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A b s t r a c t 

Solving design and analysis problems in phys­
ical worlds requires the representation of large 
amounts of knowledge. Recently, there has 
been much interest in expl ic i t ly making as­
sumptions to decompose this knowledge in to 
smaller Models. A crucial aspect of problem-
solving paradigms based on models is that 
they include methods to automat ica l ly , and ef­
f iciently, select and change models. We rep­
resent physical domains as Graphs of Models, 
where models are the nodes of the graph and 
the edges are the assumptions tha t have to be 
changed in going f rom one model to the other. 
Th is paper describes the methods used in the 
Graphs of Models paradigm for changing mod­
els. Th is knowledge can be represented qual i ­
tat ively, pe rm i t t i ng fast inference mechanisms 
that provide powerful model changing behav­
iors. 

1 I n t r o d u c t i o n 
An impor tan t aspect of real-world problem solving is 
the abi l i ty to represent, and reason w i t h , large amounts 
of domain knowledge. For example, intel l igent analysis 
of the transmission shown in figure 1 requires thorough 
knowledge of about three sophist icated textbooks (e.g. 
[Ma r t i n , 1982], [Arges and Palmer, 1963], [Boston Gear 
Co., 1960]). Unfor tunate ly , declaratively representing 
large amounts of knowledge leads to several problems; 
e.g. many know ledge-base operat ions, such as inference 
and checking consistency, are typ ica l ly exponential in the 
size of the knowledge-base. 

One approach to dealing w i t h the complexi ty of large 
scientific and engineering domains is to make assump­
tions on the wor ld . Mak ing assumptions permits the 
decomposit ion of large domains in to several smaller 
knowledge-bases called models ( [ M u r t h y and Addank i , 
1987], [Falkenhainer and Forbus, 1988]). A model may 
be used in l ieu of the larger domain knowledge-base if 
its assumptions lead to an acceptable approx imat ion of 
the wor ld . 

The goal of the decomposit ion is to simpl i fy problem-
solving by pe rm i t t i ng analysis in the simplest model that 
is an acceptable approx imat ion of the wor ld . Ideally, the 

appropr iate model should be identi f ied before the start 
of analysis. However, in many cases, the inadequacy of 
a model becomes evident only through t r ia l and error. 
Therefore, i t is crucial tha t problem-solving paradigms 
based on models include mechanisms for automat ical ly 
and efficiently selecting a better model when analysis in 
the current model is found to be in error. 

In our paradigm, called Graphs of Models, models are 
l inked by directed edges. The edges specify how the 
assumptions of the source model change in going to the 
dest inat ion model . Figure 2 shows a part of a simplist ic 
graph of models for the domain of transmissions. Our 
paradigm includes methods tha t automat ica l ly change 
models when the current model is inadequate. A brief 
example wi l l help mot ivate our methods. 

Let us star t an analysis of our transmission (figure 1) 
using Model1 of figure 2. Model1 makes the assump­
tions that there are no f r i c t i o n s in the wor ld , that all 
o b j e c t s a r e r i g i d , that e n e r g y i s c o n s e r v e d , and that 
al l masses a r e u n i f o r m l y d i s t r i b u t e d . As Model1 i s 
not an acceptable approx imat ion of the wor ld , i t predicts 
a rotat ional acceleration value tha t is higher than the 
exper imental ly observed value. Th is error, or confl ict, 
invokes a reasoning process in which Model1 first anal­
yses the confl ict to find tha t the error is due to forces 
tha t have not been accounted for. Next , Model1 uses 
domain knowledge about i ts assumptions to f ind that an 
assumption change, or t rans i t ion , f rom no f r i c t i o n s to 
c o u l o m b f r i c t i o n s introduces new forces tha t cause ac­
celerations to decrease. F ina l ly , Model1 f inds the edge 
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models in the scientific or engineering sense of the term. 
A model, in our paradigm, may make fifteen to twenty 
assumptions and consists of two parts. The first per­
forms analysis within the model and the second deals 
wi th changing assumptions. A brief description of the 
first part follows. The second part is the focus of this 
paper. 

that best matches this assumption change, Edge1 , and 
transfers control to the model at the end of this edge. 

Th is process requires four abil i t ies. The abi l i ty to de­
tect confl icts, the ab i l i ty to determine how parameters 
must change in order to el iminate conflicts, the abi l i ty to 
represent how assumption transit ions affect parameters 
in the wor ld , and the ab i l i ty to use this knowledge in 
selecting the next model. 

We introduce the notions of delta-vectors to cap­
ture the qual i ta t ive nature of parametr ic changes that 
wi l l e l iminate confl icts1 , and parameter-change rules to 
capture domain-level knowledge about how assumption 
transit ions affect values of parameters. A simple in­
ference mechanism uses delta-vectors and parameter-
change rules to decide which assumptions to change. In ­
tu i t ive ly , delta-vectors may be seen as goals tha t have to 
be achieved, assumption transit ions as the actions that 
wi l l satisfy these goals, and parameter-change rules as 
the post-condit ions of these actions. The mechanisms 
are qual i tat ive in that they are based on the (+ - 0) cal­
culus of [deKleer and Brown, 1984] and [Forbus, 1984]. 
They have been used in four implementat ions of Graphs 
of Models in the domains of Mechanics, Thermodynam­
ics, Flu ids, and Geometric Structure. 

Section 2 presents more details about Graphs of Mod­
els. Section 3 describes conflicts and how we detect 
thern. Section 4 describes delta-vectors and how they are 
computed. Section 5 describes how parameter-change 
rules represent knowledge about assumptions and Sec­
t ion 6 describes the inference methods used for changing 
assumptions. We end the paper w i t h a few of the many 
questions tha t we st i l l have to address and the relation­
ship of our work to others. 

2 Graphs of Mode ls 
Making assumptions on the wor ld permits organized re­
formulat ions of domain knowledge tha t are much l ike 

1For this paper we wil l assume that all conflicts arise from 
incorrect values or expressions for physical parameters. 

Figure 3: A rule for the equation r = lα 

The analysis part of a model contains a knowledge­
base of rules in a first-order-like language. The rules are 
exactly the rules of physics found in textbooks. The rule 
in figure 3 describes the simple law of rotat ional 
dynamics; is rotat ional acceleration, is net-torque 
and I is rotat ional inert ia. The language is based on 
a sorted calculus and the predicates are strongly typed. 
The sorts constitute the ontology of the world and are 
organized into a hierarchy. The last parameter of every 
predicate is a temporal variable that refers to a t ime 
point or interval over which the proposit ion is val id. 
The temporal entities are supported by a powerful single 
t ime line reasoner described in [Penberthy, 1988]. The 
language supports expressions that may be executed by 
L I S P or passed to M A C S Y M A [Mar t in and Fateman, 197l] 
for further evaluation; values of parameters are numeri­
cal values or symbolic expressions. Analysis consists of 
natural deduction that is t ight ly controlled by model-
specific heuristics. 

The principal advantage of a model is its specificity. 
A model addresses a relatively narrow scope of phenom­
ena. Typical ly , models are much smaller than the entire 
domain knowledge. It is relatively easy to represent the 
knowledge that is valid wi th in a model. Further, the 
specificity helps define very efficient model-specific anal­
ysis methods. Some apparent contradict ions to these 
claims turn out to be deceptive. For example, Maxwell 's 
equations and Navier-Stokes equations are very compact 
and appear to define all the domain knowledge for elec­
trodynamics and f luid flow respectively. However, it 
is very hard to use either sets of equations, in pract i ­
cal analysis, w i thout making several assumptions on the 
world. 

Domain knowledge is represented as a Graph of Mod­
els. The typical Graph may have tens of models. The 
Graph of Models of a domain is complete; all models 
have edges to all other models. A typical edge has 
around five assumption transit ions. For each model, the 
edges leading to other models are grouped into prior­
i ty classes. The priori t ies allow a "distance" measure 
in a complete graph by specifying the order in which 
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the edges are searched when changing models; "near" 
edges are searched before "far" edges. The Graph of 
Models of a domain is sparse; the graph does not con­
tain models for every combination of assumptions in the 
domain. The models that are contained in a Graph of 
Models are called "materialized models", other combina­
tions of assumptions are called "non-materialized mod­
els". It is obviously better to dynamically reconfigure 
models based on the exact set of assumptions required. 
Unfortunately, early work on reformulation of theories 
shows that this is not easy to do ([Subramanian and 
Genesereth, 1987], [Lowry, 1987]). 

3 Con f l i c t s 

In our current approach conflicts can occur in three ways: 
Empirically, Internallly, and through Inter-domain in­
teraction. An Empir ical conflict is a mismatch between 
the value of a parameter predicted by a model and the 
value measured in the wor ld. Empir ical conflicts arise 
in experimentally verifying a model's predictions; e.g., 
the conflict, described earlier, in the acceleration of the 
transmission. Internal conflicts occur when a value de­
rived wi th in a model violates one of the model's as­
sumptions. For example, Model1 makes the Conser ­
v a t i v e Sys tems and the R i g i d Bod ies assumptions. 
I f the R i g i d B o d i e s assumption is inappropriate, the 
predicted values for energy wi l l violate the Conse rva ­
t i v e Sys tems assumption. Inter-Domain Conflicts oc­
cur when mult ip le domains interact in analysing a device 
and two or more domains disagree over the value of a 
common parameter [Addanki et ai , 1989]. 

Parameters can be numerical values or constraints. 
Hence conflicts take one of the fol lowing forms: 
Numerical-Numerical, where both values are numeri­
cal; Numerical-Constraint, where one value is numeri­
cal and doesn't satisfy the constraint; and Constraint-
Constraint, where both values are constraints that are 
unequal. 

Detecting empirical conflicts is a straightforward pro­
cess. At the end of the analysis session the system asks 
the user to verify its predictions. The user gives the 
system his/her set of values for the parameters and the 
system compares its predictions against the user's mea­
surements. Detecting internal conflicts is a l i t t le more 
difficult and requires knowledge about the assumptions 
in the form of consistency rules (section 5.1). The detec­
tion of inter-domain conflicts is described in [Addanki et 
ai , 1989]. 

4 De l t a -Vec to r s 

Delta-vectors represent the quali tat ive changes, to pa­
rameters values, that wi l l eliminate a conflict. A delta-
vector is an ordered pair; the first element is the name 
of the parameter in conflict and the second element is a 
qualitative vector representing the required change. This 
follows our representation of vectors as a magnitude and 
a direction uni t vector. In our example the delta-vector 
for the acceleration of the transmission is (α,(— (000))) 
where the minus sign (—) signifies that the magnitude 
of the acceleration is to be reduced and the (000) sig­

nifies the direction of the acceleration is correct. When 
more than one parameter is found to be in conflict, the 
delta-vectors are stored as a list called the delta-list. 

4 .1 C o m p u t i n g D e l t a - V e c t o r s 
Delta-vectors are first computed for the parameters ac­
tual ly in conflict. This delta-list is called the base-delta-
l ist. The same mechanisms are used for computing delta-
vectors for empirical, internal, and inter-domain con­
flicts. 

Comput ing delta-vectors in a Numerical-Numerical 
conflict consists of computing the difference of the em­
pirical vector and the predicted vector and taking the 
signs of the result. In our example if Model1 predicts 

(10.34 (000)) and α is measured to be (8.27 (000)), 
the delta-vector is 

There are two types of Numerical-Constraint conflicts. 
In one the constraint is Causal; i.e. it is an equation or 
inequality that is established by a model to compute a 
parameter in terms of others. It is usually derived from 
a physical law. In our example, Model1 sets up the equa­
t ion to compute α. The other constraint is Im­
plicit, a physical principle that must be satisfied by the 
parameters of the model. Examples are the conservation 
of energy and momentum in Mechanics and pv = nRT in 
Thermodynamics. Impl ic i t conflicts are usually internal 
conflicts. Note that the difference between causal and 
impl ic i t is in how a constraint is used by a model, and 
is not inherent in the constraint. 

Figure 4: Delta-vectors for Causal Constraints 

If a predicted causal constraint fails to match a mea­
sured value, the model has already used the constraint to 
compute its value for the parameter whi le detect ing the 
confl ict. Th is value is used to set up a vector-vector con­
fl ict w i t h the measured value (see figure 4). For example, 
Model1 predicts = Empir ica l ly is (0.43 (000)) 
for = (27.0 (000)), and / = 34.0. In detecting the 
conflict Model1 has already computed = (0.79(000)) 
for = (27.0(000)) and I = 34.0. Model1 treats 
as the predicted value and as the measured value in 
a vector-vector confl ict. The result ing delta-vector is 

Note tha t delta-vectors say noth ing about 
how a constraint is to be changed; they only indicate how 
the value of a parameter is to be changed. 

The method fails when the measured value is outside 
the domain of the constraint ; e.g. when the constraint 
is and the value measured is (5 ,5 ) . In 

1434 Knowledge Representation 



such si tuat ions the model exploits the fact that delta-
vectors can only specify the quadrant 2 in to which, or the 
axis along which , the change should be made; where the 
quadrants are w i t h respect to the measured value. Delta-
vectors are computed by set t ing up art i f ic ial vector-
vector conflicts between the measured value and ar t i f i ­
cial predicted values. The art i f ic ial predicted values are 
generated by finding intersections of the lines that pass 
through the measured po in t , paral lel to the axes, w i t h 
the predicted constraint . Each po in t of intersection is an 
art i f ic ial value. Intersections beyond a region pre-defined 
by the user are ignored. If no intersections are found the 
constraint lies ent irely w i t h in a quadrant and a single ar­
t i f ic ial po int is generated by assigning values arb i t rar i ly 
to the parameters of the constraint . In our example, the 
lines y = 5 and x = 5 do not intersect the constraint. 
Hence an arb i t ra ry value, say (0 ,3 ) , on the constraint 
is selected and is set up as a vector-vector conflict w i t h 
(5 ,5 ) . Th is results in a delta-vector of (y, ( + ) ) . 

Detect ing constraint-constraint interact ions, i f the 
constraints are l inear, is po lynomia l ; if the constraints 
are algebraic the problem is exponent ial ly space com­
plete; i f the constraints include transcendentals the prob­
lem is uncomputable. Current ly our models handle the 
very l imi ted classes of constraint-constraint conflicts in 
which one constraint is s t r ic t ly greater than the other. 
However, many constraints fal l in to a few specific classes 
for which special purpose routines can check for differ­
ences in order, coefficients, phase, etc. For example, 
special purpose heuristics can resolve constraints on cur­
rents propagated through a circui t [Stal lman and Suss-
man, 1977]. S imi lar ly , many constraints on a single t ran­
scendental variable, e.g. xsin(0) < k, can be handled 
w i t h a quadrant calculus tha t assigns signs to the t ran­
scendental funct ions in each quadrant ; e.g., sin(θ) wi l l 
be represented as (++ ) for the four quadrants. We 
arc in the process of developing such algor i thms. 

In comput ing delta-vectors for impl ic i t numerical-
constraint conflicts the model direct ly generates ar t i f i ­
cial predicted values to compute the delta-vectors. The 
first stage is ommi t t ed due to the the lack of a causal 
relat ionship. 

The preceding discussion assumed that the model gen­
erated only one constraint tha t consisted of a simply-
connected por t ion of space. The methods generalize 
easily to mu l t ip le constraints if a simply-connected fea­
sible solut ion space exists. Disconnected pieces, e.g. 
xy — 1, are handled by the art i f ic ia l vector-vector con­

fl ict method w i th the points of intersection being com­
puted by a stepwise sweep of a line passing through the 
measured value. The resolution of the angular step is de­
creased i terat ively un t i l points of intersection are found. 

The methods generalize to more dimensions. The dis­
cussion also assumed that the model predicted a con­
straint that was not satisfied by a measured value. The 
same methods apply if the model predicts a value that 
docs not satisfy a constraint measured in the wor ld . 

4.2 E x t e n d i n g t h e D e l t a - L i s t 

The model also has to account for errors in intermedi­
ate parameters used in deriving the actual parameter 
in conflict. For example, an error in r, an intermedi­
ate parameter, w i l l cause an erroneous value for a. The 
base-delta-list is extended to include these parameters 
and the final list is called the extendcd-dclta-list. 

2Octants for 3-space. 

Figure 6: An Influence Net in Solid Dynamics 

Our models mainta in a detailed proof graph of the 
analysis. Backtracking through this graph finds all the 
parameters that affect the parameters in confl ict. Each 
model also expl ic i t ly represents known parameter depen­
dencies; e.g., force affects acceleration, that in turn af­
fects velocity, etc. These dependencies are represented 
as influences, [Forbus, 1984], in semantic nets called In ­
fluence Nets (1-Nets). A sample 1-Net containing the in­
fluences between torque, acceleration, and other param­
eters in solid dynamics is seen in figure G. The required 
change (or delta vector) of the parameter in conflict is 
propagated through the I-net to determine the corre­
sponding changes in intermediate parameters. I-nets 
help finesse the problem of back-propagating a change 
through complex equations. 

In our example, the extended-delta-l ist is: 
where a was the 

only parameter in the base-delta-list. 

5 Assumpt ion Knowledge 
Assumptions affect the behaviors we expect to sec in the 
wor ld . For example, the coulomb frictions assumption 
requires that if two objects are in contact at a surface 
a force prevents relative sl iding of the objects, that sys­
tems are dissipative, that heat be generated, and it also 
specifies the orders of magnitude of these effects. We rep­
resent two kinds of knowledge about assumptions, Con­
sistency Rules and Parameter-Change rules. 

5.1 C o n s i s t e n c y R u l e s 

Of ten, for an assumption to be va l id , the parameters 
must satisfy given consistency constraints. For exam-
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ple, in M o d e l 1 , the c o n s e r v a t i v e s y s t e m s assumption 
requires tha t the energy w i th in the system being ana­
lyzed remain constant. The i d e a l gases a s s u m p t i o n 
specifies a fixed constraint between the pressure, the 
volume, the mass, and the temperature of gases in the 
wor ld . The l a m i n a r f low assumption in f lu id dynamics 
requires that the Reynolds number of the f low remain 
below 2300. These constraints are represented as con­
sistency rules tha t are checked periodical ly throughout 
analysis. An inconsistency is an in ternal confl ict (dis­
cussed in section 3) and invokes the model changing ap­
paratus. 

5.2 P a r a m e t e r - C h a n g e R u l e s 

Parameter-change rules represent the qual i ta t ive effect 
of assumption transi t ions on parameter values. Transi ­
tions typical ly have four to six parameter-change rules. 
The rule in figure 7 is taken f rom the n o - f r i c t i o n s to 
c o u l o m b - f r i c t i o n s t rans i t ion. I t asserts that i f two ob­
jects are in contact at a surface, there is an increase 
in the component of the net-force along the surface of 
contact. The antecedents of the rule describe the con­
f igurat ion of the objects and define fp to be the compo­
nent of net-force paral lel to the surface of contact. The 
pa ramete r -change predicate in the consequent says tha t 
fp changes by amount dvector1. The compute predi­
cate tells how to compute the amount of the change; the 
amount of the change is ( + ) , a qual i ta t ive increase in fp 

under the t rans i t ion. When applied to gear t ra in trans­
missions, this rule represents an overal l decrease in the 
effective force used to t ransmi t torques. A simpler rule, 
useful in our example, states tha t if two gears are meshed 
there is a decrease in the magni tude of the net-torque on 
both gears. 

The antecedents of rules describe si tuat ions in which 
parameters are affected by the assumption t rans i t ion. 
The language of the antecedents is exactly the same as 
the domain language. The s i tuat ion is qui te specific in 
describing the condit ions under which the parameter-
change may occur; this permi ts problem-specific selec­
tions of assumption transi t ions. In our example, the an­
tecedents required objects to be in contact. Hence, the 
t rans i t ion can be rejected when the object of interest is 
not in contact w i t h another object but a decrease in its 
net-force is s t i l l required. 

The consequents describe the parameters tha t change 
and how they change. The language of the consequents 
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introduces the pa ramete r - change predicate. The pa­
rameter change may be simple, as in a qual i ta t ive (—) 
or ( + ) , or complex, as in any LlSP or M A C S Y M A state­
ment in the compute predicate. The consequent may 
introduce a parameter tha t is not par t of the vocabulary 
of the current model . For example, a simple no f r i c ­
t i o n s model of dynamics may not include heat. Such 
parameter-change rules are used for match ing against 
assertions f rom other domains or f rom the user. In our 
experience, the situat ions in the antecedents can get 
complex but the computat ions in the consequent stay 
as simple as the inner product of vectors. 

6 Select ing a B e t t e r M o d e l 
Recall that the edges away f rom a model are grouped 
in to priority-classes. Selecting a better model consists 
of stepping through these classes, searching each for an 
acceptable edge. For each step, the delta-vectors specify 
the desired changes in parameter values, the assump­
t ion transit ions are actions that realize these goals, and 
the parameter-change rules specify how the transit ions 
affect parameter values. The f inal step, invoked if no 
acceptable edge exists, determines the combinat ion of 
assumption transit ions that best satisfies the delta-l ist; 
this helps automate extending the Graph. An overview 
of the a lgor i thm that selects a model f rom a given prior­
i t y class is described in figure 8, The reader may find it-
useful to refer to figure 8 for defini t ions of terms int ro­
duced in this section. 

Figure 8: A summary of our model selection a lgor i thm 

The model starts w i th the highest p r io r i t y class of 
edges. The first step is to find those assumption t ran­
sitions that satisfy at least one element of the delta-
l ist. Each edge consists of a set of assumption transi­
t ions. Each t ransi t ion has a set of associated parameter-
change rules. The model collects all these parameter-
change rules in to a temporary knowledge-base. The 
model then matches every delta-vector in the delta-l ist 



against the rules in this knowledge base. When the 
consequent of a rule specifies a parameter change that 
matches a delta-vector, the model a t tempts to match 
the s i tuat ion in the antecedent of the rule against the 
current descript ion of the device. I f the antecedents 
match immediate ly , the assumption t ransi t ion associ­
ated w i t h th is rule is placed in the Candidate-Transi t ion-
Set (CTS) . 3 At the end of this backward-chaining the 
CTS contains al l the assumption transi t ions that sat­
isfy at least one delta-vector. In our example, Model1 

has three edges leading away f rom it and they are all 
in the same p r io r i t y class. T w o transit ions match; no 
f r i c t i o n s t o c o u l o m b f r i c t i o n s matches 
and u n i f o r m - m a s s - d i s t r i b u t i o n to a r b i t r a r y - m a s s -
d i s t r i b u t i o n par t ly matches ( / , + ) . 

The model mainta ins a transit ion-satisfact ion-l ist 
(TSL) for each assumption t ransi t ion in the CTS. The 
T S L of a t rans i t ion specifies how well the t ransi t ion sat­
isfies each of the delta-vectors in the delta-l ist. A TSL 
has as many elements as the delta-list, has delta-vectors. 
Each element is ( + ) , ( - ) , (0), or ( C ) . A ( + ) in the 
nth place indicates that the t ransi t ion satisfies the n th 
delta-vector, a ( —) that it violates i t , a (0) that it doesn't 
affect i t , and a (C) that it does change the parameter 
but the direct ion of change is unknown. At this stage 
the elements of the TSLs are either (+ ) s , (C)s or (0)s 
because the backward-chaining finds all the posit ive ef­
fects of the transi t ions. The TSLs are also divided into 
two parts, one for the base and the other for the ex­
tended delta-l ists. Recall that the base-delta-list con­
tains α and the extended-delta-l ist contains and /. The 
T S L for the f r i c t i o n s t rans i t ion is 
and the T S L for the m a s s - d i s t r i b u t i o n s transi t ion is 

The model then finds all the negative effects of the 
transit ions in the CTS by forward-chaining through their 
parameter-change rules. Th is is also a one step pro­
cess. These violat ions are stored as ( — )s in the T S L of 
the transi t ions. Our simple example does not include 
any violat ions. The next step is to check if the I-Nets 
show tha t any non-(0) parameter in a T S L influences a 
(0) parameter in the same T S L . Such an influence may 
cause the (0) parameter to be satisfied or violated by 
the t rans i t ion. In our example, the I-Net in figure 3 
shows that (+) in the f r i c t i o n s T S L , affects a, (0) 
in the same T S L , posi t ively; hence the t ransi t ion also 
satisfies the delta-vector for a. The value for α in the 
f r i c t i o n s T S L is thus changed to ( + ) and the T S L now 
reads Simi lar ly , since the I-Net 
shows tha t I affects α inversely, the T S L for the mass-
d i s t r i b u t i o n s T S L now reads A t 
this po int the T S L of each t rans i t ion in the CTS provides 
a composite p icture of how well the t ransi t ion satisfies 
the delta- l ist . 

The next step is to compute a similar composite pic-

3 We require that the antecedents match immediately, with 
no further backward-chaining. If the powerful problem solv­
ing mechanism in the model did not discover the situation in 
the antecedent, it is unfair that the assumption reasoner be 
asked to do so. It is clear that there will be cases where the 
l imitation wil l restrict the power of the system. 

ture of how well each edge satisfies the delta-l ist. The 
edge-satisfaction-list (ESL) of each edge in the highest 
pr ior i ty class is computed by vector addi t ion of the TSLs 
for each of the transit ions in the edge; the rules of ad­
di t ion are the standard rules of the ( + , — , 0 ) calculus 
w i th (0) being the ambiguous condit ion (see [Forbus, 
1984], [deKleer and Brown, 1984]). A (C) added to any­
th ing gives a (C ) . Like the TSLs the ESLs have two 
parts, one for the base- and the other for the extended-
delta-lists The ESLs for the three different edges out 
of Model1 are Edge1 : { ( α \ + ) , ( r \ + , 7 \ C ) } , Edge2 : 
{ ( α \ 0 ) , ( r \ 0 , I \ 0 ) } , and Edge3 : {(α\C), ( r \ + , I\C)} 
(see figure 1). 

In evaluating the ESLs to select the next model, recall 
that the actual conflict involved only those parameters 
in the base-delta-list. If the ESL for the base-delta-list 
of any edge is perfect, i.e. all ( + ) s , the model at the end 
of that edge is placed in the Candidate Model Set (CMS) 
for consistency checking. If the CMS is non-empty, the 
consistency rules of each assumption in each model in 
the CMS are checked against known parameter values. 
This eliminates moving to models which may satisfy the 
delta-list but are inconsistent w i th the system being an­
alyzed. Final ly, one of the remaining models in the CMS 
is selected arbi t rar i ly . We do not have to look at edges 
in the other pr ior i ty groups because we cannot do better 
than a perfect ESL that meets all the consistency re­
quirements. If the CMS is empty, the TSLs are used in 
repeating the process for edge groups of lower priorit ies. 
In our example, the ESL for Edge1 satisfies i t . Mode l 3 , 
at the end of Edge1 is placed in the CMS. The current 
parameters satisfy the consistency rules of Models and 
it is chosen as the next model. 

If no existing edge provides a perfect match, the model 
picks the next best match f rom all its edges. ESLs are 
evaluated numerical ly: ( + ) = +1, ( —) = — 1 , (C) = 0.5, 
and a (0) = 0. Add ing the elements of an ESL results in a 
numerical "goodness" value for the edge.4 The models at 
the end of the edges w i th the highest goodness values are 
placed in the CMS. The CMS is filtered for consistency, 
and the next model is selected f rom the filtered CMS. 

Before control is transferred to the selected model the 
model has the opt ion of checking all combinations of as­
sumptions to see if a better match can be found. Recall 
that the Graph of Models is sparse and hence does not 
include materialized models for every combinat ion of as­
sumptions. Checking to see if a non-material ized model 
results in a better match is useful for automat ing the 
process of extending a Graph of Models. Unfortunately 
the process is NP-coinplete; it is reducible to test-set 
generation. 

7 Conclus ions and F u t u r e W o r k 

Four implementat ions, albeit l imi ted to domains con­
taining four to eight models, in Geometric Structure, 
Thermodynamics, Mechanics, and Fluids, lead us to be­
lieve that the Graphs of Models paradigm is a powerful 
approach to representing complex, scientific and engi-

4This is a very simplistic measure of "goodness" and we 
are testing its limitations. 
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neering domains. Much of the power of the paradigm 
comes f rom its methods for automat ica l ly changing mod­
els. The qual i ta t ive mechanisms of delta-vectors and 
parameter-change rules provide powerfu l and efficient 
model changing behaviors. 

However, the mechanisms are l imi ted in many ways. 
One impor tan t l im i ta t i on has to do w i t h the pauci ty 
of in format ion in parameter-change rules. For exam­
ple, humans typ ica l ly use much Order of Magni tude in ­
format ion whi le evaluat ing the effects of changing as­
sumpt ions. In our example, a human expert would com­
pare the order of magni tude of the change due to fr ic­
tions w i t h the difference between the predicted value 
and the measured value of the acceleration. The diff i­
cul ty w i t h using exist ing approaches to order of mag­
ni tude reasoning, e.g. [Raiman, 1986], [Mavrovouniot is 
and Stephanopolous, 1987], or [Mur thy , 1988], is in set­
t ing the threshold for the comparisons. These thresholds 
are problem-dependent and have to be set dynamical ly , 
an open problem at th is t ime. 

The mechanisms are also l im i ted by the simpl ist ic na­
ture of bu i ld ing and comparing ESLs. Domains t yp i ­
cally contain much more in format ion about the u t i l i t y 
of models in a given s i tuat ion. Th is in format ion may be 
in terms of tests that can be carried out to check the 
val id i ty of a change, empir ical l ikel ihoods of assump­
tion transi t ions, knowledge about parameter behaviors 
as computed in the current model , and so on. The cur­
rent mechanisms make no use of any of this in format ion. 
A large part of our fu ture work w i l l focus on bui ld ing rep­
resentation and inference mechanisms for handl ing these 
types of knowledge. 

The use of assumptions to simpl i fy problem-solving 
is not new. It is an inherent part of science and en­
gineering. In the AI l i terature, [deKleer and B rown , 
1984] emphasize the importance of making model l ing 
assumptions expl ic i t and acknowledge that the prob­
lem of changing these assumptions is an impor tan t one. 
[Mur thy and Addank i , 1987] suggest the Graph of Mod ­
els paradigm but present few details on its in ternal work­
ings. [Falkenhainer and Forbus, 1988] re-emphasize the 
importance of using assumptions to decompose complex 
domains in to simpler models but do not indicate how 
control is transferred f rom one model to another. The­
oretical approaches such as [Lowry, 1987] and [Subra-
manian and Genesereth, 1987] have at tempted to dy­
namically reconfigure theories based on the exact set of 
assumptions required, but the results have been of l im­
ited appl icabi l i ty to complex knowledge bases. For ex­
ample, [Subramanian and Genesereth, 1987] require that 
the entire problem be solved before deciding what parts 
of the knowledge base are irrelevant. F inal ly , in spite of 
its l imi ta t ions we believe that a rigorous ( though empir­
ical) approach such as the Graph of Models paradigm 
provides a powerful technique for representing physical 
domains. 
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