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Abstract

Since linear resolution with clause ordering is
incomplete for consequence-finding, it has been
used mainly for proof-finding. In this paper,
we re-evaluate consequence-finding. Firstly,
consequence-finding is generalized to the prob-
lem in which only interesting clauses having a
certain property (called characteristic clauses)
should be found. Then, we show how adding
a skip rule to ordered linear resolution makes
it complete for consequence-finding in this gen-
eral sense. Compared with set-of-support res-
olution, the proposed method generates fewer
clauses to find such a subset of consequences.
In the propositional case, this is an elegant tool
for computing the prime implicants/implicates.
The importance of the results lies in their appli-
cability to a wide class of Al problems includ-
ing procedures for nonmonotonic and abductive
reasoning and truth maintenance systems.

1 Introduction

It is well known in automated deduction that while res-
olution [Robinson, 1963] is complete for proof-finding
(called refutation complete), that is, it can deduce false
from every unsatisfiable set of formulas, it is not deduc-

tively complete for finding every logical consequence of

a satisfiable set of formulas. Lee [1967] addresses him-
self to this problem and defines the consequence-finding
problem, which is expressed in the following form:

Given a set of formulas T and a resolution pro-
cedure P, for any logical consequence D of T,
can P derive a logical consequence C of T such
that C subsumes D?

If a resolution procedure is complete for consequence-
finding, then it is useful in spite of lacking deductive
completeness because in general the logical consequences
not deducible from the theory are neither interesting nor
useful. Namely, such a formula is subsumed by some
formula deducible from the theory and thus it is weak.

Historically, consequence-finding had been investi-
gated intensively since the resolution principle [Robin-
son, 1965] was invented for proof-finding. Lee's [1967]
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completeness theorem was proved for the original reso-
lution principle. Slagle, Chang and Lee [1969] extended
the result to various kinds of semantic resolution. How-
ever, after Minicozzi and Reiter [1972] extended these
results to various linear resolution strategies in the early
70s, consequence-finding was once abandoned in research
of automated theorem proving and attention has been
directed towards only proof-finding 4. It appears that
there are three reasons for this discouragement:

1. The results presented by [Minicozzi and Reiter,
1972] are in some sense negative. Linear resolution
involving C-ordering [Loveland, 1978; Reiter, 1971;
Kowalski and Kuhner, 1971; Chang and Lee, 1973;
Shostak, 1976] (literals are ordered in each clause
iIn the theory), which is the most familiar and effi-
cient class of resolution procedures, is incomplete for
consequence-finding. Thus, the completeness result
that we would most like to obtain does not hold.

2. It is neither practical nor useful to find all of the
consequences in general. However, there has not
been an intellectual method which directly searches
interesting formulas, instead of getting all theorems
and then filtering them by some criteria.

3. As opposed to proof-finding, consequence-finding
has lacked useful applications in Al.

In this paper, we re-evaluate consequence-finding and
give new perspectives. The proposals are motivated and

justified by the following solutions to the above three

problems:

1. Recently, Finger [1987] gave a complete procedure
based on set-of-support deduction for generating
formulas (called ramification) derivable from a the-
ory and a newly added formula as an initial set
of support. We provide a complete procedure for
consequence-finding, which contains more restric-
tion strategies than Finger's, by adding one rule
called skip operation to C-ordered linear resolution.

2. Bos8u and Siegel [1985] give a complete algorithm
for finding the set of positive clauses derivable from
a groundable theory (called -characteristic clauses).

"One can see that textbooks of resolution-based theorem
proving, such as [Chang and Lee, 1973; Loveland, 1978], have
no sections for consequence-finding.



Recently, Siegel [1987] redefined the notion of char-
acteristic clauses for propositional theories and pro-
posed a complete algorithm for finding them. We
show how our results can both improve the efficiency
of Bossu and Siegel's algorithm and lift Siegel's for
the general case. Moreover, easy modifications of
the proposed procedure can be shown to be applied
to more efficient variations of consequence-finding.

3. Przymusinski [1989] defines MILO-resolution to be
used in his query answering procedure for circum-
scription of ground theories. MILO-resolution can
be characterized as C-ordered linear resolution with
skip operation [inoue and Helft, 1990]. On the other
hand, most procedures for abduction [Pople, 1973;
Cox and Pietrzykowski, 1986; Finger, 1987; Poole,
1989; Stickel, 1990] can utilize consequence-finding
procedures to generate explanations [inoue, 1990].
We show how the proposed procedure can be applied
to generate such interesting formulas for nonmono-
tonic and abductive reasoning. In the propositiona]
case, the technique can be viewed as an elegant algo-
rithm to compute prime implicants/implicates, and
thus can be utilized for the clause management sys-
tem [Reiter and de Kleer, 1987] that is a generaliza-
tion of the ATMS [de Kleer, 1986].

The importance of the results presented lies in their ap-
plicability to a wide class of Al problems. In other words,
the methods shed some light on better understanding
and implementation of many Al techniques.

The present paper is organized as follows. The next
section characterizes consequence-finding in a general
way, and shows how various Al problems can be well de-
fined by using this notion of characteristic clauses. Sec-
tion 3 presents the basic procedure, which is sound and
complete for characteristic-clause-finding, based on C-
ordered linear resolution. Efficient but incomplete varia-
tions of the basic procedure and their properties are pro-
vided in Section 4. Because of space limitation, proofs
of propositions are given in the full paper.

2 Characterizing Consequence-Finding

We define a theory as a set of clauses, which can be iden-
tified with a conjunctive normal form (CNF) formula. A
clause is a disjunction (possibly written as a set) of liter-
als, each of which is a possibly negated atomic formula.
Each variable in a clause is assumed to be universally
quantified. For a method converting a formula to this
form of theory, see [Loveland, 1978). If 5 is a set of
clauses, by S we mean the set formed by taking the nega-
tion of each clause in S. The empty clause is denoted by
0. A clause C is said to subsume a clause D if there 1s
a substitution # such that C8 C D and C has no more
literals than D 2. For a set of clauses X, by uX or u[X]
we mean the set of clauses of ¥ not subsumed by any
other clause of . A clause C is a theorem, or a (logical)
consequence of ¥ if ¥ = C. The set of theorems of ¥ 18

denoted by Th(X).

“This definition of subsumption is called $-subaumption in
[Loveland, 1978]. Unlike in the propositional case, the second
condition is necessary because a clause implies its factor.

2.1 Characteristic Clauses

We use the notion of characteristic clauses, which is
a generalized notion of logical consequences and helps
to analyze computational aspects of many of Al prob-
lems. The idea of characteristic clauses was intro-
duced by Bossu and Siegel [1985] for evaluating a kind
of closed-world reasoning and was later redefined by
Siegel [1987] for propositional logic. The description
below is more general than [Bossu and Siegel, 1985;
Siegel, 1987; Inoue, 1990] in the sense that the notion
Is not limited to some special purposes and that it deals
with the general case instead of just the propositional
cases. Also, these notions are independent of implemen-
tation; we do not assume any particular resolution proce-
dure in this section. Informally speaking, characteristic
clauses are intended to represent "interesting" clauses
to solve a certain problem, and are constructed over a
sub-vocabulary of the representation language.

Definition 2.1 (1) We denote by R the set of all pred
icate symbols in the language. For R C R, we denot.
by RT (R™) the positive (negative) occurrences of pred
icates from R m the language. The set of all atomi
formulas is denoted as A = R, and the set of literals &
denoted L= AUA=RTUR".

(2) A production field P is a pair, { Lp, Cond), whert
Lp (called the characteristic literals) 1s a subset of £
and C'ond 1s a certain condition to be satisfied. Wher
Cond 1s not specified, P 1s just denoted as { Lp ). The
production field { L) is denoted Pr.

(3) A clause C' belongs to a production field P =
(Lp,Cond) if every literal in C belongs to Lp and (
satisfies C'ond. The set of theorems of ¥ belonging to T
is denoted by Thp(X).

(4) A production field P is stable if for any two clauses
C' and D such that C subsumes D, 1t holds that if L
belongs to P, then C also belongs to P.

Example 2.2 Examples of stable production fields.
(1) Py = Pc: Thp,(X) is equivalent to Th(X).

(2) P2 = (A):

Thp,(X) 1s the set of positive clauses implied by X.

(3) Ps = (E, size 1s less than k) where A C A:
Thp,(X) is the set of negative clauses implied by X con-
taining less than k literals all of which belong to A.

Example 2.3 P, = (A, size is more than k) 1s not
stable. For example, if £ = 2 and p(a),q(b),7(c) € A,
then D; = p(a) V q(b) subsumes Dy = p(a) V ¢(b) V r(c),
and D, belongs to P4 while D, does not.

Definition 2.4 (Characteristic Clauses) Let L be a
aet of clauses, and P a production field. The character-
istic clauses of X with respect to P are:

Carc(Z,P) = uThp(X).

Carc(X,P) contains all the unsubsumed theorems of
¥ belonging to a production field P. To see why this no-
tion is a generalization of consequence-finding, let P be
P.. From the definition of consequence-finding, for any
clause D € Th(X), a complete procedure P can derive
a clause C € Th(X) such that C subsumes D. There-

fore, P can derive every clause C' € uTh(X) because
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' is not subsumed by any other theorem of X. Hence,
Care(X,Pc) = pTh(X) must be contained in the theo-
rems derivable from ¥ by using P. Note also that the
empty clause belongs to every stable production field P,
and that if ¥ is unsatisfiable, then Carc(X, P) contains
only O. This means that proof-finding 1s a special case of
consequence-finding. Next 1s a summarizing proposition.

Proposition 2.5 Let ¥ be a theory, P a stable produc-
tion field. A clause D 1s a theorem of ¥ belonging to P
if and only if there is a clause C in Carc(X, P) such that
C' subsumes D. In particular, ¥ 1s unsatisfiable if and

only if Carc(X,P) = {0O}.

As we will see later, when new information 1s added
to the theory, it 1s often necessary to compute newly
derivable consequences caused by this new information.
For this purpose, consequence-finding is extended to look
for such a ramification of new information.

Definition 2.6 (New Characteristic Clauses) Let
> be a set of clauses, P a production field, and F' a for-
mula. The new characteristic clauses of F' with respect
to X and P are:

Newcarc(X,F,P) = p[Thp(XU{F}) — Th(X)].

In other words, C € Newcarc(Z, F,P) if: (1) ZU{F} E
C, (1) C belongs to P, (1) X £ C and (iv) no other
clause subsuming C satisfies (1)—(1n).

The next three propositions show the connections be-
tween the characteristic clauses and the new characteris-

tic clauses. Firstly, Newcarc(X, F,P) can be represented
by the set difference of two sets of characteristic clauses.

Proposition 2.7
Newcarc(L, F,P) = Carc(L U {F}, P) — Carc(X, P).

When F is a CNF formula, Newearce(X, F,P) can be
decomposed into a series of primitive Newcarc opera-

tions each of whose added formula 1s just a single clause.

Proposition 2.8 Let FF = C; A --- ACyp, be a CNF
formula. Then,

Newcarc(Z, F,P) = p| U Newcare(Z;, C;,P) |
1=1
where 21 = E, and 2,‘+1 — E.‘U{Ci}, for: = 1, o

Finally, the characteristic clauses Carc(X,P) can be
expressed by constructively using primitive N ewcarc op-
erations. Notice that for any atomic formula p, if ¥ £ p,
Y £ -p, and p V —p belongs to some stable production
field P, then p V —p belongs to Carc(X, P).

Proposition 2.9 Let X,, = {C},---,Cmn }. Then,
Carce(8,P) = {pV-p|p€ A and pV-p belongs to P },

Carc(Zis+1,P) = u[Carc(Z;, P)U Newcare(X;, Ci, P) ],
where X; = 0, and I;;, = ;U{C;},fori=1,...,

,m—1.

m-—1.

2.2 Applications

We illustrate how the use of the (new) characteristic
clauses enables elegant definition and precise under-

standing of many Al problems.
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2.2.1 Propositional Case

In the propositional case, A is reduced to the set of
propositional symbols in the language. The subsumption
relation is now very simple: a clause C subsumes D if
C C D. A theorem of X is called an smplicate of ¥, and
the prime tmplicates [Kean and Tsiknis, 1990] of ¥ are:

PI(¥X) = uTh(X).

The characteristic clauses of ¥ with respect to P are the
prime implicates of ¥ belonging to P. When P = P, it
holds that Carc(X,P) = PI(X) 3.

Computing prime implicates 1s an essential task In
the ATMS [de Kleer, 1986] and in its generalization
called the clause management system (CMS) [Reiter and
de Kleer, 1987]. The CMS is responsible for finding min-
imal supports for the queries:

Definition 2.10 [Reiter and de Kleer, 1987] Let ¥ be
a set of clauses and C a clause. A clause S is a support
for C with respect to X if: (i) ¥ = SUC,and (1) L £ S.
A support S for C with respect to ¥ 18 minsmal if no
other support S’ for C' subsumes S. The set of minimal
supports for C with respect to T is written M S(Z, C).

The above definition can be easily extended to handle
any formula instead of a clause as a query. Setting the
production field to P, we see that:

Proposition 2.11 [Inoue, 1990] Let F be any formula.
MS(Z,F) = Newcarc(X,~F,Pc).

When we choose the primitive Newcarc operation as
a basic computational task, the above proposition does
not require computation of PI (X). On the other hand,
the compiled approach [Reiter and de Kleer, 1987] takes
PI(X) as input to find M S(Z, C) for any clause C easily:

MS(E,C)=pu{P~C|PePIE)and PNC # 0}.

In the ATMS [de Kleer, 1986], there is a distin-
guished set of assumptions A C L. An ATMS can be
defined as a system responsible for ﬁnding the nega-
tions of all minimal supports for the queries consist-
ing of only literals from A [Reiter and de Kleer, 1987;
Inoue, 1990]). Therefore, the ATMS label of a forrnula F
relative to a given t.heory ¥ and A is characterized as

L(F,A,X) = Newcarc(X,~F,P), where P = (A).

Inoue [1990] gives various sound and complete methods
for both generating and updating the labels of queries
relative to a non-Horn theory and literal assumptions.

2.2.2 Abductive and Nonmonotonic Reasoning

The task of the CMS/ATMS can be viewed as propo-
sitional abduction [Reiter and de Kleer, 1987; Levesque,
1989; Inoue, 1990]. For general cases, there are many
proposa.ls for a logical account of abduction [Pople, 1973;
Cox and Pietrzykowski, 1986; Finger, 1987; Poole, 1989;
Stickel, 1990], whose task is deﬁned as generation of ex-
planations of a query.

3The prime implicants of a disjunctive normal form for-
mula can be defined in the same manner if the duality of A

and V is taken 1nto account.



Definition 2.12 Let ¥ be a theory, H C £ (called the
hypotheses), and G a closed formula. A conjunction E of
ground instances of H is an ezplanation of G from (£, H)
if: (1) 2U{E} = G and (ii) Z U {E} is satisfiable?.

An explanation E of G 18 minimal if no proper sub-
conjunction E’ of E satisfies LU {F’} = G.

An ertension of (¥, H) is the set of logical consequences
of TU{M } where M is a maximal conjunction of ground
instances of H such that 7'U { M} is satisfiable.

Abduction can be characterized as follows:

Proposition 2.13 [Inoue and Helft, 1990] The set of
all minimal explanations of G from (X, H) is

Newcare(X,~G,P), where P =(H).
There 1s an extension of (£, H) in which G holds iff

Newcarce(X,~G,P)# 0, where P=(H).

Another important problem is to predict formulas that
hold in all extensions. This problem is known to be
equivalent to circumscription under the unique-names
and domain-closure assumptions. Proving a formula
holds in a circumscriptive theory [Przymusinski, 1989:
Ginsberg, 1989], as well as other proof methods for non-
monotonic reasoning formalisms (including explanation-
based argument systems [Poole, 1989] and variations
of closed-world assumptions [Bossu and Siegel, 1985;
Minker and Rajasekar, 1990]), are based on finding ex-
planations of the query, and showing that these expla-
nations cannot be refuted:

Proposition 2.14 [Inoue and Helft, 1990] Suppose
that Lp = Pt U Q1T UQ~, where P is the minimized
predicates and @) 1s the fixed predicates in circumscrip-
tion policy and that P = (Lp ). Every circumscriptive
minimal model satisfies a formula F' if and only if there
18 a conjunction G of clauses from Thp (X U {—~F}) such
that Newcarc(X,~G,P) = 0.

Since we have characterized the prime implicates, the
CMS/ATMS, abduction and circumscription °, any ap-
plication area of these techniques can be directly char-
acterized by using the notion of the (new) characteristic
clauses: for instance, diagnosis, synthesis [Finger, 1987]
(plan recognition, prediction, design), and natural lan-
guage understanding [Stickel, 1990].

3 Ordered-Linear Resolution for
Consequence-Finding

We now present the basic procedure for implementing
the primitive Newcarc operation. The important fea-
ture of the procedure is that it is direct, namely it is
both sensitive to the given added clause to the theory
and restricted to searching only characteristic clauses.

“This definition is based on [Poole, 1989] and deals with
ground explanations. To get universally quantified explana-
tions, we need to apply the reverse Skolemization algorithm
[Cox and Pietrzykowski, 1986].

° When a query in abduction or circumscription contains
existentially quantified variables, it is sometimes desirable to
know for what values of these variables the query holds. This
answer extraction problem is considered in [Helft et al., 1991].

3.1 Basic Procedure

Given a theory %, a stable production field V and a
clause C, we show how Newcarc(X, C,V) can be com-
puted by extending C-ordered linear resolution °. As
seen in Propositions 2.8 and 2.9, both Newcarc(3F, V)
for a CNF-formula F and Carc(%,V) can be computed
by using this primitive Newcarc operation. There are
two reasons why C-ordered linear resolution is useful for
computing the new characteristic clauses:

1. A newly added single clause C can be treated as
the top clause of a linear deduction. This is a desir-
able feature for consequence-finding since the pro-
cedure can directly derive the theorems relevant to
the added information.

2. It Is easy to achieve the requirement that the pro-
cedure should focus on producing only those the-
orems that belong to V. This is implemented by
allowing the procedure to skip the selected literals
belonging to V. The computational superiority of
the proposed technique compared to set-of-support
resolution that is used by Finger's resolution residue
[Finger, 1987], apart from the fact that C-ordered
linear resolution contains more restriction strategies
iIn natural ways, comes from this relevancy notion
of directing search to V.

Some procedures are known to perform this computa-
tion for restricted theories ’. For propositional theories,
Siegel [1987] proposes a complete algorithm by extending
SL-resolution [Kowalski and Kuhner, 1971]. Inoue and
Helft [1990] point out that MILO-resolution [Przymusin-
ski, 1989], an extension of OL-resolution [Chang and Lee,
1973], can be viewed as C-ordered linear resolution with
skip operation for ground theories with a particular pro-
duction field for circumscription (see Proposition 2.14).

The following proposed procedure called SOL (Skip-
ping Ordered Linear) resolution is a kind of generaliza-
tion of [Przymusinski, 1989; Siegel, 1987]. An ordered
clause is a sequence of literals possibly containing framed
literals [Chang and Lee, 1973] which represents literals
that have been resolved upon: from a clause C an or-
dered clause C is obtained just by ordering the elements

of C,; conversely, from an ordered clause C a clause C is
obtained by removing the framed literals and converting

the remainder to the set. A structured clause (P, Q)

IS a pair of a clause P and an ordered clause Q, whose
clausal meaning is P U Q.

6By the term C-ordered linear resolution, we mean the
family of linear resolution using ordered clauses and the in-
formation of literals resolved upon. Examples of C-ordered
linear resolution are Model Elimination [Loveland, 1978],
m.c.l. resolution [Reiter, 1971], SL-resolution [Kowalski and
Kuhner, 1971], OL-resolution [Chang and Lee, 1973], and
the GC procedure [Shostak, 1976]. This family is one of the
most familiar and efficient classes of resolution for non-Horn
theories because it contains several restriction strategies.

"‘Bossu and Siegel's [1985] saturation procedure finds
Carc(E, V) where Lv are fixed to ground atoms. However,
it does not use C-ordering, but A-ordering (a total ordering
of all the ground atomic formulas).
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Definition 3.1 Given a theory X, a clause (U, and a

production field P, an SOL-deduction of a clause S from
Y.+ C and P consists of a sequence of structured clauses

Dy, Dy, ..., Dy, such that:

1. Dy = (0, C).
2. D, ={(S, 0O).
3. For each D; = ( F;, (5; ), P; U@; 1s not a tautology.
4. For each D; = ( B, d,- ), P, UQ; 1s not subsumed

by any P; UQ),, where D; = ( F;, Q;- ) 1s a previous
structured clause, 5 < 2. This rule 1s not appled if
D; 1s generated from D,;_; by applying 5(a)i.

5. Diy1 = (Piy1, Qiy1) is generated from D; =
( P;, Q) according to the following steps:

(a) Let { be the left-most hteral of Q.

R-+1 are obtained by applying either of the
rules:

1. (Skip) If P,U{l} belongs to P, then P;;, =
P; U{I} and R;}; is the ordered clause ob-
tained by removing ! from @);.

u. (Resolve) If there is a clause B; in ¥ such
that —k € B; and [ and k are unifiable with

mgu &, then P;yy = F;# and R:,_l 1S an or-
dered clause obtained by concatenating B;6
and Q;, framing {0, and removing —k6.
1. (Reduce) If either
A. P, or Q; contains an unframed literal k
different from [ (factoring), or

,+1 &Ild

B. ; contains a framed literal |~k | (ances-

try),
and [ and k are unifiable with mgu 6, then
P;41 = P;f and R,.H 1s obtained from Q.
by deleting 6.

(b) Qit1 is obtained from Rit; by deleting every
framed literal not preceded by an unframed hit-
eral in the remainder (truncation).

Remarks. (1) At Rule 5a, we can choose the se-
lected literal | with more liberty like SL-resolution or
SLI-resolution [Minker and Rajasekar, 1990].

(2) Rule 4 is included for efficiency. This is overlooked
in OL-deduction (and so is in MILO-resolution), but 1s
present in Model Elimination [Loveland, 1978].

(3) When P is in the form of ( Lp ), factoring (5(a)iiiA)
can be omitted in intermediate deduction steps like
Weak Model Elimination [Loveland, 1978). In this case,
Rules 3 and 4 are omitted, and factoring 1s performed at
the final step, namely it is taken into account only for
P; 1n a structured clause of the form ( F;, O).

(4) The selection of rules 5(a)i, 5(a)ii and 5(a)iii must
be non-deterministic; for | € Lp any rule may be ap-
plied. This 18 not a straightforward generalization of
MILO-resolution or Siegel’s algorithm, because they do
not deal with Reduce_as an alternative choice of other
two rules, but make Q;,, as the reduced ordered clause

of the ordered factor of R,-.',_l that 1s obtained by Skip or
Resolve. Both Przymusinski and Siegel claim that the
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hifting lemma should work for their procedures. Unfortu-
nately, this simpler treatment violates the completeness
described below. Furthermore, even for proof-finding,
OL-resolution, which also handles the ancestry rule as a
subsequent rule of Resolve, 1s incomplete. For example,
when the theory 1s given as

E={ pla)vp(z)V-e(z), (1)
—'p(b) y (2)
q(b) (3) }.

it 1s easy to see that ¥ = p(a). However, there is no
OL-refutation from ¥ + —p(a):

(4) —p(a)
(5) p(z)V —q(z)V
(6) —g(a) V|-p(a)

Here, each underlined literal denotes a selected literal
in the next step. The clause (6) 1s the dead-end of the
OL-deduction. Hence, the reduction rule must be an
alternative rule. Model Elimination and SL-resolution
deal with the reduction rule as an alternative.

The Skip rule (5(a)i) reflects the following operational
interpretation of a stable production field P: by Defini-
tion 2.1 (4), if a clause C does not belong to P and a
clause D 1s subsumed by C, then D does not belong to P
either. That 1s why we can prune a deduction sequence if
no rule can be applied for a structured clause 1);; 1f Skip
was applied nevertheless, any resultant sequence would
not succeed, thus making unnecessary computation.

given top clause

-p(a) resolution with (1)

reduction

Theorem 3.2 (Soundness and Completeness)

(1) If a clause S 1s derived using an SOL-deduction from
¥4 C and P, then S belongs to Thp(L U {C}).

(2) If a clause T does not belong to Thp(X), but belongs
to Thp(X U {C}), then there is an SOL-deduction of a
clause S from X 4+ C and P such that S subsumes 7.

Recall that C-ordered linear resolution 18 refutation-
complete as shown, for example, by [Loveland, 1978}, but
is incomplete for consequence-finding [Minicozzi and Re-
iter, 1972]. Theorem 3.2 (2) says that SOL-resolution is
complete for characteristic-clause-finding, and thus com-
plete for consequence-finding when P 1s Pc.

Example 3.3 Consider the theory ¥ and the clause C:

Y={ —cv-a (1),
~cV=b (2) },
C= avVvb.

There 18 no OL-deduction of —¢ from ¥ 4+ C, but —c is
derived using an SOL-deduction from ¥ + C and P, as:

3) (0O, a V b , given top clause
(4) ( D, alVb), resolution with (1)
(5) (-c, . ilvi), skip and truncation
(6) (—-c, —cV[b]), resolution with (2)

factoring and truncation

™M (=e, [B)).
Note that an OL-deduction stops at (4).

Definition 3.4 Let A(X, C,P) be the set of clauses de-
rived using all SOL-deductions from ¥ + C and P. The
production from 3 + C and P is:

Prod(Z,C,P) = u A(E,C,P).




Theorem 3.5 Let C be a clause.
Newecare(X,C,P) = Prod(X,C,P) — Thp(L).

Theorem 3.5 says the primitive Newcarc(Z,C,P) is
contained in the production from ¥ 4+ C and P. To re-
move the clauses in the production derivable from X,
we can use proof-finding: ¥ k& S iff there is an SOL-
deduction of O from ¥ + =S and (0). However, when
the characteristic hiterals Lp 1s small compared with
the whole lhiterals £, the computation of Care(X,P)
can be performed better as the search focuses on 7P.
Then, the check can be reduced to subsumption tests on
Carc(X,P) by Proposition 2.5. The role of Carc(X,P)
in this case 1s similar to the minimal nogoods in the
ATMS [de Kleer, 1986]. This checking can be embed-
ded into an SOL-deduction by adding the following rule:

4a. For each D; = ( P;, é,- ), P; 1s not subsumed by any
clause of Carc(X,P).

Proposition 3.6 If Rule 4a 1s incorporated into SOL-
deduction, then Prod(¥,C,P) = Newcarc(L,C,P).

3.2 Computing Prime Implicates

If the given theory 1s propositional, the prime implicates
can be constructed using every clause as a top clause:

Proposition 3.7 [Inoue, 1990] Given PI(L) and a
clause C, P1(X U {C}) can be found incrementally:

PI1(0)
PI(XU{C})

{pv-p|lpeA}, and
u|[ PI(2)U Prod(PI(X),C,P:)] .

Notice that, in practice, no tautology will take part in
any deduction; tautologies decrease monotonically. The
computation of all prime implicates of E by Proposi-
tion 3.7 is much more efficient than the brute-force way
of resolution proposed in [Reiter and de Kleer, 1987].
Also, ours uses C-ordered linear resolution and thus nat-
urally has more restriction strategies than set-of-support
resolution that is used in Kean and Tsiknis's [1990] ex-
tension of the consensus method.

This difference becomes larger when there are some
distinguished literals representing assumptions in ATMS
cases. The most important difference lies in the fact that
the formulations by [Reiter and de Kleer, 1987; Kean
and Tsiknis, 1990] require the computation of all prime
Implicates whereas ours only needs characteristic clauses
that are a subset of the prime implicates [inoue, 1990].

4 Variations

In Step 5a of an SOL-deduction (Definition 3.1), we treat
two rules Skip (Rule 5(a)i) and Resolve (Rule 5(a)ii)
as alternatives in order to guarantee the completeness of
SOL-resolution. In this section, we violate this require-
ment, and show efficient variations of SOL-resolution
and their applications to Al problems. Note that Re-
duce (Rule 5(a)iii) still remains as an alternative choice
of other two rules (see Remark (3) of Definition 3.1).

4.1 Preferring Resolution

The first variation, called SOL-R deduction, makes Re-
solve precede Skip, namely Skip is tried to be applied

only when Resolve cannot be applied. In a special
case of SOL-R deductions, where the production field
Is fixed to PL, Skip is always applied whenever Re-
solve cannot be applied for any selected literal in a de-
duction. In abduction, the resultant procedure in this
case "hypothesizes whatever cannot be proven". This is
also called dead-end abduction, which is first proposed
by Pople [1973] in his abductive procedure based on SL-
resolution [Kowalski and Kuhner, 1971] 5 The criterion
Is also used by Cox and Pietrzykowski [1986].

4.2 Preferring Skip

The next variation, called SOLS deduction, places SKkip
and Resolve in the reverse order of SOL-R deductions.
That is, when the selected literal belongs to L-p, only
Skip is applied by ignoring the possibility of Resolve.

This skip-preference has the following nice properties.
Firstly, this enables the procedure to prune the branch
of the search tree that would have resulted from the lit-
eral being resolved upon. Secondly, SOL-S deductions
are correct model-theoretically. Let us divide the set of
clauses A produced by using SOL-deductions from X +C
and V into two sets, say A; and A2, such that

AZ"—AIUAQ and EUAl -“‘»——‘Az.

Note that Prod(X,C,P) = pA. Then adding A, to A
does not change the models of X U Aj:

Mod(L¥UA ) = Mod(EUA) = Mod(XUProd(X,C,P)),

where Mod(T') is the models of T'. Thus only A, needs
to be computed model-theoretically. The next theorem
shows SOL-S deductions produce precisely such a 4;.

Theorem 4.1 If a clause 7' 1s derived by an SOL-
deduction from ¥ + C and P, then there 1s an SOL-S
deduction of a clause S from X + C and P such that
YU{S}ET.

In abduction, recall that for a clause S € A and H =
Lp, =S is an explanation of —~C from (X, H)f £ [ S.
Thus, an explanation in A; is the weakest in the sense
that for any clause S, € Ao, there exists a clause S5; €
A, such that ZU {=S3} = S holds °.

In circumscription, this 1s particularly desirable since
we want to answer whether a query holds Iin every min-
imal model or not; the purpose of using explanation-
based procedures is purely model-theoretic. One of ad-
vantages of Przymusinski’s [1989] procedure lies in the
fact that MILO-resolution performs a kind of SOL-S de-
ductions [Inoue and Helft, 1990].

4.3 Between Skipping and Resolving

One further generalization of this kind of preference
would lead us to best-first abduction. Stickel [1990] uses
the minimal-cost proof where we can choose each oper-
ation whose expected computational cost is minimum,
but it is difficult to apply the idea to non-Horn theories.

8 Pople’s synthesis operation performs “factor-and-skip”.
® An explanation E; is said to be less-presumptive thc.:m f?g
if SU{E:2} | E:1 [Poole, 1989]. Therefore, an explanation in

A; is a least-presumptive explanation of ~C from (X, H).
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5 Conclusion

We have revealed the importance of consequence-finding
In Al techniques. Most advanced reasoning mechanisms
such as abduction and default reasoning require global
search in their proof procedures. This global character is
strongly dependent on consequence-finding, in particu-
lar those theorems of the theory belonging to production
fields. That is why we need some complete procedure for
consequence-finding. For this purpose, we have proposed
SOL-resolution, an extension of C-ordered linear resolu-
tion augmented by the skip rule. The procedure is sound
and complete for finding the (new) characteristic clauses.
The significant innovation of the results presented is that
the procedure is direct relative to the given production
field. We have also presented incomplete, but efficient
variations of the basic procedures with nice properties.
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