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Abstract 

We are developing a new paradigm for a world 
model construction system which interprets a scene and 
builds a world model for a mobile robot using dynamic 
semantic constraints. The system represents a world 
model in hierarchical form from sensor-based maps to a 
global map with both numerical and symbolic descrip­
tions. At the beginning of interpretation, sensory data 
(video and range images) are analyzed in bottom-up 
fashion. A range image is transformed into a height map, 
and analyzed for the purpose of generating a geometrical 
property list for both obstacle and traversable regions that 
is used as the initial input to the interpretation process. 
At each step of the scene interpretation process, the most 
reliable feature of an object is selected in the region pro­
perty list to propagate semantic constraints on other 
objects close to it. Geometrical modeling for individual 
objects in the scene is performed, and parameters of each 
model are dynamically refined by the scene interpretation 
process. These model parameters and their interrelation­
ships make spatial reasoning robust. Preliminary results 
with video and range images are shown. 

1 Introduction 
The development of intelligent mobile robot systems is 

a central problem in artificial intelligence and robotics, and 
has been extensively studied (ex. see many papers in the 
Proc. of Image Understanding Workshop [1987]). In order for 
these systems to accomplish various tasks such as visual 
navigation, obstacle avoidance, and landmark (and/or object) 
recognition, building and maintaining a world model from 
sensory data are essential problems. To construct such a 
world model which allows the system to represent the 3-D 
world and draw inferences about it, the fol lowing two major 
problems concerning data structures and control strategy 
should be addressed: (1) what kind of representation is suit­
able for a world model, and (2) how can the system obtain 
such a representation f rom sensory data? 

Tsuji and Zheng [1987] have developed a stereo-vision-
based mobile robot system that constructs a perspective map 
where the 3-D information obtained from stereo vision is 
represented in the image coordinate system. Hebert and 
Kanade [1986) have analyzed E R I M range images and con­

structed a surface property map represented in a Cartesian 
coordinate system viewed from top. Such a surface property 
map is easy to understand but does not naturally capture sen­
sor resolution and accuracy. However, integrating several 
perspective maps obtained at different locations into a single 
perspective map seems difficult. Having both the perspective 
map and the 2-D map in a hierarchical representation and 
referring to each other when necessary is one solution for the 
above problem. Elfes [1987] has proposed a hierarchical 
representation of a sonar map in which the outputs of sonar 
sensors are directly mapped to a 2-D map, therefore, the 
difference between a sensor perspective map and an object-
centered 2-D map such as surface property map is implicit. 
Asada [1988] has modified Elfes's system so that other sen­
sor outputs can be represented in his hierarchy, making the 
relationship between the perspective map and the 2D map 
explicit. 

Almost all of the above systems, however, adopted 
data-driven analysis with bottom-up control, and do not con-
sider a symbolic representation of a world model for task 
accomplishment given in a higher level description (ex. "Pick 
up the book on the desk behind the shelf", or "Turn right at 
the next intersection and stop in front of the small cabin"). 
In order to perform such tasks, scene interpretation and 
geometrical reasoning are necessary because the system has 
to identify each object in the scene and to draw inferences 
about geometrical relationships between identified objects. 
A C R O N Y M [Brooks, 1981] is a knowledge-based aerial pho­
tographs interpretation system which used general knowledge 
about image features and object characteristics along with 
specific knowledge about the objects expected in the image to 
guide interpretation and construct a description of the scene. 
Interpretation was done by an external graph matching pro­
cedure which was primarily top-down. Since the matching 
procedure was independent of the image data, A C R O N Y M 
could not organize its search to match the most reliable or 
complete ieatures first and restrict the search for the remain­
ing data. 

In this paper, we present a new paradigm of a world 
model construction system which interprets a scene and 
builds a world model for a mobile robot by using dynamic 
semantic constraints. We, human beings, can easily and reli­
ably interpret a scene using available knowledge specific to 
the scene. To provide a mobile robot with such a capability, 
not only a knowledge-base structure (frame representation 
Minsky, 1975]) but also a geometrical data structure for the 
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world is needed. The system represents a world model in a 
hierarchical form from sensor-based maps to a global map 
with both numerical and symbolic descriptions. The result of 
the scene interpretation is represented as a semantic network 
where each node corresponding to one object is associated 
with the geometric model, and each arc represents geometri­
cal relations between them. Geometrical parameters of these 
models described in the semantic network make spatial rea­
soning robust, and help with various kinds of tasks for the 
intelligent mobile robot systems. 

2 Overview of the System 
Figure 1 shows a conceptual view of the system, the 

hierarchical representation of a world model where various 
maps at different levels are included. First, sensory data 
(intensity and range images) are analyzed under bottom-up 
control. A range image is transformed to a height map, which 
then is segmented into traversable or obstacle regions using 

V ideo Images Range Images 

Figure 1 A conceptual view of the system; a world model 
construction system 
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height information, and the intensity image is segmented by 
using the results of height map segmentation [Asada, 1988). 
These results are stored as a sensor-based or vehicle-centered 
map. Second, scene interpretation using dynamic semantic 
constraints is applied to the results of the data-driven 
analysis. Domain-specific knowledge is organized as semantic-
constraints on objects expected in the scene and on the 
geometrical relations between them. They are represented as 
production rules, and procedures attached to them are dynam­
ically controlled according to the contents of the current map. 
At each step, the most reliable feature is selected to pro­
pagate semantic constraints which effectively restrict search 
area for the following procedures. To realize this kind of 
heterarchical control, we have to evaluate the results of each 
procedure to find the most suitable production rule. Here, we 
make use of the region property list of the segmented height 
map. Using this list, the system can easily find the desired 
object feature, and then propagates semantic constraints. 
Third, object modeling is carried out simultaneously with 
scene interpretation. Each object model is represented as a 
frame structure with a property list, geometrical relations to 
other object models, and solid model parameters for artificial 
objects or generalized cylinder model parameters for natural 
objects. Whereas the solid model parameters for artificial 
objects are refined, and very specialized frames are selected 
according to the degree of interpretation (obstacle -> moving 
object -> automobile > car -> Ford Probe), the generalized 
cylinder parameters for natural objects cannot be strictly 
fitted, because specialization of natural objects (obstacle -> 
tree -> coniferous tree -> pine tree) seems difficult and less 
meaningful. Thus, the world model is updated by the scene 
interpretation and the object modeling at each step. The final 
map of the world is a graph representation of a global map 
each node of which corresponds to a local map and each arc-
shows the relationship between local maps at its both ends. A 
local map is represented as a semantic network of object 
models (node) and their relationships (arc). Each node has a 
pointer to the corresponding object frame where property and 
model parameters are described. The following sections wi l l 
focus on scene interpretation and object modeling. 

3 Scene Interpretation Using Semantic Con­
straints 

3.1 Evaluation of Bottom-Up Analysis 

Our sensory data were generated by the CVL light-stripe 
range scanner [DeMenthon et ah, 1987] developed at the 
Computer Vision Laboratory of the University of Maryland 
which was the ranging system mounted on a robot arm for 
simulation of a ranger-equipped vehicle. An outdoor scene 
was simulated by using object models (HO scale) such as 
trees, bushes, cabins, mail boxes, telephone poles, and cars. 
The input scene includes a straight road, a T-type intersec­
tion, two cabins, one truck, two cars, a mailbox, a stop sign 
at the intersection, trees and bushes (see Figure 4(c)). A 
range image (sensor map, ex. see Figure 2(a)) was 
transformed to a height map (Figure 2(b)) with respect to a 
mobile robot. In the range image (height map), the darker 
points are closer to the viewer (higher with respect to the 
assumed ground plane), and the brighter points are farther 



(lower) from it. In the white regions, range (height) informa­
tion is not available due to inadequate reflection or occlusion. 
The height map was segmented into four categories (see Fig­
ure 2(c), unexplored (white), occluded (dark gray), travers­
able (light gray) or obstacle (black) regions) using height 
information for obstacle detection and path planning. One 
drawback of the height map - recovery of vertical planes is 
not possible - was overcome by the utilization of multiple 
height maps which include the maximum and minimum 
heights of each point, and the number of points in the range 
image mapped to one point in the height map. The multiple 
height map was useful not only for finding vertical planes in 
the height map, but also for segmentation of the intensity 
image (Fx., see bushes on the left side in Figure 4(c)). See 
[Asada, 1988] for more detail. The results of height map 
segmentation are transformed into a region property list 
where labels (traversable or obstacle) and geometrical proper­
ties (location, area, mean height, mean slope, mean curvature, 
variances of slope and curvature) are described for each 
region for subsequent scene interpretation. 

3.2 Knowledge Representation and Road Scene In terpre­
tat ion 

The scene interpretation system consists of three parts; a 
knowledge-base, a working memory, and an inference engine. 
The knowledge base has three kinds of knowledge; the top 
level is domain-specific knowledge for road scene interpreta­
tion, the second level is general knowledge of geometrical 
descriptions (ex., "parallel lines" and "smooth curves"), and 
geometrical relations ("close", "along", "on" and so on), and 
the third level is general knowledge about image processing 
(ex., edge finding, line fitting and so on). Production rules 
for identifying each object in the scene (top level), for rea­
soning geometrical relationships (second level), and for han­
dling image processing software (third level) are organized 
for utilization of the above knowledge base. The region 
property list obtained from bottom-up analysis of sensory 
data is stored in the working memory. The principle of the 
control strategy included in the inference engine whose is to 
identify object labels as more specific one (an instance) in the ( C a b i n 
working memory (downward in Figure 3). The following sec­
tions focus on the representation of domain-specific 
knowledge and preliminary results of scene interpretation. 
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In the "Bush Frame", other properties such as high mean cur­
vature, large variances of slope and curvature should be 
described since a bush has these properties. They are, how­
ever, included in its upper class, the "natural object" frame, 
and "Bush Frame" inherits them from it. The following 
items are examples of rules used to identify each object in 
the scene on the top level. 

* 

#301 : If there is a pair of parallel smooth curves in the 
traversable region, 

then match the "Road Frame". 
#302 : If there is a moving object on the road, 

then match the "Automobile Frame". 
#303 : If there is an object near the road, 

then match the individual frames of bush, building, 
parked automobile, or other object. 

#401 : If an object has high curvature, large variances of 
slope and curvature 

then match the "Natural-Object Frame". 

3.2.2 Prel iminary Results 

First of all, the region property list as the result of 
height map segmentation is stored in the working memory. 
The larger region close to the viewer is selected because it is 
the most reliable feature in the list. In a road scene, a travers-

able region would be the largest in the working memory and 
is selected as the first object feature. If there are plural candi­
dates for the first feature, the system chooses an arbitrary one 
and keeps the remaining ones for later interpretation, expect­
ing that the semantic constraints from the first one propagate 
to other candidates. In our experiments, a traversable region 
is the largest in the working memory and is selected as the 
first object feature. In order to interpret a road scene, a road 
region is a key feature for propagating semantic constraints 
on objects expected in the scene. Since road regions should 
be included in the traversable region, the system tries to 
detect the road boundaries in the traversable region. In the 
height map, finding road boundaries seems difficult. There­
fore, the system maps the traversable region from the height 
map to the intensity image in order to find road boundaries 
using the intensity information (see Figure 4(a)). A road edge 
finder is applied to that part of the intensity image which 
corresponds to the traversable region, and detected road 
region boundaries are mapped onto the height map for later 
processing. Figures 5(b) and (c) indicate the results of road 
boundary detection. Although there are some strong edges 
near the right road boundary caused by the shadow of the 
cabin on the right side, only short segments remain because 
they have various kinds of orientations along the shadow line 
due to texture patterns on the road surface. Figure 4(b) shows 
the final result of road region detection, and Figure 4(c) indi­
cates the corresponding road region on the height map. 

The next step is to find and identify objects near the 
obtained road region. Candidates for them are automobiles 
(on the road), bushes, trees, buildings (along the road), and 
so on. When one of them becomes evident in the height map 
and/or the intensity image, the corresponding object frame is 
called to identify it. The first candidate is an obstacle (truck) 
touching the road region. There are two possible interpreta-
tions for the object; one is an object bounding the road, and 
the other is an obstacle on the road. The probability of the 
former is not so high because the road width changes sud­
denly, therefore, the later one is kept by the system. Since 

Figure 4 Road boundary detection; (a) traversable region in intensity image | left], (b) road region in 
intensity image [center], and (c) road region on height map (right] 
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the probability of the object to be an automobile is very high 
if an obstacle is on the road, this hypothesis is verified by a 
fol low-up observation. There are two objects selected as 
being near the road region. One is an object (bush) along the 
left road boundary, and another one (cabin) near the right 
road boundary. Candidates of the objects near the road 
boundary are bushes, trees, buildings, parked cars and so on 
according to rule #303. The left side object is hypothesized 
as a natural object (bush or tree) because of its high mean 
curvature, large variances of slope and curvature (rule #401). 
The shape of the boundary of this region on the intensity 
image has many curvilinear segments (see Figure 4(b)), and 
this make its interpretation as a natural object more likely. 
The right side object is hypothesized as an artificial object 
due to its planar surface (from the PROPERTY slot in the 
"Artif icial-object Frame"). Thus, the most reliable object 
feature is selected in each step in order to propagate semantic-
constraints to other objects in the working memory, and 
interpretation of intensity image and height map is efficiently 
performed. 

4 Geometrical Modeling with Solid or GC Model 
The final goal of our research is not only to represent a 

world model by symbolic descriptions, but also to provide a 
geometrical model associated with it so that the system can 
easily reason about the 3-D world. To realize such a world 
model, both object modeling and scene interpretation 
processes should be carried out simultaneously, because they 
cannot make use of feedback from the intermediate results 
from each other, if the object modeling was performed after 
scene interpretation. 

4.1 Solid Mode l ing For Ar t i f ic ia l Objects 

Object modeling should satisfy the fol lowing require­
ments: (1) the number of parameters should be small 
(efficient representation), and (2) redundancy should be low 
(correct representation). We adopt the solid model with 
planar surfaces for artificial objects to satisfy the above 
requirements since artificial objects such as houses, road 
signs, cars, and trucks have many planar surfaces. The pur­
pose of object modeling is to provide approximate location, 
size, and shape for geometrical reasoning which helps the 
scene interpretation. To reflect the intermediate results of 
scene interpretation, the system has three levels of approxi-
mation of solids for each region according to object speciali­
zation. 

On the first approximation level (artificial object), a box 
model is used to represent the location and size of the object. 
The box model consists of four vertical walls and one hor­
izontal top surface, all of which are touching with some parts 
of the object; in other words, the model is the bounding box 
of the object on the height map. The next level (instance of 
artificial objects such as cabin, car, truck, or road sign) is a 
polyhedron model any surface of which is touching an edge 
or surface of the object. The final level is a composite model 
with boxes, wedges, and planar patches for more specialized 
object such as Ford Probe, an instance of car. Although verti-
cal planes can be detected from the multiple height map |6 ] , 
close examination of the range images is needed to determine 

the size of each part correctly, for example, overhang of the 
roof. 

4.2 Generalized Cyl inder Model ing For Natura l Objects 

The only purpose of natural object modeling is to 
represent location and size for each region because, unlike 
artificial objects, determining accurate geometrical parameters 
for natural objects seems difficult and less meaningful for 
mobile robot systems. If a natural object is selected as a 
landmark, outstanding feature(s) of color and/or size such as 
deep red, very large, and/or very tall is necessary rather than 
fine structure of the object. Here, we adopt the Straight 
Homogeneous Generalized Cylinder (SHGC in short) model 
for natural objects. Bushes and trees grow based on their 
trunk whose orientation is generally vertical due to gravity. 
Thus, we select the vertical direction as axis orientation, and 
smoothly change the radius of the circle of the cross-section 
in order to cover the object. Splitting a SHGC into plural 
small SHGCs can be performed if necessary. 

4.3 Pre l iminary Results 

Figure 5(a) shows the first approximations of four 
objects; road (planar patch), automobile on the road (box), 
natural object on the left side (right cylinder), and artificial 
object on the right side (box). To specialize the object 
hypothesized as an automobile, the system picks the "car" 
and "truck" frames from the SIZE slot of them (the max­
imum height is determined from the height map although the 
length (or width) is not determinable due to self-occlusion). 
The second approximation is carried out to specialize this 
object. The planar region as a supporting plane of the truck is 
found, which increases the probability of "truck". From the 
fitting of planes to the object on the right side, the "cabin" 
frame is selected, and parameters of the plane, height and 
slope, for the part of the roof are refined. The right cylinder 
for the natural object is also reshaped by the change of the 
radius of the cross-section circle. Figure 5(b) illustrates the 
above processes. Thus, scene interpretation by specialization 
of region labels in the working memory is carried out, and 
the parameters of geometrical models arc refined. 

5 Discussion 
We are developing a world model construction system, 

and the interpretation of video and range images for a mobile 
robot with dynamic semantic constraints was described. At 
each step, the results of the scene interpretation is reflected 
onto geometrical modeling of each object in the scene, and 
the refined model makes scene interpretation efficient and 
robust. Use of new sensory data observed at different loca­
tions would be helpful for verification or correction of the 
scene interpretation (especially, for moving objects). Before 
utilizing new sensory data, we have to solve the correspon­
dence problem. Although finding the correspondence between 
two images is generally difficult, the system can find the 
correspondence of two height maps efficiently using the 
region property list. Scene interpretation can be verified and 
updated by using multiple views, and the geometrical param­
eters of each object would become more determinable as 
their interpretations become more specialized. We have dis-
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Figure 5 Geometrical parameter refinement; (a) first approximation with box and right cylinder | left ] , and 
(b) second approximation with polyhedron and SHGC [right 

cussed this problem in [Asada et al., 1989]. The fol lowing 
problems should be addressed in future work: 

Representation of the uncertainty of scene interpretation; 
in the current system, certainty of the scene interpretation is 
empirically determined, and the rule for fusing different 
views is very simple (average). Exact definition of certainty 
for scene interpretation is needed, and fusing rules for scene 
interpretations at different views, which are consistent with 
the defined certainties, should be developed. 

Various kinds of low-level signal processing are needed 
and should be robust, and their limitations should be 
described exactly. Otherwise, scene interpretation would be 
unstable, unreliable, and infeasible. The number of available 
programs for signal-level processing is l imited in the current 
system. 
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