Storing and Generalizing Multiple Instances
while Maintaining Knowledge-Level Parallelism™

Ronald A. Sumida
Michael G. Dyer
Artificial Intelligence Laboratory
Computer Science Department

University of California
Los Angeles, CA, 90024

Abstract

One of the primary problems in knowledge rep-
resentation and learning is determining how
multiple instances of concepts should be orga-
nized and represented. Symbolic approaches,
such as semantic networks, have been successful
at representing structured knowledge for par-
allel access. However, such approaches have
had difficulty organizing multiple instances for
automatic generalization and efficient retrieval.
Parallel distributed processing systems (PDP)
appear to offer a solution to these problems.
Unfortunately, current PDP models have not
yet been able to satisfactorily represent com-
plex knowledge structures and they remain se-
guential at the knowledge level. This paper
presents an approach which stores multiple in-
stances in ensembles of PDP units and orga-
nizes the ensembles in a semantic network for
parallelism and structure. Thus, the best fea-
tures of both styles of representation are ob-
tained.

1 Introduction

One of the central problems in knowledge representation
and learning is deciding how to represent and organize
multiple instances in memory. Are people able to store
and retrieve every instance of an event, such as walk-
Ing somewhere? Since there are enormous numbers of
walking events done by a given person, or done by oth-
ers and perceived by that person, retrieving every one is
nearly impossible. Consequently, people must be orga-

nizing and generalizing multiple instances in some man-
ner.

2 Previous Approaches

Previous approaches to knowledge organization and gen-
eralization can be divided into two levels, shown in Fig-
ure 1.

What follows is a review of symbolic and PDP ap-
proaches to the multiple instances problem.

*This research is supported in part under a contract to the
second author by the JTF program of the DoD, monitored
by JPL, and by a grant from the ITA Foundation.

1426 Knowledge Representation

(1) Symbolic Systems: When a new event is encoun-
tered, a new token is created to represent it. For a lim-
ited number of events, storing every one does not pose a
major problem. For large amounts of knowledge, simi-
lar events can be grouped together and discriminated by
their differences, e.g. [Kolodner, 1984]. Unfortunately,
this approach has a number of problems. First, it suffers
from combinatorial explosion since there are many ways
that shared features can be combined. Second, distinct
tokens are needed as a final discriminant of each concept
(i.e., the leaves of the tree). Third, an evaluative symbol
processing mechanism is needed that decides (a) when
to create a symbol, (b) how long to retain it and (c)
where to index it. Finally, since each leafis completely
distinct, memory confusions do not naturally arise as a
consequence of the representation. In human memory,
however, confusions often do occur [Bower et a/., 1979].

(2) Parallel Distributed Processing: PDP Systems rep-
resent each concept over shared weights in a connection-
Ist network [Rumelhart and McClelland, 1986]. A new
instance is encoded by changing link weights. Some in-
stances will result in large weight changes and will there-
fore be remembered. Others, however, will change the

weights only slightly and will be very difficult or impos-
sible to recall.

In general, distributed representations address the
shortcomings of symbolic systems in handling multiple
iInstances. They avoid the combinatoric problems by
having the same unit participate in the representation of
multiple concepts. They also naturally account for mem-
ory confusions because concepts that share a number of
features will have a very similar representation. Thus,
when an attempt is made to access a concept from its
features, a similar pattern representing another concept
may sometimes be recalled.

Unfortunately, distributed representations have not
yet been successful at encoding structured knowledge
while maintaining parallelism at the knowledge level.
For example, Hinton [I981] has proposed a method for
encoding semantic networks in a single PDP architecture
(Figure 2) by representing all knowledge as triples of the
form (Rolel Relation Role2).

Hinton's entire network is divided into four ensembles
of units: one for each component of a triple and one
which represents the entire proposition (PROP). When
the patterns representing the components of a triple are

Mulhplc

System

Instances Generalization | Parallelism

st I-- +

Automatic Knowledge Level| Structure

w/o Crosstalk

" ”

indicates support for that feature, "-" indicates lack of support

Figure 1

O

Dark arrows indicate fully connected random (fixed) weights.
Grey arrows indicate fully connected modifiable weights.
Units in cach cnsembile self-activate. Circles indicate PDP units.

Figure 2

placed into the appropriate ensembles shown above, a
random pattern is generated on the units in PROP. This
pattern, which represents a reduced description of the
triple, is associated with the constituents that gave rise
to it by adjusting the weights between the PROP units
and the other three ensembles. By storing propositions
In this manner, the network is able to perform simple
inheritance and to complete a triple given two of its con-
stituents. Hinton [1988] proposes a generalization of this
model, based on the reduced description principle, which
can also store embedded structures.

Systems using only a small set of ensembles (e.qg.

[Hinton, 1988, Touretzky, 1987]) for representing all of
their knowledge, suffer from the Knowledge Parallelism
Problem. That is, these systems are sequential at the

knowledge level because only one ftriple can be stored
or accessed at a time. Attempts to retrieve multiple
triples in parallel will lead to enormous crosstalk prob-
lems. Some systems, such as [Dolan and Dyer, 1987,
Touretzky and Hinton, 1985], can select a triple in par-
allel from the space of all available triples. However,
they can only do this to the extent that their struc-
tures are represented locally (e.g. schema, their con-
stituent roles, and rules, each locally encoded as a sub-
set or node in a winner-take-all network). The loss of
knowledge-level parallelism is particularly problematic
iIn constraint-satisfaction inferencing, in which it is es-

sential to pursue multiple paths simultaneously.

3 A Model for Storing Multiple
Instances

We desire a knowledge representation system that: (1)
represents structure, (2) is parallel at the knowledge
level, (3) handles an enormous number of multiple in-
stances with graceful degradation and automatic gener-
alization, and (4) exhibits memory confusions only in the
same situations that people do. Humans usually keep
inferred bindings straight while confusing multiple in-
stances of a number of events. For example, if we learn
that John shoots Fred, we would like the system to cor-
rectly infer and later recall that Fred (not John) bleeds.
However, if we present a large number of propositions in
rapid suceession, (such as a list of different colored shirts
different individuals wear) then we would like the system
to become confused in the same way that people do.

3.1 General Approach: Parallel Distributed
Semantic (PDS) Networks

Our approach is to maintain the locality of semantic net-
works for parallel manipulation and access of structure at
the knowledge level, but to make each semantic network
node an ensemble of PDP units to hold multiple patterns
of instances. At the macro (localist/semantic network)

Sumida and Dyer 1427

level, the PDS network holds knowledge ofstructure with
role relations. At the micro (PDP) level, the PDS net-
work holds multiple instances. For example, suppose
that we wish to represent two particular humans named
John and Mary. In a standard semantic network, the
general concept human is represented by a single node,
with nodes for John and Mary connected to it by iIn-
stance (is-a) links (Figure 3a).

Chuman >

instance

Marys >

Cohnds

Nodes in a standard, Localist Network
Figure 3a

In a PDS network (Figure 3b), humans are represented
over a particular ensemble of units (e.g. ensemble 21)
and John and Mary are represented as activation pat-
terns over that ensemble.

ensemble 21

Nn~(® ® 0 DA

= JOHN3 = MARYS

Ensemble 21 represents a single Semantic Network
Node in a PDS Network, currently holding the ac-
tivity pattern for JOHN3, while also able to repre-
sent other instances, such as MARYS5.

Figure 3b

The circled dots in the figure indicate the ensemble of
units and the jagged lines are suggestive of the patterns
of activity that represent John and Mary.

3.2 Issues: Symbol Processing and
Knowledge-Level Encoding

Using PDS networks raises two important issues. The
first is whether operations needed to handle processing
and representation can be properly implemented. Mini-
mally, we need the equivalent of the following operations:

1. Create something like a new symbol. For example,
iIn LISP a Gensym-like function is used to create
INGEST.14.

2. Represent and manipulate schemas. Schema op-
erations include: binding roles Iin one schema
to another schema; traversing roles; binding new
schemas; etc.

3. Represent rules where variable bindings are propa-
gated between structures. For example, if we have

1428 Knowledge Representation

the rule: [X shoots Y] => [Y Dbleeds], and the bind-
ings X = John and Y = Fred, we would like to
propagate the binding Y = Fred from the shoots
structure to the bleeds structure.

The second issue involves encoding knowledge into the
ensembles described earlier. At one extreme, creating
a new ensemble for each instance defeats the purpose
of using distributed representations and also raises the
question (which plagues symbolic systems) of where the
new nodes come from. At the other extreme, encod-
iIng all schemas and roles into a small set of ensembles
causes sequentiality at the knowledge level and massive
crosstalk in retrieving concepts. The solution lies some-
where in between.

3.3 The PDS Network Approach

How are new instances added to a PDS network? Sup-
pose our model learns about a new human, John, who
Is male, tall and has red hair. In order to add John to
memory, we will have to generate a new pattern in the
human ensemble that will represent John. This is ac-
complished by placing the patterns for each of John's
features into the appropriate ensembles and propagat-
Ing activation into the human ensemble. The resulting
pattern of activity over the human ensemble will then
be used to represent John. This process is illustrated in
Figure 4. In the figure, the conceptual ensembles (i.e.,
HUMAN, SEX, SIZE and COLOR) are labelled with
capital letters and the role ensembles are indicated by
lower-case labels placed inside the oval of units.

The pattern for the first feature, male, is placed into
the ensemble of units representing SEX, loaded into the
sex role ensemble, and propagated across links with fixed
random values into the HUMAN ensemble by the path
(dotted line) shown in the figure. The pattern for tall is
then placed in the ensemble of units representing SIZE,
propagated across random-valued links from the height
role ensemble, and combined with the pattern of activ-
ity already on the human nodes. The pattern for red
Is placed into the COLOR and hair color role ensem-
bles and propagated in a similar fashion. The pattern
that is generated from the combined activation of the
three features is used to represent John in the HUMAN
ensemble.

The process of adding John to memory is not yet com-
plete, because given the pattern for John, we also want
to be able to reconstruct his features. We must there-
fore associate the pattern for John with those for male,
tall and red. Associating these patterns involves chang-
ing the variable weights along the path from the human
ensemble to the sex, height and hair color role ensem-
bles, and can be accomplished using one of a number
of generalized learning procedures. For instance, using
backpropagation [Rumelhart and McClelland, 1986], the
network of Figure 4 can be viewed as a conjunction of
three 3-layer networks, with the HUMAN ensemble as
the input layer and each of the role ensembles as the
output layers (the hidden layers are indicated by the cir-
cles on the grey arrows in the figure).

As with Hinton's model, the units within a conceptual
ensemble are interconnected by variable weights, which

classes/

instances:

roles:

Black arrows = fixed random weighted links.

Grey arrows = modifiable weighted links (single circle indicates hidden layer).
Thick lines = links which propagate a pattern without changing it.

Dotted arrows indicate how activity pattemns over ensembles are propagated.

arc trained by associating each pattern with itself (this
process is referred to as auto-association [Rumelhart and
McClelland, 1986]). Thus, when an ensemble is given an
unfamiliar pattern that resembles a known one, it will
tend to recreate the known pattern. This allows the net-
work to perform pattern completion from partial or noisy
input. As an extension to Hinton's model, an interven-
ing hidden layer (not shown in the figure) is included in
each conceptual ensemble and is used to interconnect the
units within the ensemble. Adding these hidden units al-
lows the ensemble to store much more information, while
using fewer units and connections.

3.4 Rules, Schemas, and Bindings in DCAIN

The network structure and operations described above
are being used to implement DCAIN, a system designed
to store instances of schemas and rules, and to implement
static role bindings. For example, suppose DCAIN learns
that John told Mary some information. From this, we
would like DCAIN to infer both that John knew the
information as a precondition to telling Mary, and that
Mary now knows the information as a consequence of
John's telling her. These inferences are summarized in
Figure 5.

The first causal inference (CAUSES.13 in Figure 5) is
stored in the architecture shown in Figure 6

Different ensembles of units (ovals in Figure 6) store
the communicate (COM), know, causality and enable-
ment schemas, in the following manner: We first rep-
resent the proposition (John COM Info TO Mary) by

" For the sake of visual clarity, the black and grey arrows
from Figure 4, that connect the conceptual and role ensem-
bles, are replaced by a single, thin line in Figure 6.

Figure 4

(COM.32 CAUSES.13 (KNOWS.24
ACTOR (JOHN) # KNOWER (MARY)
OBIJECT (INFO) KNOWN (INFOQ))
TO (MARY))

(KNOWS.25 ENABLES.16 (COM.32
KNOWER (JOHN) — ACTOR (JOHN)
KNOWN (INFQO)) OBIJECT (INFO)

TO (MARY))
Figure §

generating a pattern for it in the COM units using the
method described in the preceding section. Thus, the
pattern for John is propagated from the actor ensemble
(path 1); the pattern for the information from the object
ensemble (path 2), and the Mary pattern from the to en-
semble (path 3). The resulting activity pattern, labelled
COM.32, represents the proposition. COM.32 is now
(a) associated with its constituents by weight changes
between the COM units and the role ensembles, and (b)
auto-associated with itself by weight changes within the
COM units. Similarly, (Mary KNOWS info) is repre-
sented by propagating the pattern for Mary from the
knower ensemble to KNOWS (path 4) and the pattern
for the iniormation from known to KNOWS (path 95).
The resulting activity pattern, KNOWS.24, is also as-
sociated with itself and with the constituents that gave

rise to it.

To represent the causality relationship between
COM.32 and KNOWS.24, COM.32 is propagated from
the antecedent ensemble (c-ante) and KNOWS.24 from
the consequent ensemble (c-conseq) to generate a pat-
tern in CAUSES (paths 6 and 7). The new pattern,
labelled CAUSES.13, is then associated with itself and

Sumida and Dyer 1429

[]
L
LA
* .
*
.
v,

3
o G ML

human

MARY

Each ensemble is labelled with a name suggesting its role.

Figure 6

with COM.32 and KNOWS.24. CAUSES.13 now com-
pletely represents the first causal relation. In exactly
the same manner, (John KNOWS Info) is represented
as KNOWS.25, and it and COM.32 are combined in the
ENABLES units (Figure 7) to yield a reduced descrip-
tion for ENABLES.16 from Figure 5.

When the network is given (John COM Info TO
Mary), it can now make the correct inferences. This
proposition is presented by again propagating the pat-
terns for John, the information, and Mary through the
COM units, resulting in COM.32. Propagating COM.32,
we obtain a pattern over the CAUSES ensemble which
Is similar to CAUSES.13, and one over the ENABLES
ensemble which is much like ENABLES.16. Since par-
tial (or noisy) patterns within an ensemble are trained to
complete themselves, the CAUSES.13 and ENABLES. 16
patterns will eventually emerge. The emergence of
CAUSES.13 means that KNOWS.24 will appear in the
c-conseq and KNOWS units, which in turn recreates
the (Mary KNOWS Info) proposition. Similarly, EN-
ABLES.16 causes KNOWS.25 to emerge, which gener-
ates the inference (John KNOWS Info).

As a consequence, if we present [John told Mary Info]
to DC A IN, it will reconstruct (1) what was told to Mary,
(2) infer John already knew it, and (3) infer what Mary
knows. DCAIN accomplishes these reconstructions with-
out having to create new nodes to represent each iIn-

1430 Knowledge Representation

stance, as is required in standard semantic networks such
as NETL [Fahlman, 1979].

4 Previous Work, Current Status, and
Future Directions

To handle the problems of representing structured
knowledge, dynamic role bindings and role propagation,
we initially constructed CAIN [Sumida ct a/., 1988], a
marker passing system that uses a localist network and
incorporates features of connectionist systems, specif-
ically, link weights, activation values, and thresholds.
CAIN propagates both markers and activation to do
goal/plan analysis needed for interpretation of natural
language input such as "the man hid the pot in the dish-
washer when the police came”. Here, "pot" must be dis-
ambiguated to MARIJUANA by a goal/plan analysis,
although "in dishwasher" suggests COOKING-POT.

Currently, we are constructing DCAIN, a distributed
version of CAIN based on the principles described here.
In DCAIN, patterns evoke other patterns, like [Hinton,
1981, Touretzky, 1987]. Unlike their systems, DCAIN
uses many more ensembles to recreate many of the nodes
normally existing in semantic networks, but without the
iInstance nodes.

Future directions of research include methods for:

(1) Propagating dynamic bindings along schema and

ENABLES

ENABLES.16 =

CAUSES

Figure 7

their roles. In this paper, we have demonstrated how
PDS networks can store static role bindings, in which
a previously encountered concept is bound to a role of
a known proposition. In contrast, dynamic bindings in-
volve binding a novel concept and propagating it, unal-
tered, to the corresponding roles of related structures.
We currently assume that the links which propagate dy-
namic bindings (e.g. the thick black lines in Figures 6
and 7) have exactly the right weight values so that pat-
terns can be passed on without being changed. Dynamic
bindings in symbolic architectures are realized by prop-
agating bit patterns, unaltered, along various pathways.
Our system needs a method for adjusting the weights so
that such patterns are passed along unaltered.

(2) Forming semantic networks dynamically through
modification of connectivity patterns between units, i.e.,
both within and across ensembles. One possibility that
we are currently investigating involves conscripting new
units to form additional ensembles.

5 Conclusions

A parallel distributed semantic (PDS) network called
DCAIN, has been designed: (a) to handle the se-
vere combinatorics of storing and retrieving multiple in-
stances while maintaining parallelism at the knowledge
level, and (b) to achieve graceful degradation and au-
tomatic generalization in the face of a vast number of
iInstances. In DCAIN, ensembles of nodes are macroscop-
ically related like semantic networks and microscopically
related like PDP networks. Structured objects such as
schemas and rules are represented at the macro-level,
while at the micro-level, instances are reconstructed as
patterns of activation over PDP ensembles.

References

[Bower et al, 1979] G. H. Bower, J. B. Black, and T. J.
Turner. Scripts in memory for text. Cognitive Psy-
chology, 11:177-220.

[Dolan and Dyer, 1987] C. P. Dolan and M. G. Dyer.
Symbolic Schemata in Connectionist Memories: Role

Binding and the Evolution of Structure. In IEEE First
International Annual Conference on Neural Networks,
San Diego, 1987.

[Fahlman, 1979] S. E. Fahlman. NETL: A System for
Representing and Using Real- World Knowledge. MIT
Press, Cambridge, Massachusetts, 1979.

[Hinton, 1981] G. E. Hinton. Implementing Semantic
Networks in Parallel Hardware. In Parallel Models
of Associative Memory, Lawrence Erlbaum, Hillsdale,
NJ, 1981.

[Hinton, 1988] G. E. Hinton. Representing Part-Whole
Hierarchies in Connectionist Networks. In Proceed-
ings of the Tenth Annual Conference of the Cognitive
Science Society, Montreal, 1988.

[Kolodner, 1984] J. L. Kolodner. Retrieval and Organi-
zational Strategies in Conceptual Memory. Lawrence
Erlbaum, Hillsdale, NJ, 1984.

[Rumelhart and McClelland, 1986] D. E. Rumelhart

and J. L. McClelland. Parallel Distributed Processing,
Volume 1. MIT Press, Cambridge, Massachusetts,
1986.

[Sumida et al, 1988] R. A. Sumida, M. G. Dyer, and M.
Flowers. Integrating Marker Passing and Connection-
iIsm for Handling Conceptual and Structural Ambigu-
ities. In Proceedings of the Tenth Annual Conference
of the Cognitive Science Society, Montreal, 1988.

[Touretzky, 1987] D. S. Touretzky. A Distributed Con-
nectionist Representation for Concept Structures. In
Proceedings of the Ninth Annual Conference of the
Cognitive Science Society, Seattle, 1987.

[Touretzky and Hinton, 1985] D. S. Touretzky and G.
E. Hinton. Symbols Among the Neurons: Details of
a Connectionist Inference Architecture. In Proceed-
ings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, 1985.

Sumida and Dyer 1431

