in­
troduced to represent combined resolution and paramodu-
lation proofs. In the process of transforming these 
proofs into natural deduction proofs with equality, the 
inherent structure can also be extracted by exploiting 
topological properties of refutation graphs. 

1 In t roduc t i on 

With the increasing strength of Automated Deduction Sys­
tems the length and complexity of computer generated proofs 
has reached a degree where they have become almost impos­
sible to understand even for the expert. This has led to a stale 
where only specialists are capable to understand and check a 
proof found by an automated deduction system. 

But whenever human beings are addressed, the need for 
easily understandable and clearly structured arguments is 
apparent. Therefore it is necessary to be able to present 
proofs in a better structured way. Ideally one would like the 
proof to be given in natural language, with a large variety of 
inference rules. As a preliminary step in this direction it is 
useful to transform the computer generated proof into natural 
deduction which, although still a system of formal logic, has 
been devised to approximate as much as possible an intuitive 
form of reasoning. 

The transformation of proofs into a natural deduction for­
mulation has solved some of the problems, see [Andrews, 
1980; Miller, 1983; Lingenfelder, 1986], but by and large 
the increasing length and complexity of the transformed 
proofs adds to their incomprehensibility rather than to reduce 
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it. It is therefore paramount to be able to state the proofs in 
a hierarchically structured way, as mathematicians do, formu­
lating subgoals and lemmata. There has been some success 
in structuring computer generated proofs, cf. [Lingenfelder, 
1989; Pfenning and Nesmith, 1990; Huang, 1991], but all 
of these approaches are restricted to logics without equality. 

We feel, however, that this is a severe restriction, as equal­
ity is essential for any natural coding of mathematical prob­
lems and of AI problems in general. Therefore, we generalize 
Lingenfelder's approach, so that proofs involving equational 
reasoning can also be structured automatically. 

In section 2 the different calculi and proof representations 
are introduced. Section 3 extends the basic system of proof 
transformation so that equality reasoning is also covered. 
This fits well into the transformation approach, if equational 
reasoning is not dominating. Here equality is seen as a spe­
cific theory (in the sense of theory resolution [Stickel, 
1985]) so that a further generalization to arbitrary theories 
can be envisaged. 

The task of finding the underlying proof structure is pre­
sented in section 4. This can be accomplished by the elegant 
expedient of exploiting topological properties of the refuta­
tion graphs in order to come up with a well-organized proof. 
Structure can be imposed upon the proofs by introducing 
lemmata, both to avoid duplication of parts of the proof and 
to arrange a larger proof in a sequence of subgoals easier to 
understand. Another means of structuring a proof is its divi­
sion into several disjoint parts by employing the method of 
case analysis. This constitutes very often the only possi-
bility to use a conditional equation without having to fall 
back on a proof by contradiction. 

2 Proof Formats 

In this section we wil l describe the logical calculi used in 
this paper. Everything is standard first order predicate logic 
with equality, and we need resolution (with paramodulation) 
and a natural deduction system based on Gerhard Gentzen's 
calculus NK [Gentzen, 1935]. There are no differences from 
the usual way of defining these concepts as done for instance 
in [Gallier, 1986] or [Loveland, 1978]. 

Additionally, as our actual starting point of the proof 
transformation will not be a resolution proof, but rather the 
result of a graph-based theorem prover, we must introduce 
the representation of proofs as graphs. 
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2.1 Clause and Refutation Graphs wi th Equality 

De f in i t i on : A clause graph consists of a set of literal 
nodes, that are partitioned into clause nodes. Each literal 
node is labeled with a literal; the distinction between the lit-
eral nodes and the literals themselves is needed because the 
same literal may be attached to several literal nodes. Finally 
the links of the clause graph connect disjoint sets of literal 
nodes, such that for all links the following conditions hold: 
(KI) The literal nodes in a link are labeled with literals 

with unifiable atoms. 
(7C2) A link must connect at least one positive and one 

negative literal. 
Definit ion: A clause graph is said to represent a clause 

set S if every clause node C has the form [ A(s) A(t)] or 
there is a parent clause C S and a ground substitution 
such that the restriction of the literal labeling to C is a bijec-
tion between its literal nodes and the literals of Clause 
nodes of the form (-A(s) A(t)J are called equality clause 
nodes. 

Definition: A deduction graph is a non-empty, ground, 
and acyclic clause graph. A cycle is a sequence of clause 
nodes and links , . C n , C i , such that all the 
r i i are different and they contain literal nodes with opposite 
sign in their respective neighbour clause nodes. A refutation 
graph is a deduction graph where all literal nodes belong to a 
link. 

Definition: For a formula F and a clause graph T repre­
senting C(F), a relation A between the literal nodes of F and 
the atom occurrences in F is a clause graph relation if it is 
compatible with the relation established by the normaliza­
tion process, by which the clause form is constructed from 
the formula. It is obvious from this definition that the literal 
nodes of equality clause nodes are never related to atom oc­
currences of F. 

2.2 Natural Deduction Proofs wi th Equality 

In 1933, Gerhard Gentzen developed a formal system for 
mathematical proofs with the intention to describe as closely 
as possible the actual logical inferences used in mathematical 
proofs. To quote from [Gentzen, 1935J: "der mdglichst ge-
nau das richtige logische SchlieBen bei mathematischen 
Beweisen wiedergibt". 

The actual form of the proof lines is taken from Andrews 
[Andrews, 1980], but they differ only in their syntax from 
Gentzen's rule system NK in [Gentzen, 1935J. 

Definit ion: A natural deduction proof line consists of a 
finite set of formulae, called the assumptions, a single 
formula, called conclusion, and a justification, written 
{A + F Rule R}. A finite sequence S of proof lines is a 
natural deduction derivation of a formula F from assump­
tions J3, if F is the conclusion of the last line of S, A is the 
set of assumptions of this last line, and every line in S is 
correctly justified by one of the rules of the calculus. 

A proof line k = { # t - F Rule 9?) within a sequence of 
proof lines is correctly justified iff ^f F matches the lower 
part of Rule 9t and there are proof lines before X in the 
sequence matching the upper part of Rule 9?. 

A finite sequence S of proof lines is a natural deduction 

The construction of natural deduction proofs (NDPs), by 
humans and computers alike, is conducted in single steps. 
To prove any valid formula F one always starts with a line 
{ F } . Such a line is obviously no proof, because it is not 
correctly justified. Now the proof is constructed by deriving 
subgoals until it is completed. In the intermediate states one 
may find completed subproofs, but also others that are not 
yet done. To formalize the procedure of the search for such a 
natural deduction proof, we use Generalized Natural Deduc­
tion Proofs as defined in [Lingenfelder, 1990]. 

3.1 General Procedure 

Def in i t ion : A finite sequence S of proof lines is called a 
Generalized Natural Deduction Proof (GNDP) of a formula 
F, if F is the conclusion of the last line of S, the last line of 
S has no assumptions, and every line is either justified by a 
rule of the calculus, or it is justified by a proof (possibly in 
a different calculus) of its conclusion from its assumptions. 

This allows lines not correctly justified within the calcu-
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order case, with one more application of an equality rule to 
produce the final natural deduction proof. 

4 Structuring the Proof 

4.1 General Procedure 

An initial " t r iv ia l" generalized natural deduction proof 
(GNDP) is constructed to start a transformation process as 
described in section 3. Now some of the transformation 
rules, EA for instance, lead to additional external lines, and 
as a consequence to a division of the refutation graph accord­
ing to the splitting theorem [Lingenfelder, 1990]. In the 
simplest case the refutation graph proving F A G is "cut" 
through the clause [ -F -G ] , such that the two resulting 
components are refutation graphs for F and G, respectively. 
In general, however, the two components may have a non-
empty intersection, and this is similarly the case for the 
other rules leading to a division of the refutation graph. The 
splitting theorem does not take this into account, so that 
these shared subgraphs are always duplicated and therefore 
processed more than once. 

This docs not matter if the intersection is comparatively 
small, when it may easily be copied and later used several 
times in the resulting subproofs. If it is relatively large and 
complex, however, it may be sensible to prove a lemma first 
and then use it in all the proof parts. In order to formalize 
such a procedure, the transformation rule E-Lemma is intro­
duced. 

This rule must of course be used with discretion, i.e. only 
when specifically called for by a heuristic. In [Lingenfelder, 
1990] it is explained in detail how topological properties of 
the graph induce lemmata. If paramodulation steps are repre­
sented using equality clause nodes in the refutation graph the 
search algorithm in [Lingenfelder, 1990] can be used un­
changed. 

Another way to structure proofs is the division into the 
cases of a disjunction. This is formalized by the rule 
M-Cases. The most important case for its application in 
pure first order logic comes up, when an existentially quanti­
fied formula cannot be proven constructively. With built-in 
equality there is one additional reason for a case analysis. As 
the natural deduction calculus only allows the application of 
unit equations, special considerations are needed for condi­
tional equations. One solution of this problem could be the 
division of the proof into cases such that the equation is 
assumed to hold in one of them. 

4.2 Equali ty Clause Nodes 

Paramodulation steps of the computer generated proof are 
represented in the refutation graph using special "equality" 
clause nodes. For example the combination of a paramodula­
tion step Pa to Pb via a=b and a resolution step between Pb 
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and some literal -Pb is simulated as a sequence of three reso­
lution steps of the unit clauses [Pa], [a=b], and [-Pb] with 
the equality clause node This clause node de­
notes the trivial fact that The symmetry of 
the equality predicate is incorporated into the unification al­
gorithm and hence this additional property must not be con­
sidered in the graph. In the natural deduction calculus this 
fact is reflected by the existence of two symmetric rules for 
the application of an equation. Alternatively one might have 
chosen a rule axiomatizing the symmetry explicitly, viz. 

But this does not comply with intuitive mathematical rea­
soning, where equations are rarely oriented and therefore such 
a symmetry rule never needs to be used explicitly. 

Conditional equations, that is, equational literals in non 
unit clauses, need no special handling, because the only dif­
ference is that the negated equation in the equality clause 
node is connected to a non unit clause node and therefore to a 
deduction graph. However, the formulation of the proof can 
be more difficult because the equation is not always true. 
One can either prove the equality as a lemma or divide the 
proof into cases, in one of which the equality holds. 

The decision between these possibilities depends on gen­
eral considerations, as for example the complexity of result­
ing lemmata or the position of negatively polarized clause 
nodes in the graph. Yet there is one heuristic depending on 
equality. Case analysis is most profitable if the condition for 
an equation is itself an equation used for paramodulation. 
Then both obstructing conditions are removed in parallel. 

Usually mathematicians employ case analysis only when 
the disjunction is an axiom or has been previously derived. 
Equality clause nodes, however, represent implications and 
therefore are unattractive for this purpose. But if -Pa or 
is first derived from the contrapositive of a 
case analysis may be the best choice. 

Often several equations are successively applied to a for­
mula leading to chains of equality clause nodes. If any of the 
chain links are separating, and therefore candidates for lem­
mata, only the links joining the chain to the rest of the 
graph should be selected. Otherwise the equality argument 
would be torn asunder. 

A more syntactical criterion is the distinction between 
completion and rewriting steps, which can be made if the 
underlying paramodulation rule discriminates these steps 
according to the Knuth-Bendix algorithm. Completion steps 
are more important and substantial while rewriting steps can 
usually be considered a calculation rather than a proof. 

The structuring procedure can be generalized to theory reso­
lution with arbitrary theories. A resolution step between two 
literals that are complementary in the given theory is repre­
sented with a clause node containing the residue and a syntac­
tically complementary literal for each resolution literal. 

It is clear that this method can only handle proofs with a 
relatively small number of paramodulation steps. Otherwise 
a large number of equality clause nodes would obscure the 
structure of the proof. This is especially the case when 
paramodulation steps are performed into other equations. 
Therefore purely or even substantially equational proofs need 

special considerations due to their inherent internal structure. 

4.3 Example 

As an example we chose one of Pelletier's problems 
[Pelletier, 1986], which is among the simpler standard 
examples in equality theorem proving: 

There are x and y such that any z equals x or y. If two 
distinct constants a and b have a property P then the property 
P holds universally. In first order notation with equality this 
is represented by the following formula: 

The resolution and paramodulation proof is first translated 
into a refutation graph. The clause nodes II and 12 in the up­
per graph are both instances of the deduction graph below; a 
complete refutation graph can be obtained by inserting two 
copies of the deduction graph for II and 12. x and y, as well 
as w become Skolem constants in clause form, and therefore 
also in the refutation graph. They are named 1, 2, and 3 in 
the sequel. 

The first operations performed in the transformation pro­
cess are automatic applications of rules introducing the 
Skolem constants in the theorem. The other Skolem con­
stants are introduced by need, whenever they appear in a sub­
graph that is currently worked with. Of course it may be 
necessary to isolate the existentially quantified formula first. 

Now we know all the prerequisites for the structuring of 
this proof. At first we consider the subgraph which is used 
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A proof in natural language might therefore read: let 1 and 
2 be constants such that any z equals 1 or 2. In order to 
prove P as a universal property it suffices to show that it 
holds for an arbitrary constant 3. 3 must be cither 1 or 2. We 
consider first the case 3 = 1. As a=b it is impossible that 
both equal 2. If a=2 it must be 1, which equals 3, and there­
fore P3 holds because Pa holds. If on the other hand b=2 
then b must be 1, which equals 3, and therefore P3 holds be­
cause Pb holds. The second case (3 = 2) can be handled anal­
ogously. Therefore P3 holds in all cases, and as 3 was cho­
sen arbitrarily P holds universally. 

5 Conclusion 

In this paper a method is described to transform a proof gen­
erated by a resolution-based theorem prover with a built-in 
paramodulation rule into a natural deduction proof in 
Gentzen's system NK. Starting from the basic proof trans­
formation and structuring mechanism published in 
[Lingenfelder, 1990], the necessary changes and additions are 
made to meet the special needs of equality reasoning. 

Paramodulation steps are represented in the refutation 
graph by equality clause nodes and additional links for each 
application of an equation. The extension of this mechanism 
to arbitrary theory resolution appears to be straightforward. 
The most remarkable result is the fact that this basis allows 
to employ the structuring algorithm essentially unchanged. 
The only extensions were to handle conditional equations by 
case analysis or as a lemma and some specialized heuristics 
for the consideration of equational steps. 

An open question with respect to the structuring of proofs 

is the presentation of proofs based only or mainly on the 
equality predicate. The representation of pure unconditional 
equality proofs in equality graphs, as in [Blasius, 1986], 
seems to be a promising starting point to construct a 
procedure analogous to the algorithm described here. 
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