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Abstract

We show that the usual notion of constraint
propagation is but one of a number of simi-
lar inferences useful in quantitative reasoning
about physical objects. These inferences are
expressed formally as rules for the propagation
of "labeled intervals"” through equations. We
prove the rules' correctness and illustrate their
utility for reasoning about objects (such as mo-
tors or transmissions) which assume a contin-
uum of different states. The inferences are the
basis of a "mechanical design compiler”, which
has correctly produced detailed designs from
"high level” descriptions for a variety of power
transmission and temperature sensing systems.

1 Introduction

"Constraint propagation" is often thought to be a key
element in design [1, 2, 3, 4, 5, 6, 7, 8, 10], hardware
debugging [11] and spatial reasoning [12]. Intervals are
among the most general constraints propagated; for ex-
ample, given y — 2x and 1 < x < 2, one concludes
2 < y < 4. The meaning and validity of this inference
seem intuitively clear, and research attention has gener-
ally focused on its computational characteristics.

In fact, we show here that the meaning of these state-
ments and the validity of this inference, as applied to
physical objects, requires more attention. More pre-
cisely, the statement 1 < x < 2 can be considered a rela-
tionship between a variable name, an interval of values,
and the permissible states of the physical object being
described. Reasoning about physical objects can involve
at least four different kinds of such relationships. Fur-
ther, the inference shown exemplifies only one of three
useful computations on equations and intervals; each of
the three performs correct inferences only for appropri-
ate interval-variable relationships.

We begin with an example demonstrating the utility of
three kinds of interval propagation, then introduce four
"[abels" for interval-variable relationships. The bulk of
the paper defines and proves the correctness of a variety
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of propagation inferences over "labeled intervals". Fi-
nally, we briefly discuss the application of these ideas
In a "mechanical design compiler"— a program which
takes as input a schematic, specifications, and a utility
function for a mechanical design, and returns a descrip-
tion detailed enough to allow construction of an optimal
Implementation.

1.1 An Example

Figure 1 shows graphically the governing equation, t, =
rt;, for an ideal variable-speed mechanical transmission;
here t, and t;, are the output and input torques, and r is
the continuously variable "transmission ratio". We use
this equation to illustrate three different inferences.

Figure 1: Inferences on a Mechanical Transmission

Case A: Suppose that the transmission ratio is lim-
ited to the interval from 2 to 4, and that if the output
torque goes above 8 or falls to less than 1, it will damage
the attached load. This seems clear enough: 2 < r < 4,
and 1 < t, < 8. We want to pick motors which can-
not damage the load, and conclude that the input or
motor torque must fall in the interval A, from 0.25 to
4, 0.25 < t; < 4. This is the usual notion of interval
constraint propagation.
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Case B: In contrast, suppose that under the ex-
pected operating conditions the output torque must vary
throughout the interval from 1 to 8 in order to drive the
load. Note that we are not saying that the output torque
Is limited to the interval from 1 to 8; this interval means
something else. With the same limits as in case A on the
transmission ratio, we conclude that the motor torque
must at least vary over the interval B, that is from 0.5
to 2, or the motor will fail to drive some load. This can't
be "interval constraint propagation”, since it gives differ-
ent results with the same equation and interval inputs.

Case C: Now suppose that the transmission ratio is
unknown, that the output torque must vary as in case B,
and that the input torque is limited to the interval from
0.25 to 4. We conclude that the transmission must under
some operating condition take on at least one value in the
interval from 2 to 4, interval C; otherwise, at least one
of the required output torques would be unattainable.
“Interval constraint propagation” on 0.25 < ¢; < 4 and
1 <t, <8 would give 0.25 < r < 32. We will show later
that this inference differs from that of Case B as well.
Further, the ratio i1s not himited to the interval from 2 to
4, nor is it required to take on every value in this interval,
this interval means something different still from those
we have previously encountered.

The transmission equation relates the values for vari-
ables at a particular time. However, in each case, we
used the equation to draw a conclusion about the set of
values a variable could or should take on. Design is a nat-
ural area of application for such reasoning, because the
designer must take into account the full variety of con-
ditions under which his design must operate. Mechani-
cal designers are in fact comfortable with the reasoning
of the example, but if asked to justify it can provide
only intuitive arguments. We will formalize these argu-
ments, beginning by clarifying the possible relationships
between variables, the states of an artifact, and intervals
of values.

1.2 Assignment Intervals, and Equations

Let us suppose ourselves to be discussing an object of
some sort. We describe this object using a set of vari-
able names, and suppose that it can take on various
permissible states; each state assigns cach variable a
value from the real number line.

We need some notation. We will use S to symbolize
the set of permissible states, and s for an element of S.
We will write X = (x 0 2) to mean the set of assignments
of values in the interval [0 2] to the variable z; x € X to
mean such an assignment; and x(s) to mean the function
from states to assignments of the variable x.

Assignments inherit from the real numbers such rela-
tions as <, =, min, in the obvious way. We can therefore
refer to “intervals of assignments”. If X is such an in-
terval, then by x; we will always mean min(X) and by
Xy, max(X). We will allow intervals to be infinite, e.g.
(z 2 oo), but defer until the last section discussion of the
computational implications of such intervals.

We can now introduce four kinds of statement about
objects, their sets of permissible states, and intervals of
assignments. We distinguish these by labeling the inter-
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vals, as in (label z x; z1), or just (label X), and refer to

them as labeled intervals.
only

.- o\ d ]
Definition 1 (| ] X) &L vs ¢ S,dx € X .x(s) =x
That is, the permissible states assign values to z only
from X; this is the interpretation given all three in-
tervals in case A. This statement 1s actually a predi-

cate on objects and sets of states, and could be written

(Fnui X)(object, S), but as we are considering only a sin-

gle object and set of states we will leave them 1mphcit.

Definition 2 ("< X) €4 vx € X, 35 € S.x(5) = x

That 1s, for every assignment in X, there exists a per-
missible state of the object making the assignment. This
is the interpretation given both torque intervals in Case

B.
aome

Definition 3 (- X) &L 3se53x € X.x(s) =x

That is, there exists some assignment x 1n X' and state s
in S such that s makes the assignment x. Here we have
the interpretation given the transmission ratio interval
in case C.

Definition 4 (b1 X) &l vs e Sx(s)g X

That 1s, there 1s no state s € S such that s makes any
assignment 1n X. As an unportant exception to our nor-
mal custom, we here interpret X to be an open interval.

none only ==

If (>a X)and X is semi-infinite, then we have (| 7 .X),

where X is the complement of X.

We will interpret equations describing the object as
predicates on the permussible states of the object. More
precisely, 1if the object 1s described using the equation
G(x,y,z) =0, thenforeverys € S, G(x(s),y(s),z(s)) =
0.

We impose tight restrictions on equations, discussing
in [13] how these restrictions can be accommodated or
loosened 1n practice. First, each equation must be un-
plicit, and in three variables. (If we need equations of
more than three variables to describe an object, we can
use mtermediate variables to convert them 1nto systemns
of equations.) Second, over the domain of interest the
equations must satisfy the uniqueness property; that is,
if G(zo,90,21) = 0 and G(zp, Yo, 22) = 0, then z; = 2o,
and so on for permutations of variable names. Third,
the domains of interest must be compatible; that s,
for any permissible values of z,y there must be a per-
missible value of z satisfying the equation.

These constraints are sufficient to guarantee that the
cquation can be solved for each of the three variables,
and that the resulting functions are strictly monotonic?’.
Finally, we require that these functions be continuous.

Given G(z,y,z), we will write ¢g(x,y) to mean the

assoclated function from assignments in r and y to as-
signments 1n z.

'By strictly monotonic, for these functions of two vari-
ables, we mean that if z; < z; and g(z1,3) < g(z2,71), then
forall = > =z, g(x,y0) > 9(x1, ¥0), and so on for permutations
of variable names. It can be shown for these equations that if
these inequalities hold, and y; < y; and g(z,, %) < g(z1, ¥2),
then for all £ > z,,y > ¥, g(z,y) > g(z1,11). Note that

the transmission equation is strictly monotonic only over the
positive reals.



2 Interval Operations and Inferences

We can now formalize a number of operations on in-
tervals and equations, asking for which permutations of
labeled intervals they perform correct inferences.

2.1 Conventional Constraint Propagation

We 1ntroduce first the operation used in the introduc-
tion’s Case A.

Defimition 5 RANGE(G,XY) = {z
Y.G(x,y, ) = 0)

That 1s, the RANGE of the equation G with respect to
the intervals of assignment X, Y is the set of assignments
to the variable z such that there exist assignments in X
and Y satisfying G(x,y,z) = 0. This is of course simply
the usual 1image of X', Y under ¢(x,y). The continuity of
g(x,y) ensures that Z 1s an interval. Trivially, RANGE 1s
commutative in the intervals; that 1s, RANGE(G, X|Y) =
RANGE(GL Y, X).

Recall that by x; and xp we mean min(\') and
max(.\') resnectively; then to compute RANGE we use:

Definition 6 CORNERS(G, X, Y) =
{9(xi,¥1), 9(xn, ¥1), 901, ¥4), 9(xn, y4)}-
This leads to
Lemma 1 RANGE(G, XY )= 7 =
[(min(CORNERS(G, X, Y)) max(CORNERS((F, X, Y))].
Further, of z; = min(Z) = g(x;,y,), and z), = g(x;,y-),
withy,, y, €Y, then {x;,x;} = {x;,x4}.

dx € X,dy €

The i1dea 1s that the maximum and minimum of a
monotonic function over a pair of intervals occur at the
endpoints of the intervals; further, they occur at different
endpoints. The lemma of course holds for permutations
of the varniable names. The proof follows directly from
the monotonicity and continuity of g(x,y).

For which combinations of labeled intervals does the
RANGE operation produce correct inferences? We bhegin
with the most obvious.

Rule 1 ([onl)i ..«\')&t([only] &G, y,2) =0
— (™) RANGE(G, X, Y))

That 1s, if for every permissible state G(x,y,z) = 0 1s
satisfied, x(s) 1s in X and y(s) 1s in Y, then z(s) is in
the image of X,Y under g(x,y). This follows directly
from the definition of RANGE.

This rule expresses the inference of Case A. Recall

that the output torque of the transmission should not go

onl ..
above 8 or below 1: ([‘ T, 1 8). The transmission ra-

only

tio could not go below 2 or above 4; ({ ] r 2 4). These,
with the equation t, = ri;, match the antecedents of
Rule 1. The CORNERS operation substitutes the end-
points of these intervals into 22, returning assignments to
t; of {0.5,0.25,4,2}; and the RANGE operation extracts

. « onl
the maximum and the minimum to form ([ ] ¢; 0.25 4),
the hmits on the input torque.

We also have
only

Rule 2 {{ | X)&(" - Y)&G(z,y,2z) =0

some

—(--- RANGE(G, X,Y))

aome

Proof: By the definition of --- , there is some s €

only

S such that y(s) € Y, and by the definition of [ 7,
X(s) is certainly in X'. Then z(s) = g(x(s),y(s)) is in

some

RANGE(G,X,Y), so (- RANGE(G, X,Y)) is satisfied.
In con-

trast, the possible rule (*--- M&C YYG(r,y, 2) =

O0—(--- RANGE((, X,Y)) is invalid, because the as-
signment 1n .\ and the assignment in Y need not occur
simultaneously. Consider, for example, the labeled inter-

vals (-°- 22 3), (""7 y 1 4), and equation ry — z = 0,

and the following consistent and complete set of states:
State =z

-y

Yy oz

$1 295 0 0

S9 0 2 0
The rule would incorrectly imply (--° 7 2 12).
The same objection applics to the possible rule,

T A& CE Y)Y — (7T RANGE(G, X, Y)).
The possible rule (01 XN)&(ba YI&G(2,y,2) =
0——( d RANGE((, X,Y)) 1s also invalid.
none none

an object described only by {({a r23), (0 y 1 4),
ry — z = (. Then a state assigning z = 1,y =6,z =06
1s permussible, and (noc::le Z 2 12) 1s false. However,
let. us divide the complement_of X into two intervals,
N = {x|x < mun(X)}, and X} = {x]|x > max(.\\)}.
Then, using the symbol ¢ for RANGE, we have

Y YO (e, y, 2)—

Consider

none none

Rule 3 (00 XN)H)&(

none

("Ba (G N LY NG, N, Y D)NS(G, N Y NG N, Y )

The mtuition for thas rather forbidding expression s
that since x and y can’t be in .X and Y, they must be
overlineX and Y ; these complements can be divided mto
two mtervals each; and z must be 1 the RANGE of one
pair of such complement intervals. Hence, z cannot be
in the intersection of the complements of those RANGEs.

We might suppose that we could label the umon of the

_ . only . . . .
RANGEs with a[ 7] label, indicating that the assignment

must fall in that union, but that union 1s not. an interval.
The 1ntersection of the complements s an interval, be-
causce: Xy, Xp, Y, and Yj, are semi-infinite intervals, the
RANGEs of the pairs are also semi-mfinite intervals, the
complements of the RANGEs are semi-infinite mtervals,
and the intersection of mmtervals 1s an mterval.

The formai proof of Rule 3 1s simple. Let the conse-
quent interval equal Z, and suppose there 1s some s € §
such that z(s) € Z. By the antecedents, x(s) € X and

y(s) € Yy, for j and k in {h,{}. But then z(s) is in
RANGE(G, Xj,Y ), contrary to the defimtion of Z.
For the final rule of this section, we need:

Definition 7 INDEPENDENT(X, Y, S) of and only if for
any x € X such that x = x(sy) and 'y € Y such that
y = y(s2), with sy and s in S, then there is an s € S
such that x(s) = x and y(s) = y.

As usual, we will often leave S 1nphat.

If for every pair x,y in .\ x Y there 1s a state making
these assignments, and G is true in every state, then
there is a state making every assignment in {z|dx €
X,3y € Y.G(x,y,z) = 0}. We therefore have:
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Rule 4
INDEPENDENT(X, V)& ("< X)& (S Y)&G(z,y,2) =
0— ("= Z RANGE(G,X,Y)).

2.2 The DoMAIN Operation

We turn now to case B of the introduction, and define a
partial inverse of RANGE. That 1s,

Definition 8 ;
DoMAIN(G, Z,X) =Y & RANGE(G,Y, X)) =2

DoMaAIN 1s partial because for some G, Z, X there i1s no
assignment interval Y which satisfying this definition;
the computation process given below readily identifies
such cases. The following rules apply only when such a
Y exists.

Note that since RANGE is cormnmutative with respect
to its interval arguments, DOMAIN(G, Z, X)) = Y implies
DOoMAIN(G, Z,Y) = X.

DoMAIN has an equivalent direct defimtion.

Lemma 2 DOMAIN(G, Z, X) {y|lVx €
Z2.G(x,y,z) = 0}

Proof: Let DOMAIN(G,Z, X) =Y, and Y' = {y|Vx €
X,3z € Z.G(x,y,z) = 0}; we must show that ¥ = Y’
Suppose y, € Y. By the compatibility property, for ev-
cry x € X, there exists some zgy such that ((x,y,, z0) =
0. But by the definition of DOMAIN, RANGE(G,X,Y) =
Z, and by the definition of RANGE, Z = {z|3dx € X,Jy €
Y.G(x,y,z) = 0}, hence z¢ is in Z; that is, for every
x € X there i1s a zg € Z such that G(x,y,,20) = 0.
yo then satisfies Vx € X,3Jz € Z.G(x,yq,2) = 0, and
Yo €Y.

For the converse, we show first that the endpoints of
Y" are n Y. Let y; = min(Y’), and let g(x;,y;) = 2,
g(Xn,y)) = 22 .

At lecast one of z;,z, must be an endpoint of Z. To
see this, assume the converse; z; < 2z, < zp, and z; <
z9 < zp. Since g(x,y) 1s continuous and monotonic, we
can choose some point y’ < yj, but sufficiently close to
y; that z; < g(x;,y') < 2z and 2z < g(xp,y’) < zj.
But then, z = g(x,y’) € Z for all x € X, and by the
definition of Y/, y’ € Y. This contradicts the definition
of y; as min(Y"'); hence, the assumption is false, and at
least. one of z,,z4 1s an endpoint of Z.

Let z; designate the element of {z;,2z2} which is an
endpoint of Z, and let x; designate the corresponding
element of {x;,x;}; that is, g(x;,y]) = zx. Lemma 1
and the uniqueness property of of G then imply that
Y =Y

We can use symmetrical reasoning to conclude that,
y) 1s also an endpoint of Y, then use Lemma 1 again to
conclude that they are different endpoints (unless Y is
a single point). Y is an interval by definition (RANGEIs
defined only on interval inputs), so all the assignments
between y; and y, are alsoin Y,and Y/ =Y.

To compute DOMAIN, we rely on:

Lemma 3 If DOMAIN(G,Z,X) =Y, then y; = min(Y)
and y, = max(Y ) are in CORNERS(yg, Z, X).

X,dz €

Proof: RANGE(GL,X,Y) = Z, so z; and z, are in
CORNERS(G,X,Y). Thus, for some values ¢ and j
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in {l,h}, g(xi,y;) = z. But then by the unique-
ness property of G, ¢(xi,z;) = y;, 80 y; 18 In
CoRNERS(G, Z, X). Using the same reasoning with z;
and using Lemma 1, we conclude that y, and y, must
be in CORNERS(G, Z, X).

We can therefore compute DOMAIN(G, Z, X)) by gen-
erating each possible Y; = (y y; y2) where y;,y2 €
CoRNERS(G, Z,X) and y; < y2, then testing whether
RANGE(G, X ,Y;) = Z.

To formulate our next rule, we need one more defini-
tion.

Definition 9 Let x(s;) < x < x(s,) for some s,,59 €
S, if this implies that there erists some s € S such that
x = x(s), then x 1s STATE-CONTINUOUS.

We then have

only

Rule 5 (< 2)&( 1 X)&G(z,y,2) =
0&STATE-CONTINUOUS(y)—( — DOMAIN(G, Z, X))

Proof: g—;’r; and % are either positive or negative

throughout the domain. There are four permutations
of these signs; we consider one in detail. Throughout,
let Y = DOMAIN(G,Z,X). The idea i1s to show that
there must be states making assignments of y on either
side of Y.

Suppose g—f; < (0, and g—;- < 0. Then, g(xn,y) = 21,

and by the first antecedent of the rule we can choose
s; € S such that z(s;) = z;. By the second an-
tecedent, x(s;) € X, so x(s;) < xp,. Recall that
G(x(s),y(s),z(s)) = 0 for all s € S, hence by the unique-
ness property of (i, g(x(s;1),y(s1)) = z(s;). Now, as-
sume that y(s;) < y,; by the assumed signs of the par-
tial derivatives, z(s;) = g(x(s;),y(s1)) > g(x(s1),y,) >
g(Xn,yYs) = z(s1). The assumption must be invahd, and
y(s1) 2 ¥a-

Symmetrical reasoning leads to the conclusion that
there i1s some s) € S such that y(sp) < y,;. Then,
by the STATE-CONTINUOUS assumption, for each y €
[y(sr) y(s1)] D Y, there is an s € S such that y(s) = y.

Rule 5 performs the inference of case B. Recall that we
only

kept the limit specification on the ratio, {{ '} r 2 4), but
changed the output torque specification to require that
the output torque take on every value in the interval:

("= 1, 1 8). The input torque is STATE-CONTINUOUS.
The CORNERS operation again substitutes the endpoints
of these intervals into -‘;9, returning {0.5,0.25,4,2}. Do-

every

MAIN picks out (" — {; 0.5 2) by substituting into t, =
ri; and checking the result against (¢, 1 8); 1 = (.5)(2)
and 8 = (2)(4).

The STATE-CONTINUOUS assumption 1s physically
significant.  Suppose for our transmission we had
("="1,612), and (t; 23). Rule 5 gives {{— r 3 4),
which 1s correct for our variable speed transmission.
However the requirements could be satisfied with a two-
speed geared transmission with ratios 2.9 and 4.1.

Nothing 1n this section proves the existence of
DoMAIN(G, Z,X), and indeed this set may not ex-
1st. In Case C, for example, there 1s no set R of as-
signments to the ratio r such that RANGE(t, — rt; =



0,(t; 0.25 4),R) = (t, 1 8). In this case, however, we
can apply the next operation.

2.3 The Sufficient-Points Operation

Let us begin by extending RANGE to operate on
an interval and a point (of assignment), defining
RANGE(G,Y,x9) = RANGE(G,Y,[xo xp]). Then the
SUFFICIENT-POINTS operation is defined by

Definition 10
SUurPT(G, Z, X) = {y|Z C RANGE(G, X,y)}
{ylZz C

We need to show that if Y = C
RANGE(G,X,y)} exists it is an interval; that is, if
y, <Yy, <Y3 and y,,y3 € Y, then y, € Y. Consider
first the case where g—; < 0. Since Z C RANGE(G, X,y,)

we can find some x; € X such that g(x;,y,) < z.
Then, g(xi,y,) < z;. Alternatively, if -% > 0, find x;

such that g(x;,y3) < z;, and again ¢(x;,y,) < z;. By
symmetrical arguments there is also some x; € X such
that ¢(x;,y2) > zn. Thus, Z C RANGE(G, X,y,), and
y: €Y.

There 1s an equivalent direct definition of SUFPT.

Lemma 4 SUrPT(G,Z2,X) = {ylVz € Z,3x ¢
X.G(x,y,z) =0}

Proof: Let SUFPT(G,Z,X) =Y, and Y’ = {y|Vz €
Z,3x € X.G(x,y,z) = 0}; we need to show that ¥ and
Y' are equal. If y, € Y, let Zy = RANGE(G, X,y,) =
{z|3x € X.G(x,yy,2) = 0}. But by the definition of
Y and SUFPT, Z; 1s a superset of Z, so certainly Vz €
Z,3x € X.G(x,y,,2) = 0, and y, € Y’. Conversely,
if yo € Y/, then Vz € Z3x € X.G(x,y4,2) = 0; but
then Z 1s a subset of {z|3x € X.G(x,yq,z) = 0} =
RANGE(G, X,y,), soy, €Y.

As with Do-
MAIN, we can calculate SUFFICIENT-POINTS by testing
various combinations of CORNERS((, Z, X). We nced

Lemma 5 Jf SUFPT(G, Z, X) =Y, then y, and y, are
in CORNERS((G, Z, X).

Proof: Consider first y;, = max(Y); let 2/ = [z} z}] =
RANGE(G, X, y})
= [min(g(x1,y,),9(xn,y,)) max(g(xi,y), 9(xn, ¥5))].
Then, either z; or z, must be an endpoint of Z’. Other-
wise, z; < z; < zp, and z; < zp < z}, and since g(x,y)
1s continuous, we can choose some point y' > y, sufhi-
ciently close to y, such that min(g(x;,y’), ¢(xn,y’)) < =z
and max(g(x:,¥Y"),9(xn,y¥’)) > zn. But then Z C
RANGE(G, X,y’), and y’ should also be in Y.

We can therefore find a z; which is an endpoint of both
Z and Z’. By the definition of Z', G(xj,y},2i) = 0 for
some X; € {x;,x,}. But then y, = g(x;,2;), and by the
definitions of CORNERS(,) y, € CORNERS(G, X,7Z). A
symmetric argument holds for y,.

We consider two inferences
POINTS. First,

using SUFFICIENT-

Rule 6 (< Z)&(Fnl’i X)&G(x,y,2) =0

&STATE-CONTINUOUS(y)—( - -+ SUFPT(G, 7, X))

Proof: Let SUFPT(G,Z,X) =Y, and Y; = {yly <
min(Y)}. For y € Yy, at least one endpoint z; of 7

is such that G(x,y,z;) # O for any y € Y;,x € X.
By the first antecedent, there is an s; € S such that
z(s,) = zx, and by the second, x(s;) is in X, so y(s;)
must be greater than max(Y;); thus, there is an 8, € S
such that y(s;) > min(Y). By a symmetrical argument,
there is an s € S such that y(s2) < max(Y). Either
at least one of y(s;),y(s2) is an element of Y, or Y
15 Included in the interval between them, in which case
the STATE-CONTINUOUS assumption requires a state for
everyy € Y.

This rule performs the inference of Case C. We re-
quired the output torque to take on all values in an

every

interval, ("< t, 1 8), but restricted the input torque,
only

(I 11 0.254). Rule 6 applies since the transmis-
sion ratio 1s continuously variable. CORNERS, using
r = -‘;f- returns {4,32,0.25,2}. Of these, RANGE({, =
rt;, (£ 0.25 4),r = 2) returns (t; .5 8), which is a su-
perset of (t,18). r = 4 also passes this test, but

not r = 0.25 or r = 32. Hence the rule requires the

transmussion ratio to take on at least one value in [2 4];
some

(- r24).
For the second inference, we need another predicate
on variables.

Definition 11 PARAMETER(z) if and only if there 1s
some single assignment x( such that foralls € S, x(s) =
X0-

In the design context, PARAMETER(z) implies that the
value of r 1s fixed at manufacture.

Rule 7 ("< 2)&(") X)&G(z,y,z) = 0
only '

& PARAMETER(y)—{[ ] SUFPT((, Z, X))

To prove this, one applies the same reasoning as for
Rule 6, then notes that since y takes on only one value,
that value must be between max(Y') and min(Y).

3 Some Application Problems

The rules derived above form part of a mechanical design
compiler. This program accepts specifications, a utility
function, and a schematic for a mechanical design, and
returns catalog numbers for an optimal implementation®.
Implementation of the compiler involves some difficulties
we avoided in the preceding discussion.

3.1 Reasoning About Sets of Artifacts

The most important complication is that while through-
out this paper we deal with representations of single ob-
jects, the compiler actually works with representations
of sets of objects. [13] discusses these issues in detail;
here we present only a sketch of some of the essential
ideas.

Basic sets of objects are those corresponding to a par-
ticular catalog number; because of manufacturing toler-
ances, no two of these will be exactly the same. These

The catalog numbers, together with the schematics,
would usually be sufficient in the test domains to support
construction by skilled mechanics. Extension to domains in
which many components must be specially machined for the
particular design remains a research issue.
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can be described using labeled intervals; each labeled
interval description is true of each object in the set.

From the basic sets, we automatically build an ab-
straction hierarchy, formulating labeled interval descrip-
tions which are true of each object in the abstracted
supersets. Thus, the "cylinder" symbol in a hydraulic
system schematic represents all the hydraulic cylinders
in a particular catalog. Since the describing statements
are true for every cylinder, the rules we have described
can be used to propagate labeled intervals describing the
"load", thereby inferring statements about the pumps
and motors. Conflicts between these statements, and
those describing the basic sets, are used to eliminate in-
appropriate basic sets. A binary search is used to find
the best of the surviving implementations.

While the rules derived here remain valid, the irre-
ducibility of basic sets introduces additional rules, dis-
cussed in [13].

3.2 Relaxing the Monotonicity Assumption

Most of the equations describing mechanical artifacts are
not monotonic over the real numbers. However, for a
wide variety of designs it is possible to restrict values
to the non-negative reals, producing strict monotonicity
except perhaps at zero.

The CORNERS function may then involve divisions by
zero. We extend division in the obvious ways: divisions
of non-zero numbers by zero return oo; divisions and
multiplications of numbers by oo return zero and oo re-
spectively. On dividing zero by zero, or multiplying zero
by o0, CORNERS returns a list mcluding both zero and
.

The DoOMAIN operation also needs modification. Con-
sider again the transmuission problem, where GG 1s t, —
rt; = 0. Suppose the output torque must assume ev-

every

ery value in the operating region { < t, 0 8), while the
immput torque is limited by (¢t; 0 2). Applying Rule 5,
the CCORNERS operation returns {0,00,00,0,4}. Now,

only

RANGE(G,{1 )t 02),(r 04)) = (T, 0 8), but in fact
there 1s no need for the transmission ratio to drop to
0; any transmssion ratio greater than 4 will do. For
this rule, then, we modify the DOMAIN operation so
that 1t looks for the minimal interval in r such that
RANGE(G,T;, R) D T,. In this case, there is no such in-
terval, and this rule make no inference. Instead, Rule 6

Aaome

returns ( --- r 4 00).

3.3 Performance

We discuss the expressive power of the labeled interval
language and the performance of the compiler in detail
in [14]. Here we remark only that the compiler has been
tested on a wide variety of mechanical and hydraulic
power train designs, as well a few temperature sensing
systems. Some of these designs represent more than a
million alternative solutions; the compiler has been able
to select a solution, in each case, Iin less than twenty min-
utes. The solutions obtained seem consistently optimal;
the time required to compile designs seems to grow as
the logarithm of the number of alternatives represented,
or linearly as the number of equations or variables used
to describe them. The compiler has not been used on
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designs involving feedback loops, or where dynamic (as
opposed to quasi-static) performance is important.
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