
On Suppo r t i ng Associat ive Access and Processing 
over Dynamic Knowledge Bases 

I a n N. Rob inson 
Hewlett Packard Laboratories, 

1501 Page Mi l l Road, Building 3L, 
Palo Alto, California, 94304, 

U.S.A. 

Abs t rac t 

Dynamic knowledge bases are a fact of life in 
many art i f icial intelligence applications. 
Using current techniques, however, it is not 
always possible to provide the desired level of 
associative access to them whi lst meeting 
real-t ime, or even near-real-time, perfor­
mance criteria. This paper argues the case for 
a hardware associative storage system that 
uses symbolic pattern matching as its access 
mechanism. A work ing prototype of such a 
system, designed as a co-processor for a 
workstation host, is then described. The co­
processor is based on an array of custom 
designed VLSI 'smart memory' chips. These 
combine storage and search/processing logic 
on the same die. Parallelism is exploited both 
on chip and between chips to yield a high sys­
tem performance. The paper concludes wi th 
some examples of how this hardware can be 
used to support real applications. 

1 Associat ive P a t t e r n M a t c h i n g 

Associative operations based on pattern matching 
are fundamental to many art i f icial intelligence appli­
cations. This paper concentrates on the broad cate­
gory of knowledge-base systems. In such systems 
rules are activated based on pattern matching as the 
ordering information - found in procedural (or com­
piled) systems - is not present. When, and how, a par­
t icular fact or rule is to be applied is typically not 
known unt i l run-t ime. 

A major contributor to this uncertainty lies in the 
application's interaction wi th the everyday world. 
There is also the interaction between rules and, in 
more complex architectures, between component rea­
soning systems. In fact it is seen as an advantage to 
mainta in associative access wi th in such complex sys­
tems, rather than 'hard-wired' connections, since it 
facilitates modularization of the component parts 
[Reece and Shafer, 1990]. 

In general , however, th i s lack of pred ic tab i l i ty 
imposes a l i m i t on how many of these associative 

operations can be optimized away at compile-time. 
Thus the run-t ime component wi l l st i l l contain signif­
icant use of associative access to the data structures 
encoding the knowledge base. Unfor tunate ly such 
associative operations are computat ional ly expen­
sive. To mi t iga te th is , various compile-t ime tech­
n iques have been deve loped to t r a n s l a t e the 
knowledge-base data structures into code sequences. 
These use indexing operations, commonly based on 
hashing, to handle the associative lookup, e.g. Rete 
for OPS5 [Forgy, 1982J, WAM code for Prolog [War­
ren, 1977], HiPER for embedded knowledge-base sys­
tems [Highland and Iwaskiw, 1989]. 

As applications and their rules and queries become 
more complex, so too can the indexing schemes neces­
sary to support the associative access. Wi th simple 
data structures, finding one or two keywords to index 
on is fair ly straightforward. As the structures and 
queries become more complex - possibly including the 
use of variables ('don't cares'), and wi th any of their 
elements being potential keywords - then correspond­
ingly complex indexing structures are required (e.g. 
discrimination nets [Charniak et al., 1980]). Other­
wise a performance h i t is taken every t ime a query 
does not conform to the chosen indexing scheme. 
Since the alternative is usually exhaustive linear 
search, such penalties can be costly. 

These indexing schemes have acceptable perfor-
mance when the database is reasonably static. How­
ever the more dynamic the knowledge base used by 
the application the greater the frequency of index 
table updates. Furthermore, the more complex the 
indexing scheme the greater the overhead involved in 
performing each individual update. Even relatively 
simple indexing schemes can be rendered impractical 
when the update rate of the entry indexed upon is too 
high. In fStormon, 1989] the example is given of 
applying complex queries to the value entries of a 
stocks and commodities database. Wi th this value 
being updated hundreds of times a second it is not 
practical to index on i t , and so answering such que­
ries requires a sequential scan of the database 
records. 

Wi th the intricate indexing schemes necessary to 
efficiently access complex knowledge bases, even less 

48 Architectures and Languages 



dynamism can be tolerated. Examples of such appli­
cations include intel l igent control or monitoring sys­
tems such as in computer integrated manufacturing 
(CIM), medical and process monitoring, and autono­
mous vehicle and robot control systems. Typically 
such applications are required to reason about com­
plex t ime varying systems - including themselves 
(e.g. dynamic resource allocation) - and face real-time 
constraints on the u t i l i ty of their actions or decisions. 
The overhead involved in maintaining associative 
access in such dynamic applications severely 
impedes the abi l i ty of the system to meet i ts perfor­
mance goals. 

Even in systems where there is l i t t le pressure from 
outside events the internal dynamics can be consider­
able. Consider a system that reasons via hypothesis 
generation and test, or via constructing possible 
world scenarios. This involves adding new rules to 
the knowledge base at run-t ime, and employing them 
to test their efficacy. These rules may then be modi­
fied, or deleted and new ones added in their place. 
Mainta in ing an indexing scheme over such transi­
tory data can entail considerable overhead. 

In summary, these characteristics of unpredictabil­
i ty and dynamism move the onus of associative com­
putation squarely back into the run-t ime system, 
where the associated overhead severely impacts sys­
tem performance. The problem then is to support 
associative knowledge retrieval when the data struc­
tures encoding that knowledge can be quite complex 
and dynamic, wi th min imal overhead devoted to cast­
ing the structures into an efficiently accessible form. 

2 Ha rdware : The Cache Analogy 

Run-time being the domain of special purpose hard­
ware, a solution is proposed based on associative 
memory techniques [Yau and Fung, 1977]. Software 
indexing schemes and their upkeep are by-passed 
altogether, and associative hardware is used to 
implement a rapid exhaustive search. The advantage 
of this approach is that the data structures are dealt 
w i th directly, w i th minimal to no encoding. Such use 
of associative hardware is not without precedent: 
consider the ubiquitous cache memory. The same 
characteristics of unpredictabil i ty and dynamism, 
though in this case of data and i ts location, gives rise 
to the requirement for run-t ime hardware to associa-
tively match on addresses and return the associated 
data (or a signal that the data is not present - a 
'miss'). 

This paper describes a cache-like system designed 
to operate wi th data structured in the form of sym­
bolic expressions. Whi ls t a conventional cache sup­
ports rapid access based simply on memory 
addresses; this system has to support complex, non-
predetermined, access to expressions of various 
lengths and structural complexity. By allowing con­
t ro l over access and modification of cached expres­
sions some measure of associative processing can be 
supported. These additional capabilities lead the sys­

tem to be configured as a co-processor rather than as 
a part of the host's memory system. Thus associative 
operations are off-loaded from the host CPU, just as 
graphics and floating-point co-processors off-load 
their particular tasks. 

A significant body of work exists relating to hard­
ware associative memories for such applications. 
Such hardware has typically been based on the tradi­
tional content-addressable memory (CAM) [Kogge et 
al., 1989; Stormon, 1989; Wade and Sodini, 1989]. By 
comparison these suffer from restrictions on expres­
sion format, in some cases forcing entire stored 
expressions to be encoded into fixed length fields. 
Such approaches also tend to rely on comparators 
alone for the matching function, which presents prob­
lems when t ry ing to capture the ful l syntax of sym­
bolic expressions - both stored and used as queries. 
Lastly the storage organization used in the co-proces­
sor described here permits a significantly increased 
capacity over CAM-based architectures. 

3 The Chameleon Board 

Figure 1 shows a photograph of a wire-wrap proto­
type of this associative co-processor. Called the 'Cha-
meleon board' (named after that creature's ability to 
pattern match wi th its environment) it is designed to 
be compatible wi th commercially available worksta­
tions, plugging in to the system's backplane. 

Figure 1. Chameleon Board 

The computational heart of the system is the array 
of custom 'smart memory' chips called pattern 
addressable memories (PAM's). These combine mem­
ory for symbol storage wi th parallel and distributed 
processing logic. This logic is in the form of process­
ing elements (PE's) replicated through the on-chip 
storage. The array of PAM chips acts as one combined 
storage system. A l l the PE's operate in a SIMD fash-
ion on their respective areas of memory. The op-code 
and any data for the operation, e.g. match query, are 
broadcast by a central array controller (located in the 
center of the board in the photograph). 

Robinson 49 



In the last three sections a hardware system has 
been presented that meets the stated requirements. 
The system supports insert ing, deleting, modifying 
and associative matching on and wi th complex sym­
bolic expressions, using paral lel ism to achieve high 
system performance. The current prototype PAM 
chip contains 1024 32-bit-symbol-plus-2-bit-status 
slots and 64 PE's, dividing the storage into 16 pages. 
The chip has been designed and fabricated using a 
1.2u scalable design rule CMOS process, and has a 
die size of just 5.4mm x 4.9mm (approximately 
140mils x 120mils). Using commercial design rules 
and die sizes, a PAM wi th a capacity of 1Mb and 128 
PE's is quite practical. 

The current PE cycle t ime is 200ns, this encom­
passes query symbol input, reading the current page, 
evaluation of the comparators and the jump wire, 
and the subsequent write back of the new match 
token state. The prototype Chameleon board con­
tains an array of up to 32 PAM chips. Provisions are 
made for extending the SIMD operation of the array 
over mult ip le boards connected to the same host. 

6 An Example : Schedu l ing in a C I M 
env i ronmen t 

By way of an example consider part of a simple fac­
tory floor scheduling application controll ing mobile 
palettes. Entries in the database for each palette 
denote its location/destination, its current state and 
its contents. Thus the expressions loaded into Cha­
meleon have the following form: 

...any lug nuts coming to, or currently at, Bay 17? 
Times for the match and read out functions wi l l 

depend on the number and distr ibution of part ial and 
fu l l responders through the chips and pages of PAM 
storage (the palette database is assumed to com­
pletely fill the Chameleon board, corresponding to 
roughly three to four thousand palettes). Table 1 lists 
the match and read-out times as a function of the 
number of responders for these two queries. 

Although this is a fair ly t r iv ia l example it should be 
noted that the ©palette's and the slot values wi th in 
them can be subject to constant insertion, deletion 
and modification via simple read/write operations on 
the PAM's storage. Also the complexity of the query, 
in terms of variables used, has l i t t le affect on the 
match performance. Using the results above such a 
scheduling system would be able to sustain inter­
leaved update and query rates of 40,000 expressions 
per second each. 

52 Architectures and Languages 

7 Knowledge Bases and o the r 
App l i ca t i on Areas 

The above example considered some application que­
ry ing a dynamic database of facts or events. By add­
ing rules to create a true knowledge base, the 
foundations are established for a hardware black­
board system. Blackboard systems fHayes-Roth, 
1985] are popular mechanisms for supporting the 
intel l igent control systems described in Section 1. 
The blackboard provides a central knowledge base 
shared, transparently, by a number of knowledge 
sources. It serves to establish the context for knowl­
edge processing actions, provide a repository for 
hypotheses and control the problem solving process. 
Knowledge sources are scheduled based on events 
posted to the blackboard. A l l of these processes are 
associative in nature and commonly involve dynamic 
data. 

Typically invocation of knowledge sources is an 
event-driven process, leading to the concept of asso­
ciative triggering. Other examples can be found in 
production systems, and interrupt-dr iven behavior in 
robot control systems [Reece and Shafer, 1990J. Both 
require actions to be triggered on complex combina­
tions of events. From the pattern matching system's 
point of view these triggers form the database 
against which external events are matched. The 
match is signalled by the absence of the 'miss' signal. 
So, for example, "©temperature >400" supports range 
checking on a temperature value or, referr ing back to 
the simple palette example, a tr igger could be 
entered to await a palette becoming empty at a cer­
ta in location. It is also possible to look for conjunc­
tions of events posted in any order. The mechanism to 
support this uses the tag words described earlier. 
Every sub-clause of the conjunction ends in a tag 
denoting i ts state - 'satisfied' or 'not_ satisfied'. This 
symbol is modified appropriately after each event 
expression is broadcast. A short sequence of instruc­
tions can then be run to test for conditions that do not 
contain any 'not_satisfied' symbols. By implementing 
these triggers in the PAM new conditions can be 
entered at run-t ime, and existing ones modified or 



deleted, al l w i th no associated re-compilation. Ful l 
b lown Rete-style systems can be implemented by 
replacing the 'satisfied' tag w i th an associative 
pointer to the corresponding beta node, where the 
jo in operation is also supported in the PAM (a scheme 
s imi lar to Kogge et al. [1989]). 

Other Chameleon applications include direct sup­
port for declarative languages such as Prolog, where 
pat tern matching constitutes a large par t of the fun­
damental execution mechanism [Kogge et al, 1989; 
Robinson, 1986J. Al though compilers exist for such 
languages, the Chameleon system again provides the 
capabil i ty to handle dynamical ly created clauses. 

Lastly there are fields such as memory-based rea­
soning LStanfill and Waltz, 1986] and genetic algo­
r i thms [Davis, 1987] in which systems attempt to 
reason or adapt themselves in the absence of rules. 
Such applications rely almost entirely on pat tern 
matching and appear to be well suited to the capabil­
it ies of the Chameleon system. 

It should be borne in m ind when considering the 
capacity of Chameleon that , l ike a cache, it need only 
be of sufficient size to manage the t ransi tory data in 
an appl icat ion, not the entire database. Thus it could 
be viewed as filling the role of short te rm memory or 
as a support for a focus of at tent ion. The end result is 
a system tha t allows complex applications to be run 
faster; or, as a corollary, real-t ime applications to be 
more complex. 

8 Conc lus ions 

In genera], hardware has been perceived as an 
expensive and unpromis ing direction - much hoped 
for funct ional i ty being usurped by new compilation 
techniques. However, as long as there are dynamic 
and unpredictable environments then associative 
hardware, such as the Chameleon system, w i l l have 
a role in meet ing system performance needs. The 
PAM architecture is also poised to take advantage of 
the t rend towards application-specific memories. Yes­
terday's off-the-shelf memories are beginning to be 
replaced by l ibraries of off-the-shelf R A M blocks for 
semi-custom ASIC's. 

This paper has described, and demonstrated the 
applications of, an associative co-processor which in 
prototype form contains 1Mb of storage. The sub­
system plugs into the backplanes of Hewlet t Packard 
9000/300 or 400 series workstat ions and acts as a 
hardware accelerator for a variety of symbolic pat­
te rn matching funct ions. Current ly a PCB version of 
the board is being constructed so tha t these proto­
types can be evaluated in a number of applications. 
As an al ternat ive, a simulator is being completed 
which w i l l ma in ta in a log fi le describing execution 
t imes given the actual hardware. 

Lastly, i t is interest ing to consider the potential of 
such a system using the 1Mb chips proposed earlier. 
Coupled w i t h denser (SIMM-style) packaging the 
same 8" x 11" Chameleon board could have a capacity 
of 16M bytes and contain 16k PE's. Such a system 

would have an aggregate processor bandwidth of 5 x 
10 12 bi ts per second (per board). 

References 

[Charniak et al, 1980] E. Chamiak, C. K. Riesbeck. 
and D. V. McDermott. Artificial Intelligence Pro­
gramming. Lawrence Er lbaum Associates, 1980. 

[Davis, 1987] L. Davis, editor. Genetic Algorithms 
and Simulated Annealing. Morgan Kaufmann, 
1987. 

[Forgy, 1982] C. L. Forgy. RETE: A Fast Algor i thm 
for the Many Pattern/Many Object Pattern Match 
Problem. Artificial Intelligence, 19:17-37, 1982 

[Hayes-Roth, 1985] B. Hayes-Roth. A Blackboard 
Architecture for Control. Journal of Artificial Intel­
ligence, 26: 251-321, 1985. 

[Highland and Iwaskiw, 1989] F. D. Highland and C. 
T. Iwaskiw. Knowledge Base Compilation. In Pro­
ceedings of the 11th International Joint Conference 
on Artificial Intelligence, pages 227-232, August 
1989. 

[Kogge et al., 1989] P. Kogge, J. Oldfield, M. Brule 
and C. Stormon. VLS I and Rule-Based Systems. In 
VLSI for Artificial Intelligence, pages 95-108, 1989. 
Kluwer Academic 

[Reece and Shafer, 1990] D. A. Reece and S. Shafer. 
The Impact of Domain Dynamics on Intel l igent 
Robot Design. Computer Science report CMU-CS-
90-130, Carnegie Mel lon University, May 1990. 

[Robinson, 1986] I. Robinson. A Prolog Processor 
Based on a Pattern Match ing Memory Device. In 
Proceedings of the Third International. Conference 
on Logic Programming, E. Shapiro editor, pages 
172-179, 1986. Springer-Verlag. 

[Stanfi l l and Waltz, 1986] C. Stanf i l l and D. Waltz. 
Toward Memory-Based Reasoning. Communica­
tions of the ACM, 29(12): 1213-1228, December 
1986. 

[Stormon, 1989] C. Stormon. The Coherent Processor 
- A Content Addressable Memory for AI and Data­
bases. In WesconW: Conference Record, pages 240-
244, November 1989. 

[Wade and Sodini, 1989] J. P. Wade and C. G. Sodini. 
A Ternary Content Addressable Search Engine. 
IEEF Journal of Solid-State Circuits, 24(4):1003-
1013, August 1989. 

[Warren, 1977] D. H. D. Warren. Implement ing Pro­
log. Technical Report 39, Edinburgh University, 
1977. 

[Yau and Fung, 1977] S. S. Yau and H. S. Fung. Asso­
ciative Processor Architecture - A Survey. Comput­
ing Surveys, 9(l):3-28, March 1977. 

Robinson 53 


