
Proof Transformation with

Christoph Lingenfelder
IBM Deutschland GmbH

Institute for Knowledge Based Systems
P.O. Box 103068

D-6900 Heidelberg
phone: 49 6221 404 359

email: LINGENF@DHDIBMl.bitnet

Abstract

One of the main reasons why computer generated proofs
are not widely accepted is often their complexity and in­
comprehensibility. Especially proofs of mathematical
theorems with equations are normally presented in an
inadequate and not intuitive way. This is even more of a
problem for the presentation of inferences drawn by au­
tomated reasoning components in other Al systems. For
first order logic, proof transformation procedures have
been designed in order to structure proofs and state them
in a formalism that is more familiar to human mathe­
maticians. In this report we generalize these approaches,
so that proofs involving equational reasoning can also
be handled. To this end extended refutation graphs are in­
troduced to represent combined resolution and paramodu-
lation proofs. In the process of transforming these
proofs into natural deduction proofs with equality, the
inherent structure can also be extracted by exploiting
topological properties of refutation graphs.

1 In t roduc t i on

With the increasing strength of Automated Deduction Sys­
tems the length and complexity of computer generated proofs
has reached a degree where they have become almost impos­
sible to understand even for the expert. This has led to a stale
where only specialists are capable to understand and check a
proof found by an automated deduction system.

But whenever human beings are addressed, the need for
easily understandable and clearly structured arguments is
apparent. Therefore it is necessary to be able to present
proofs in a better structured way. Ideally one would like the
proof to be given in natural language, with a large variety of
inference rules. As a preliminary step in this direction it is
useful to transform the computer generated proof into natural
deduction which, although still a system of formal logic, has
been devised to approximate as much as possible an intuitive
form of reasoning.

The transformation of proofs into a natural deduction for­
mulation has solved some of the problems, see [Andrews,
1980; Miller, 1983; Lingenfelder, 1986], but by and large
the increasing length and complexity of the transformed
proofs adds to their incomprehensibility rather than to reduce

Supported by the Deutsche Forschungsgemeinschaft, SFB 314

Built- in Equality Predicate

Axel Pracklein*
Fachbereich Informatik

Universitat Kaiserslautern
Postfach 3049

D-6750 Kaiserslautern
phone: 49 631 205 3344

email: prckln@informatik.uni-kl.de

it. It is therefore paramount to be able to state the proofs in
a hierarchically structured way, as mathematicians do, formu­
lating subgoals and lemmata. There has been some success
in structuring computer generated proofs, cf. [Lingenfelder,
1989; Pfenning and Nesmith, 1990; Huang, 1991], but all
of these approaches are restricted to logics without equality.

We feel, however, that this is a severe restriction, as equal­
ity is essential for any natural coding of mathematical prob­
lems and of AI problems in general. Therefore, we generalize
Lingenfelder's approach, so that proofs involving equational
reasoning can also be structured automatically.

In section 2 the different calculi and proof representations
are introduced. Section 3 extends the basic system of proof
transformation so that equality reasoning is also covered.
This fits well into the transformation approach, if equational
reasoning is not dominating. Here equality is seen as a spe­
cific theory (in the sense of theory resolution [Stickel,
1985]) so that a further generalization to arbitrary theories
can be envisaged.

The task of finding the underlying proof structure is pre­
sented in section 4. This can be accomplished by the elegant
expedient of exploiting topological properties of the refuta­
tion graphs in order to come up with a well-organized proof.
Structure can be imposed upon the proofs by introducing
lemmata, both to avoid duplication of parts of the proof and
to arrange a larger proof in a sequence of subgoals easier to
understand. Another means of structuring a proof is its divi­
sion into several disjoint parts by employing the method of
case analysis. This constitutes very often the only possi-
bility to use a conditional equation without having to fall
back on a proof by contradiction.

2 Proof Formats

In this section we wil l describe the logical calculi used in
this paper. Everything is standard first order predicate logic
with equality, and we need resolution (with paramodulation)
and a natural deduction system based on Gerhard Gentzen's
calculus NK [Gentzen, 1935]. There are no differences from
the usual way of defining these concepts as done for instance
in [Gallier, 1986] or [Loveland, 1978].

Additionally, as our actual starting point of the proof
transformation will not be a resolution proof, but rather the
result of a graph-based theorem prover, we must introduce
the representation of proofs as graphs.

Lingenfelder and Pracklein 165

2.1 Clause and Refutation Graphs wi th Equality

De f in i t i on : A clause graph consists of a set of literal
nodes, that are partitioned into clause nodes. Each literal
node is labeled with a literal; the distinction between the lit-
eral nodes and the literals themselves is needed because the
same literal may be attached to several literal nodes. Finally
the links of the clause graph connect disjoint sets of literal
nodes, such that for all links the following conditions hold:
(KI) The literal nodes in a link are labeled with literals

with unifiable atoms.
(7C2) A link must connect at least one positive and one

negative literal.
Definit ion: A clause graph is said to represent a clause

set S if every clause node C has the form [A(s) A(t)] or
there is a parent clause C S and a ground substitution
such that the restriction of the literal labeling to C is a bijec-
tion between its literal nodes and the literals of Clause
nodes of the form (-A(s) A(t)J are called equality clause
nodes.

Definition: A deduction graph is a non-empty, ground,
and acyclic clause graph. A cycle is a sequence of clause
nodes and links , . C n , C i , such that all the
r i i are different and they contain literal nodes with opposite
sign in their respective neighbour clause nodes. A refutation
graph is a deduction graph where all literal nodes belong to a
link.

Definition: For a formula F and a clause graph T repre­
senting C(F), a relation A between the literal nodes of F and
the atom occurrences in F is a clause graph relation if it is
compatible with the relation established by the normaliza­
tion process, by which the clause form is constructed from
the formula. It is obvious from this definition that the literal
nodes of equality clause nodes are never related to atom oc­
currences of F.

2.2 Natural Deduction Proofs wi th Equality

In 1933, Gerhard Gentzen developed a formal system for
mathematical proofs with the intention to describe as closely
as possible the actual logical inferences used in mathematical
proofs. To quote from [Gentzen, 1935J: "der mdglichst ge-
nau das richtige logische SchlieBen bei mathematischen
Beweisen wiedergibt".

The actual form of the proof lines is taken from Andrews
[Andrews, 1980], but they differ only in their syntax from
Gentzen's rule system NK in [Gentzen, 1935J.

Definit ion: A natural deduction proof line consists of a
finite set of formulae, called the assumptions, a single
formula, called conclusion, and a justification, written
{A + F Rule R}. A finite sequence S of proof lines is a
natural deduction derivation of a formula F from assump­
tions J3, if F is the conclusion of the last line of S, A is the
set of assumptions of this last line, and every line in S is
correctly justified by one of the rules of the calculus.

A proof line k = { # t - F Rule 9?) within a sequence of
proof lines is correctly justified iff ^f F matches the lower
part of Rule 9t and there are proof lines before X in the
sequence matching the upper part of Rule 9?.

A finite sequence S of proof lines is a natural deduction

The construction of natural deduction proofs (NDPs), by
humans and computers alike, is conducted in single steps.
To prove any valid formula F one always starts with a line
{ F } . Such a line is obviously no proof, because it is not
correctly justified. Now the proof is constructed by deriving
subgoals until it is completed. In the intermediate states one
may find completed subproofs, but also others that are not
yet done. To formalize the procedure of the search for such a
natural deduction proof, we use Generalized Natural Deduc­
tion Proofs as defined in [Lingenfelder, 1990].

3.1 General Procedure

Def in i t ion : A finite sequence S of proof lines is called a
Generalized Natural Deduction Proof (GNDP) of a formula
F, if F is the conclusion of the last line of S, the last line of
S has no assumptions, and every line is either justified by a
rule of the calculus, or it is justified by a proof (possibly in
a different calculus) of its conclusion from its assumptions.

This allows lines not correctly justified within the calcu-

166 Automated Reasoning

Lingenfelder and Pracklein 167

order case, with one more application of an equality rule to
produce the final natural deduction proof.

4 Structuring the Proof

4.1 General Procedure

An initial " t r iv ia l" generalized natural deduction proof
(GNDP) is constructed to start a transformation process as
described in section 3. Now some of the transformation
rules, EA for instance, lead to additional external lines, and
as a consequence to a division of the refutation graph accord­
ing to the splitting theorem [Lingenfelder, 1990]. In the
simplest case the refutation graph proving F A G is "cut"
through the clause [-F -G] , such that the two resulting
components are refutation graphs for F and G, respectively.
In general, however, the two components may have a non-
empty intersection, and this is similarly the case for the
other rules leading to a division of the refutation graph. The
splitting theorem does not take this into account, so that
these shared subgraphs are always duplicated and therefore
processed more than once.

This docs not matter if the intersection is comparatively
small, when it may easily be copied and later used several
times in the resulting subproofs. If it is relatively large and
complex, however, it may be sensible to prove a lemma first
and then use it in all the proof parts. In order to formalize
such a procedure, the transformation rule E-Lemma is intro­
duced.

This rule must of course be used with discretion, i.e. only
when specifically called for by a heuristic. In [Lingenfelder,
1990] it is explained in detail how topological properties of
the graph induce lemmata. If paramodulation steps are repre­
sented using equality clause nodes in the refutation graph the
search algorithm in [Lingenfelder, 1990] can be used un­
changed.

Another way to structure proofs is the division into the
cases of a disjunction. This is formalized by the rule
M-Cases. The most important case for its application in
pure first order logic comes up, when an existentially quanti­
fied formula cannot be proven constructively. With built-in
equality there is one additional reason for a case analysis. As
the natural deduction calculus only allows the application of
unit equations, special considerations are needed for condi­
tional equations. One solution of this problem could be the
division of the proof into cases such that the equation is
assumed to hold in one of them.

4.2 Equali ty Clause Nodes

Paramodulation steps of the computer generated proof are
represented in the refutation graph using special "equality"
clause nodes. For example the combination of a paramodula­
tion step Pa to Pb via a=b and a resolution step between Pb

168 Automated Reasoning

and some literal -Pb is simulated as a sequence of three reso­
lution steps of the unit clauses [Pa], [a=b], and [-Pb] with
the equality clause node This clause node de­
notes the trivial fact that The symmetry of
the equality predicate is incorporated into the unification al­
gorithm and hence this additional property must not be con­
sidered in the graph. In the natural deduction calculus this
fact is reflected by the existence of two symmetric rules for
the application of an equation. Alternatively one might have
chosen a rule axiomatizing the symmetry explicitly, viz.

But this does not comply with intuitive mathematical rea­
soning, where equations are rarely oriented and therefore such
a symmetry rule never needs to be used explicitly.

Conditional equations, that is, equational literals in non
unit clauses, need no special handling, because the only dif­
ference is that the negated equation in the equality clause
node is connected to a non unit clause node and therefore to a
deduction graph. However, the formulation of the proof can
be more difficult because the equation is not always true.
One can either prove the equality as a lemma or divide the
proof into cases, in one of which the equality holds.

The decision between these possibilities depends on gen­
eral considerations, as for example the complexity of result­
ing lemmata or the position of negatively polarized clause
nodes in the graph. Yet there is one heuristic depending on
equality. Case analysis is most profitable if the condition for
an equation is itself an equation used for paramodulation.
Then both obstructing conditions are removed in parallel.

Usually mathematicians employ case analysis only when
the disjunction is an axiom or has been previously derived.
Equality clause nodes, however, represent implications and
therefore are unattractive for this purpose. But if -Pa or
is first derived from the contrapositive of a
case analysis may be the best choice.

Often several equations are successively applied to a for­
mula leading to chains of equality clause nodes. If any of the
chain links are separating, and therefore candidates for lem­
mata, only the links joining the chain to the rest of the
graph should be selected. Otherwise the equality argument
would be torn asunder.

A more syntactical criterion is the distinction between
completion and rewriting steps, which can be made if the
underlying paramodulation rule discriminates these steps
according to the Knuth-Bendix algorithm. Completion steps
are more important and substantial while rewriting steps can
usually be considered a calculation rather than a proof.

The structuring procedure can be generalized to theory reso­
lution with arbitrary theories. A resolution step between two
literals that are complementary in the given theory is repre­
sented with a clause node containing the residue and a syntac­
tically complementary literal for each resolution literal.

It is clear that this method can only handle proofs with a
relatively small number of paramodulation steps. Otherwise
a large number of equality clause nodes would obscure the
structure of the proof. This is especially the case when
paramodulation steps are performed into other equations.
Therefore purely or even substantially equational proofs need

special considerations due to their inherent internal structure.

4.3 Example

As an example we chose one of Pelletier's problems
[Pelletier, 1986], which is among the simpler standard
examples in equality theorem proving:

There are x and y such that any z equals x or y. If two
distinct constants a and b have a property P then the property
P holds universally. In first order notation with equality this
is represented by the following formula:

The resolution and paramodulation proof is first translated
into a refutation graph. The clause nodes II and 12 in the up­
per graph are both instances of the deduction graph below; a
complete refutation graph can be obtained by inserting two
copies of the deduction graph for II and 12. x and y, as well
as w become Skolem constants in clause form, and therefore
also in the refutation graph. They are named 1, 2, and 3 in
the sequel.

The first operations performed in the transformation pro­
cess are automatic applications of rules introducing the
Skolem constants in the theorem. The other Skolem con­
stants are introduced by need, whenever they appear in a sub­
graph that is currently worked with. Of course it may be
necessary to isolate the existentially quantified formula first.

Now we know all the prerequisites for the structuring of
this proof. At first we consider the subgraph which is used

Lingenfelder and Prdcklein 169

A proof in natural language might therefore read: let 1 and
2 be constants such that any z equals 1 or 2. In order to
prove P as a universal property it suffices to show that it
holds for an arbitrary constant 3. 3 must be cither 1 or 2. We
consider first the case 3 = 1. As a=b it is impossible that
both equal 2. If a=2 it must be 1, which equals 3, and there­
fore P3 holds because Pa holds. If on the other hand b=2
then b must be 1, which equals 3, and therefore P3 holds be­
cause Pb holds. The second case (3 = 2) can be handled anal­
ogously. Therefore P3 holds in all cases, and as 3 was cho­
sen arbitrarily P holds universally.

5 Conclusion

In this paper a method is described to transform a proof gen­
erated by a resolution-based theorem prover with a built-in
paramodulation rule into a natural deduction proof in
Gentzen's system NK. Starting from the basic proof trans­
formation and structuring mechanism published in
[Lingenfelder, 1990], the necessary changes and additions are
made to meet the special needs of equality reasoning.

Paramodulation steps are represented in the refutation
graph by equality clause nodes and additional links for each
application of an equation. The extension of this mechanism
to arbitrary theory resolution appears to be straightforward.
The most remarkable result is the fact that this basis allows
to employ the structuring algorithm essentially unchanged.
The only extensions were to handle conditional equations by
case analysis or as a lemma and some specialized heuristics
for the consideration of equational steps.

An open question with respect to the structuring of proofs

is the presentation of proofs based only or mainly on the
equality predicate. The representation of pure unconditional
equality proofs in equality graphs, as in [Blasius, 1986],
seems to be a promising starting point to construct a
procedure analogous to the algorithm described here.

References

[Andrews, 1980] Peter B. Andrews. Transforming Matings
into Natural Deduction Proofs. Proc of 5 t n CADE, pages
281-292, Springer-Verlag, 1980.

[Blasius, 1986] Karl-Hans Blasius. Equality Reasoning
Based on Graphs. PhD Thesis, Uni Kaiserslautern, SEKI-
ReportSR-87-01, 1986.

[Gallier, 1986] Jean H. Gallier. Logic for Computer Science,
- Foundations of Automatic Theorem Proving. Harper &
Row, Publishers, New York, 1986.

[Gentzen, 1935] Gerhard Gentzen. Untersuchungen uber das
logische SchlieBen I. Math. Zeitschrift 39:176-210, 1935.

[Eisinger, 1988] Norbert Eisinger. Completeness, Conflu-
ence, and Related Properties of Clause Graph Resolution.
PhD Thesis, Uni Kaiserslautern, Report SR-88-07, 1988.

[Huang, 1991] Xiaorong Huang. On a Natural Calculus for
Argument Presentation, to appear as SEKI-Report, Uni
Kaiserslautern, 1991.

[Lehr, 1988] Siegfried Lehr. Transformation von Resolu-
tionsbeweisen des MKRP. Studienarbeit, Uni
Kaiserslautern, 1988.

[Lingenfelder, 1986] Christoph Lingenfelder. Transformation
of Refutation Graphs into Natural Deduction Proofs.
Report SR-86-10, Uni Kaiserslautern, 1986.

[Lingenfelder, 1989] Christoph Lingenfelder. Structuring
Computer Generated Proofs. Proc of 11th IJCAI, Detroit,
1991.

[Lingenfelder, 1990] Christoph Lingenfelder. Structuring
Computer Generated Proofs. PhD Thesis, Uni
Kaiserslautern, 1990.

[Loveland, 1978] Donald W. Loveland. Automated Theorem
Proving: A Logical Basis. North Holland, 1978.

[Miller, 1983] Dale Miller. Proofs in Higher Order Logic.
Ph.D. Thesis, Carnegie Mellon University, Tech Report
MS-CIS-83-87, University of Pennsylvania, 1983.

[Ohlbach and Siekmann, 1989] Hans J. Ohlbach and Jorg
H. Siekmann. The Markgraf Karl Refutation Procedure.
Report SR-89-19, Uni Kaiserslautern, 1989.

[Pfenning and Nesmith, 1990] Frank Pfenning and Daniel
Nesmith. Presenting Intuitive Deductions via Symmetric
Simplification., Proc of 10 t h CADE, pages 336-350,
Springer-Verlag, 1990.

[Pelletier, 1986] Francis Jeffrey Pelletier. Seventy-Five
Problems for Testing Automatic Theorem Provers. Jour­
nal of Automated Reasoning, 2(2):191-216, 1986.

[Stickel, 1985] Mark E. Stickel. Automated Deduction by
Theory Resolution. Journal of Automated Reasoning,
l(4):333-356, 1985.

170 Automated Reasoning

