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Abstract

We Imbed Into a first order logic a represen-
tation language that combines atemporal
knowledge with time stamps in a hierarchical
fashion. Each time structure contains its
own chronology of events: sufficient infor-
mation for an encoding of a classical tem-
poral logic. By quantifying over time struc-
tures, we encode a modal logic of temporal

knowledge. In addition, we show how to
achieve the effect of nonmonotonic infer-
ence, by simulating preferential entailment

within a first order framework.

1. Introduction

One approach to the representation of time related
knowledge is to embed the time factor in the operational
or model-theoretic semantics of the representation. This
IS the approach In the situation calculus (
[McCarthy & Hayes 1969], [Hayes 1971] ), in truth
maintenance systems, in computation models, in tense
logics ( [Halpern & Shoham 1986] ), and in some com-
puter music systems ( [Schottstaedt 1983],
Cointe & Rodet 1983] ).

Another approach is to make time explicit in the
language. Examples are the reified temporal logics of
"Allen 1984], [McDermott 1982],
Dean & McDermott 1987] , and [Shoham 1987a]; also
the Horn-clause logic of [Kowalski & Sergot 1986] and
the first order logic of [Haugh 1987].

We imbed into a first order logic a representation
language that combines atemporal knowledge with time
stamps in a hierarchical fashion. The syntactic unit of
the representation language is called a time structure; it
resides in our logic as a term. A consequence of this is
that the implementation of our formalism with logic pro-
gramming techniques will be relatively straightforward.

Each time structure describes a chronology of
events. The time stamps result in an encoding of tem-
poral logic that is similar to that of [Shoham 1987a].
Furthermore, each time structure can play the role of a
'world' in a modal logic, resulting in an unusual encoding
of modal logic; unusual because a world is referenced by
its explicit representation as a term, rather than by a con-
stant through which certain facts are indexed. Since our

'worlds' are terms, they can be ordered, and we can
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enforce a preference criterion on that ordering. In this
way, we can achieve the effect of nonmonotonic reason-

ing.

In Section 2 we give our view of temporal domains;
The operators (i.e., interpreted symbols) of our logic are
introduced in Section 3. Section 4 is a discussion of
semantics; in particular, the semantics of the interpreted
non-logical symbols. In Section 5 we compare the logic of
time structures with Shoham's classical interval temporal
logic, and its nonmonotonic version. [Shoham 1987Db].
We conclude with an example of reasoning with chrono-
logical minimization. Proofs of lemmas and theorems are
omitted and can be found in [Balaban & Murray 1988].

2. Domain of Discourse

The temporal world that we describe has no abso-
lute time line. It is built from atemporal objects that,
when combined with time points, form histories. His-
tories can be combined together to form more complex
histories. Each history has its own private time line. The
entire domain of discourse consists of atemporal objects,

temporal objects (time points), and histories. We now
describe each of these types in some detail.
2.1. Atemporal and temporal objects

Atemporal objects are domain elements that,

viewed in isolation, are durationless. Of course, in reality
'‘durationless objects' do not exist, but this is a common
abstraction.

We assume a set of temporal objects called time
points, that is totally ordered and that contains an object
called Zero.

We distinguish objects, actions, and processes not
by means of distinct types, but through the temporal
behavior of such entities represented as histories.

2.2. Histories

The building block for histories, called an elemen-
tary combination, is the association (p, td) of an atem-
poral object p with a temporal object ty. The pair (p, tq)
can be thought of as the set of all occurrences of p such
that if p starts at some time point t, it clips at time point
t + td- We call ty the duration of the elementary combina-

tion (p, tq).

A history is a collection of time-stamped histories,
or time stamped elementary combinations. A history has
its own time line and the histories that occur within it
have their own time lines. But the Zero of these time
lines is displaced from the Zero of the composite history
by their corresponding time stamps. Elementary combi-
nations have no self time lines.
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2.3. Formal Definition

Here, a brief formal description of our domain of
discourse is given. We have a non-empty domain D of
atemporal objects, and a domain T of time points that is
totally ordered and that contains Zero. Time points and
objects can be combined to form the set H of histories as
follows:

(a) The empty set
tory.

(b) For 1iel’ an arbitrary indices set,
hi€eH U EC, and t,€T: h = {(h;, t;)) | iIET} € H;

h is the history in which the time line of sub-history
hi is displaced by t{,.

O is a history called the empty his-

The entire domain of discourse U consists of
(DUTUECUH). We assume a set F of total functions
U—>U. No a priori restrictions are placed on these
functions, except that they are total and have a signature
iIndicating the sub-domains corresponding to their argu-
ments and to their range. In other words, the functions of
F must be well-typed with respect to D, 7\ EC, and H.

The need for 'inter-typed' functions arises from the
non-homogeneous nature of U. Elementary combinations
are obtained by a function whose signature is:
DXxXT — EC; histories require the signature
{ (H; U EC)) X D))}ier = H. A duration function would
have the signature H —> T; atemporal functions like
"angry" would be of type D —> D.

3. Time Structures

In correspondence to the four types in U, there are
four kinds of terms: primitive terms that denote atemporal
objects, time terms that denote time points, elementary
pairs that denote elementary combinations, and fime
structures that denote histories. All are terms of first
order logic.

Given:
C = a set of constant symbols.
S = {d,t,ec,h} - sort symbols, that correspond to the

threc types D, T, EC, H.
) € C — denoting the Zero object of T.
NIl. € C - denoting the empty history ¢ in H.
V = a set of variables.
FS = a set of function symbols.
[ ] € FS — describing elementary histories.

® € I'S - describing histories. ® is called the tem-

poral concatenation operator.
sgn = a mapping as follows:

sgn: C — S
sgn: V. —+ S

n+1
sgn: FS™ —, X] S
sgn(0) = t
sgn(NIL) =

sga([ ]) = (d,t,ec)
sgn(e®) = (v,t,h,h) where ve{h,ec}

Terms: Defined as usual, with sort restrictions taken
into account as follows:
The sort of constants and variables is their signa-
ture; the sort of f(ty ...,ty) is the last element of
the signature of f, where the i'" element of sig(f)
must agree with the sort of tj, I<i<n.
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We discuss the terms of sorts d, t, ec, and h below.
We express functions of arity one or greater as lower case
identifiers; variables are also lower case but are italicized;
constants are functions of zero arity and may be upper or
lower case; the time structure operators appear in bold-
face.

3.1. Primitive Terms and Time Terms

Primitive terms are terms of sort d. They denote
atemporal objects. Time terms are terms with sort (.
One distinguished time term is the constant 0O; it denotes
the time point Zero.

3.2. Elementary Pairs

An elementary pair is a sort ec term of the form [p,
tj; it associates a non-negative time term ty with a primi-
tive term p. It denotes the elementary combination (p',
td'), where p', td' are the denotations of p, td, respec-
tively. For example, the elementary pair [FIDO-
BARKS,35] can denote the elementary combination of
fido barking, that clips at time point t + 35, if it starts at
time point t.

3.3. Time Structures

Time structures are terms of sort h that denote his-
tories; they include (not exclusively) NIL and all terms
generated by . Some examples are:

NIL denotes the empty history.

*([p,d],t,NIL) denotes the history {((p',d"),t")}, where
p', d', and t' are the denotations of p, d, and t, respec-
tively.

o(|p, dil, t, ®([q, d;]),0,NIL)) denotes the history
{((p’, dV), V'), ((q’, d2’), 0)}

o(o( [p,d], t; NIL ), t;, NIL ) denotes a single element
history: { ({ ((p’, d'), t1'), }, ) }

o([p,d],t,ts) denotes: {((p’,d’),t’) }Uh, where h is any
history (possibly unbounded or infinite).

o( ts, 2*t, ®( ts, t, NIL ) ) denotes histories of the form:
{ (h, 2«t’), (h, t’) }, i.e. a pattern of histories.

The following axioms characterize the basic proper-
ties of the ® operator.

Axiom
of some

: The denotation of every sort ec term is that
term:

=ec = 1 p,dep=|[p,d]) )
Axiom (®NIL): NIL is a unit element of the ® operator:

o( NIL, ¢, ts ) =1ts (eNIL)

Vep (sgn(ep)

V1,18

Axiom (®h): The denotation of every non NIL sort h
term is that of some @ term:

Vis ((sgn(ts)=hAts#NIL) — (eh)

(IS e .(IS], I, ISz)) )

1 ts,,153,1

Note that this ® term is unique up to repetitions
and commutativity.

Idernj)otence:

\ Isq,t1,18 (.idp)

.(ISI, [, .(151, l1, IS)) = .(tsl, 11, I.S‘)



Com mutativity:

Vi1s,l1,182,12,18, (Ocmt)

® (151, 11, ® (ts3, 12, 153) ) = ®(tsy, 12, ®(ts5q, 11, 153) )

We define the intended meaning of NIL, [ ], and -
terras in Section 4. The intended meaning of all other h
terms is defined in terms of these via equality axioms.

3.4. Operators

By an "operator", we mean a symbol that has a
well-defined signature and whose definition is fixed. An
operator plays the same role as any function symbol
except that it is interpreted. We have already introduced
« and [ ]; beyond those, we discuss only the time opera-
tors here; many others are Introduced In
[Balaban & Murray 1988].

The self-clip time of a time structure ts is written
clip self(ts); intuitively it is the latest point on the time line
of ts at which one of its constituents clips. The self-start
time of ts, written startseif(ts) is similarly defined; the
duration, written duration(ts), is their difference.

The operators clip(tsq,tsy) and start(tsq,ts,), com-
pute the more useful relative clip and start times for a
time structure or an elementary pair ts7 that occurs within
ts,, Note that each occurrence of ts; in ts, has a relative
start and clip time. Therefore, these operators yield a list
of time points.

The interval operator computes a list of pairs of
time points that describe intervals during which a given
time structure is "playing" within another time structure.
Interval is definable from start and clip (see
[Balaban & Murray 1988]).

4. Semantics of Time Structures

We assume a standard first order logic syntax
including the usual logical symbols: V, 1, A, V, o, —,
and <-». Predicates begin with an upper case character,
and we use the notation from Section 2 otherwise.

An equality and total ordering predicate are charac-
terized by appropriate axioms. We avoid introducing a
sort symbol b, and a type B of boolean values; the signa-
ture of a predicate is taken as just the tuple of its argu-
ment sorts, and the sort is understood as boolean. We
extend our syntax as follows:

P is a set of predicates that includes < and =.

n
We extend sgn as follows: sgn: P® — _><l S, where
h

s9n (<) = (t,t), and sgn(=) is (d,d), (1,t), (ec,ec), or (h,h).
(we use "=" in the obvious polymorphic way.)

Our principle axiomatic temporal relation is the
completion of a time structure over a given interval within
a context time structure. The notion of completion is
similar to the TRUE notation of [Shoham 1987a]. It is,
later on, used to define additional temporal relations, and
to classify temporal behaviors of time structures. The
notion of completion is expressed by a predicate "C",
where C(t1, t,, ts4, ts,) means ts, occurs as a sub-time
structure or sub-elementary pair within ts,, and it starts

and clips at t, and t,, respectively. The signature of C is
(t,t,h,h).

The C predicate reflects the time structure operator
interval and is defined as follows:

\/ L1,02,1851,153

( C(ty, ta, tsq, ts) <> (1,, 15) € interval(ts,, ts,) )

Vt'l’tZ’p]:pZad)ts ( C(tl&t2$[p1cp2,d]’ts) = (Cz)
C(t, 12, [p1, d], ts) CoL C(ty, t2, [p2, d], ts))
where "c" denotes a term level connective: &, v, D, ~,

and CL denotes the corresponding logic level connective
(in the case of ~, there is no p,, and C” is unary). Axiom
(C2) defines the term level connectives to be merely
abbreviations for non-atomic formulas involving the C
predicate. But we might add the condition ¢c%¥~ to the
premise of (C2); then inconsistent information could be
represented within a time structure and yet allow the logi-
cal system to remain consistent. Note that keeping the
implication uni-directional, the strong law of the excluded
middle does not apply to completion of primitive terms:
It is not the case that for every primitive term and every
interval, either the primitive term or its negation com-
pletes over a time structure (otherwise, NIL, for example,
cannot be a legitimate time structure).

As a 1-st order theory, our logic admits the regular
1-st order semantics, within the type restrictions. We
now define the notions of intended (standard) interpreta-
tion, and model.

An intended interpretation is a domain and denotation
function (U, T), where

U = DUTUECUH, and D, T, EC, H are mutu-
ally disjoint.
D = ]s the Herbrand Universe defined l:)ay all con-

stant symbols  having a signature in X S X {d},

1=]

foralln > 0.

T = a non-cmpty set of time points.

Zero € T

EC = a set of clementary combinations over D and T
(section 2.4).

H = a set of histories over EC and T (section 2.4).

T = a denotation function as follows:

Maps constants of signature t to clements of T.
Maps constants whose signature is d to themselves.
Maps 0 to Zero.

Maps < to Time-order.

Maps = to the equality relation on U.

Maps NIL to ¢ (the empty history).

Maps | | to a function: D X T — EC that maps d € D
and t € T to the pair (d,t).

Maps @ to a function: (H U EC) X T X H — H, defined
by:
(hh t, hZ) — {(hl: t)} U h2
or: e(h,t,hx))T= {(hf,tH)} uhi .

The time structure operators like start, clip,
etc., are assigned their history counter-parts.

Interval,

A variable assignment is partitioned as follows:

A simple-variable assignment is an assignment to the
variables of signature d, t and ec.

An h-variable assignment 1s an assignment to the
variables of signature h.

An interpretation | and a h-variable assignment V form a
model to a theory in the logic of time structures, if they
satisfy:
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1. Axioms (eNIL) (tcmt), (eh) and (-idp); the equality
axioms for =, the total ordering axioms for <, and
axioms defining the time structure operators.

2. Axioms for the arithmetic time functions, and the list

functions; see [Balaban & Murray 1988]).
Axioms (CIl), (C2).

The proper formulas of the theory for every simple-
variable assignment.

The notions of satisfiability, validity, logical consequence
are defined as usual.

4.1. Characterization of Temporal Behaviors

Taking C as our main predicate reflects the interval
based nature of our calculus. However, we believe that
there is a need also for point-wise characterization of
temporal behavior. For that purpose we introduce a
predicate, called P (PLAYS), where P(t, ts4, tsy) stands
for "the time structure tS; plays at time point t in time
structure ts,."

Vt,tsl,ts?_ ( P(t, ts,, tS‘!) =3 (P1)

(3 ty, t2) 1,<t<ty A C(t,15,t55,t83) )

Note that the subject of the point-wise truth is a
time structure tsi, and a context time structure ts,. This
reflects the view underlying our formalism, that a "fact"
(i.e., some atemporal object) cannot "hold" or be "true”,
unless it is part of some time structure. Hence, it is,
always, a time structure about which we wish to state
some point-wise truth.

The C and P predicates have the following proper-
ties:

1) A time structure is playing at every time along an
interval on which it completes:

v th tZ’ t) tS'l) ‘.Sz,

( (C(t, to, ts, ts2 )AL <t < tp) = P(t, tsy, ts3 ) )

2) A time structure does not complete on any proper
subinterval of an interval on which it completes:

Vi, ta, 13, t,, tsy, tss,
( (C(y,
(5t V ety ) A (3t A a5ty ) )

= =C(t3, t4, ts;, tsy ) )

s, tso ) A <t <ty <t A

Note that by the last property, point-wise comple-
tion is still different from playing (which is always point-
wise): On every point of the interval [t{, t2], tss plays but
does not complete!

The issue of whether to analyze the truth of some
entity over time intervals or over time points has been
discussed at some length in the literature of temporal log-
ICS In Al [Allen 1984], [McDermott 1982], and
[Shoham 1987a]. Using the C and P predicates, we are
able to handle both.

5. Related Work

The most well known treatments of temporal infor-
mation in Al are the works of Allen, McDermott, Sho-
ham, Kowalski, and Haugh. Shoham's logics seem to
subsume the other above mentioned works. Therefore, we
compare our logic to his.
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First we show that every formula of Shoham's first
order interval temporal logic can be simulated by a for-
mula in the logic of time structures that has the context
time structure as a free variable. This simulation can be
further augmented to apply to Shoham's monotonic
modal logic of Temporal Knowledge - but this is an
option that we do not pursue. Instead, we show that the
preference criterion on models of the modal logic of
Temporal Knowledge, called chronologically more
ignorant, can be formulated as a first order formula,
involving comparison of time structures. A major pro-
perty of this simulation is that it avoids problems associ-
ated with the chronological minimization of models of
Shoham's classical interval logic; problems that caused
Shoham to switch to the more sophisticated modal logic
of chronological ignorance. We conclude with an exam-
ple that demonstrates the simulation, in the logic of time
structures, of nonmonotonic reasoning in Shoham's
modal logic of chronological ignorance.

5.1. Shoham's Classical Interval Temporal Logic

Shoham's logic contains, variables, constant sym-
bols, predicates, logical connectives and quantifiers, that
are analogous to those of the logic of time structures,
with minor modifications. His logic makes a syntactic dis-
tinction between variables and terms denoting time points
versus those denoting domain objects, whereas we made
only a semantic one. Also, in the classical version, Sho-
ham assumes only a partial ordering on the set of time
points, not a total ordering as we did. Our comparison
applies only to totally ordered sets of time points. Note,
that in the modal version, Shoham assumes the structure
of the integers, i.e., a total ordering.

A  special construct of Shoham's logic s
TRUE(t4, ty, p) where t1 and t, are time terms, and p is a
predication. This IS just notation for the
interval-predication pair <<t; ,t;>, p>. The semantics
of the logic will assign, under a given interpretation and
variable assignment, a set of time intervals to the predica-
tion p. If <ty, 3> is in this set, then TRUE?", t,, p) is
true under this interpretation and assignment. Notice
that in this interval logic, there is one world containing a
single time line, and all formulas are related to this one
time line. Therefore, in this comparison, we will restrict
formulas to refer to a single time structure as the fourth
argument of the C predicate.

Corresponding to a set of wffs ¢ of Shoham's logic,
we have the wff ¢, (ts) where ®, of our logic is the follow-
ing set of translated wffs:

1. If & 15ty =1t,, orty <t, for temporal terms t,, tp,
then ¢, 1s 9.
2. For a predication p (without negation), if ¢ is

TRUE(,, t;, p), then ®,(ts) is C(1,, tz, [p,t2—t1], 25)-

3. If &' and &° are wffs, then (&' A &) (ts5) is
<1>1t(ts) A d4(2s).
want now prove that the translatlon

6reser§%%e SRNEH afBFuﬂ#SJ‘éﬂﬂ“%udb‘fg%Bﬂcé’t‘i‘&’nq“i’BP IRLS
ourposH ST rolate the notions of interpretations in
the two logics. We look only at interpretations in the
logic of time structures that satisfy all the apriori require-
ments for being a model: The assignments to the special
symbols 0, NIL, [ ], *, <, =, C, to the arithmetic time
functions, to list functions, and to the time structure
operators, must satisfy their axioms and "definitions".



Such interpretations are regular interpretations.

Definition: Given I, a regular time structure interpreta-
tion + variable assignment (to all variables), ts, a variable
of signature h, and J, an interval logic interpretation +
variable assignment. We say that (|, ts) corresponds to J

If:

1. | and J have the same set of time points, with the
same ordering; assignments in | to constants and
variables of signature t is the same as the assign-
ments in J to time point symbols and to temporal
variables.

2. The assignment to ts in | satisfies: For all time

terms ty t;, and predication p in the interval logic:
J = TRUE@,, t;, p) iff
I = (1, t2) € interval( [p, t2—t4], 15 ).

In the following lemma we restrict the time struc-
tures to include only the symbols appearing in a given set
Y of wffs. The notion of correspondence between
Interpretations turns into W-correspondence.

Lemma 1. Given Y, a set of time structure wffs,
we assume that the language of time structures includes
only the symbols in Y. Then, for every regular time struc-
ture interpretation + variable assignment |, and a signa-
ture h variable ts, there exists a W-corresponding interval
logic interpretation + variable assignment J, and vice-
versa.

Comment: The restriction on the language of time
structures is needed because we have to split the function

n

symbols of signature ‘X]SX{d} in the logic of time struc-
p=

tures, into predicates and function symbols in the interval

logic.

Lemma 2. Every pair of @ and ®(ts), a set of wffs
in the interval logic, and its translation into the time
structure logic, is cqui-satisfiable.

Corollary: If J and (I,
Interpretations, then

ts) are @.-corresponding

JE=o iff 1 os).
¢,(1s) = o(1s).

5.2. Chronological Ignorance In Time Structures

Shoham introduces two versions of chronological
minimization.  First, for a given set S of primitive propo-
sitions, he defines a preference criterion called chrono-
logically smaller in S, on models of the classical interval
logic. Intuitively, a model M, is chronologically smaller in
S than a model M1 if, for all propositions in S, they
'‘agree' up to a certain time point to, and at ty My has
information about a proposition in S, that M, does not.
The problem with this preference criterion is its depen-
dency on the set S, whose selection seems to depend on
the desired conclusions. To solve this problem, Shoham
introduces a logic called ClI (Chronological Ignorance),
which is a nonmonotonic version of a modal logic of tem-
poral knowledge. The nonmonotonicity of CI| results
from a preference criterion on Kripke structures, called
chronologically more ignorant. The idea behind this cri-
terion is similar to the previous one, but now the minimi-
zation involves all known propositions. This idea could
not be applied directly to the classical interval logic (i.e.,
take S as the set of all propositions), since in classical
logic for every proposition p, either p or its negation is
true over any given interval (the strong law of excluded

Theorem 1. ¢ = ¢, iff

middle), thereby turning every model into a chronologi-
cally minimal one.

In this section we try to incorporate the chronologi-
cally more ignorant criterion described above, into the
(first order) logic of time structures. The idea is that his-
tory H, is chronologically more ignorant than history H;y,
if they 'agree® up to a certain time point to, and H; has
information at ty that H, does not. This relation between
histories is captured by the predicate >, called chronolog-
ically more ignorant. The predicate is defined by the fol-
lowing first order formula:

Definition - The chronologically more ignorant predicate:

152 >t5; <> 1 1
[ (Vp,d, t<to, 't (C(1', ¢, [p,d], ts2) =

C@', 1, [p,d], t51) ) ) A
( :] P, d, ISIO

( C(f, Lo, [p,d], fs]) A "'C(t’ o, [p’d]! 152) ) ) ]

Note that, as with Shoham's latter chronologically more
ignorant criterion, our chronological preference predicate
Is defined with respect to all primitive terms, not just
terms within a given set of propositional primitive terms.
The reason we can do that, within the scope of first order
logic, is that the strong law of excluded middle does not
apply to time structures: it is not the case that for any
primitive proposition, either it completes over a given
interval, or its (term level) negation completes over that
interval.

A  chronologically maximally ignorant history with
respect to a given theory is characterized by the CMI
predicate as follows:

Definition: Given W¥(ts), a formula in the logic of time

structures. The CMI predicate, with respect to ¥ is
defined by:

CMIy(1s) <> (Y(s)AVLs'(V(ts') = —=(ts'>15)))

The following three claims summarize the relation-
ship between the nonmonotonic version of Shoham's clas-
sical logic, defined by the chronologically smaller in S
preference criterion, to the logic of time structures. All
claims refer to a formula ® of the interval logic, and to
®,, its translation into the logic of time structures. The
set S is fixed as the set of all primitive terms in ®;.

Lemma 3. Let J; and (I, tSi), for i=1,2, be O
corresponding interpretations and variable assignments.
Then,

Jo is chronologically smaller in S than Jj,
Ji Cg Ja iff | = Isy < IS,

That is, the correspondence between interpretations
preserves the chronologically smaller relationship.

(denoted

Lemma 4. If J and (I, ts) are ®i-corresponding
interpretations and variable assignments, then

J is a chronologically smallest in S model of ¢
iff I F— CMI@)I(IS).

Theorem 2. ¢ = ¢ iff
of >, CMIQ). } A CML;)‘ (IS) == (f)l(tS)

We have shown that the notion of chronological
ignorance can be implemented in the logic of time struc-
tures, using first order tools alone. Below, we present an
example of chronological ignorance based reasoning in
our logic.

¢(ts) A {definitions
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6. An Example

Shoham characterizes two major problems in rea-
soning about change; the solutions he suggests are within
his modal logic of chronological ignorance
[Shoham 1987D].

The qualification problem is "the problem of having
to specify too many conditions in order to make even a
single prediction about the future". The extended predic-
tion problem is "the difficulty of predicting things about
extended periods of time in the future". Shoham claims
that the extended prediction problem subsumes the
famous frame or persistence problem.

We consider the Yale shooting example, which is
now firmly established in the Al folklore. |In
[Balaban & Murray 1988], we provide two formulations
of this example in our logic that address, respectively,
qualification and extended prediction. Here we present
the latter formulation which is a generalization of the
former. The set of time points is assumed to have the
structure of the integers.

Point-wise facts that are expected to persist (like
C(l,l,[loaded,0],ts) ) are interval-wise statements, with
unspecified upper time points. The CMI criterion forces
these statements to be clipped at the latest possible time,
l.e., to persist as long as possible. The frame axiom is,
of course, dropped. This formulation is similar to
Shohan's potential histories formulation.

There are six axioms:
1. 4 v, dCQ, v, [loaded,d], ts)
2. C(5, 5, [pull-trigger,0], ts)
3. vi,d

a. C(t, 1, [pull-trigger,0], t5s) =
-P(t+1, [loaded,d], ts)

b. C(t, t, [emptied-manually, 0], ts) -
-P(t+1, [loaded,d], 15)

4. Vi, d

([ P(¢, [loaded,d], ts) A
C(t, t, [pull-trigger,0], ts) A ¢ ] —»

C(t+1, t+1, [noise,0], t5) )

where O is the conjunction of denials of 'abnormalities’
like =P(t,[vaccum,d],ts).

5. Definition of >

6. Definition of CM I, with ¥ taken as the conjunction
of formulas 1 to 4 above.

Under this formulation, the "expected results" are
obtained. Although we have no knowledge about per-
sistence of propositions over time, we can conclude that
loading persists up to time point 5, and causes the noise
at time ©.

/. Conclusion

We have shown that we can formulate Shoham's
notion (in his classical interval logic) of chronological
ignorance. Clearly, we can formulate his preference cri-
terion on Kripke structures by a preference criterion on
models of the logic of time structures. But then we end
up with a nonmonotonic logic built on a first order one,
rather than on a modal logic. We prefer capturing these
notions with purely first order formulas involving time
structures.

The main point here is not the imitation of
Shoham's work, but that we have implemented some kind
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of model preference mechanism through axioms in a first
order logic. Should we desire an entirely different prefer-
ence criterion, we might only require a new axiom set; we
need not build a new logic, define its semantics, and
design its inference or model-building engine from
scratch. Furthermore, because of our particular encoding
of temporal knowledge, the strong law of the excluded
middle does not hold in any of our "worlds." Thus we
have not been forced away from first order and toward
modal logic.
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