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A b s t r a c t 

This paper discusses the application of the 
thought experiment methodology to qualita­
t ive reasoning. Problem solving using this 
technique involves simplif ication of the origi­
nal problem, solution of the simplified problem, 
and generalization of the results obtained. Our 
emphasis in this work is to demonstrate the ef­
fectiveness of this approach in addressing com­
plexi ty and grain size issues that affect qual­
i tat ive s imulat ion. The thought experiment 
methodology is presented formally, the imple­
mentat ion of a problem solver called TEPS is 
briefly discussed, and the methodology is com­
pared w i th related techniques such as approxi­
mat ion, aggregation, and exaggeration. 

1 I n t r o d u c t i o n 

The use of qual i tat ive models in explaining the behav­
ior of physical systems is an area of continuing research 
among the AI community. This paper develops the 
thought experiment methodology in the qualitat ive rea­
soning framework. The technique developed can be ap­
plied to a wide variety of problem solving situations. 

Naive physics or common sense problem solving is 
characterized by the lack of precise and complete knowl­
edge of all the constraint relations among parameters rel­
evant to a physical s i tuat ion under study. This results in 
analysis being performed on weakly constrained systems 
which causes two major problems: (i) a large mult ipl ic­
i ty of possible solutions many of which may be physically 
incorrect, and ( i i ) the corresponding computational com­
plexity in der iv ing the behavior of even simple physical 
systems. It might be argued that constraint relation­
ships may be more easily obtained for human-engineered 
systems that have been bui l t for a specific purpose. (As­
suming noth ing is broken, at least the system design­
ers should be able to specify the complete and precise 
constraints). However, this is true only for very simple 
mechanical devices. As devices become more complex, 
the loose coupling of the component sub-systems makes 
the complete set of parameter relations harder to define. 
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For example, in an automobile engine it is not difficult 
to derive the relations that specify the location of each 
piston relative to the others, however, if one considers 
other components, such as the fuel pump, water pump, 
generator, and battery, the proliferation in the number of 
components and their weak coupling makes constraints 
harder to generate. 

Conventional qualitative simulation methods provide 
no solutions for dealing wi th the mul t ip l ic i ty of solutions 
and the computational complexity that arise because of 
the underconstrained nature of the problems. In a recent 
paper, Falkenhainer and Forbus [1988] suggest a number 
of modeling assumptions to deal w i th the complexity is­
sues in large engineering systems. This paper presents 
an alternate approach that we feel is more formal, and 
applies in a broader perspective. 

Imaginary, simplified situations are often analyzed by 
human problem solvers in order to understand the pr in­
ciples behind more realistic situations. In Polya's words, 
"To sum up, we used the less diff icult, less ambitious, 
special, auxil iary problem as a stepping stone in solv­
ing the more difficult, more ambitious, general, orig­
inal problem." [Polya, 1957] In physics, this technique 
is referred to as a thought experiment [Prigogine and 
Stengers, 1984]. We formalize this heuristic method and 
use it for qualitative physics problem solving. 

The thought experiment methodology uses two steps: 
S i m p l i f i c a t i o n and G e n e r a l i z a t i o n to solve problems 
that are too complex for direct qualitative simulation. It 
also deals wi th the grain size issue in a way that is largely 
automatic. The simplif ication step involves f inding an 
imaginary physical system that is similar to the system 
under consideration, but, in some sense, is simpler to 
interpret and solve. Such a simplified system is called a 
p r o t o t y p e of the original system. The problem is solved 
for the prototype. 

Generalization is also a two step process that involves: 
(i) C o n j e c t u r e and (ii) V e r i f i c a t i o n . A conjecture hy­
pothesizes the solution to the original problem based on 
the solution obtained for the prototype. The next step is 
to verify this conjecture to formulate an acceptable hy­
pothesis for the current problem. Verification may use 
formal methods or heuristic techniques. An acceptable 
hypothesis resulting from verification is called a gen­
eralization. If verified heuristically, a generalization is 
treated as a default assumption, i.e., it is accepted un-
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t i l contradictory evidence disproves it at some later t ime. 
Simpli f icat ion and generalization are related in that pro­
cedures for finding prototypes probably have associated 
generalization methods. 

We emphasize that the methodology adopted for solv­
ing the prototype problem is basically independent of the 
general thought experiment technique. Extensive work 
by different groups has produced several suitable meth­
ods, such as the Confluence method of De Kleer and 
Brown [1984], the Qualitative Process Theory ( Q P T ) of 
Forbus [1984], and the QSIM method of Kuipers [1986]. 
Our problem solver uses the Forbus aaproach for proto­
type problem solving. Instead of competing w i th these 
and other methods of qual i tat ive reasoning, the thought 
experiment technique actually aims at extending the na­
ture and size of the problems to which these methods 
can reasonably be applied. The price we pay for this 
extension is that all qual i tat ive solutions that satisfy the 
constraints of the problem are no longer guaranteed. In 
fact, in some cases, simpl i f icat ion just eliminates irrele­
vant detai l . In other cases, simpli f icat ion may eliminate 
legitimate possibilities which would overwhelm the prob­
lem solver. 

In many ways the thought experiment approach is 
similar to analogical reasoning. However, it is more re­
stricted in that it does not involve the process of ex­
trapolat ion of phenomena f rom one domain to another. 
Also, the solution to the problem for the prototype is 
not known unt i l it is at tempted as part of the thought 
experiment. In some sense it also resembles approxima­
tion techniques, but , as we discuss later, conceptually 
the simplif ication process is very different f rom approxi­
mat ion. 

This paper presents a formal description of the 
thought experiment methodology for qual i tat ive rea­
soning, and discusses a problem solver called T E P S 
(Thought Experiment Problem Solver) designed to en­
compass a number of other kinds of problem solvers. An 
example problem il lustrates the application of this tech­
nique. 

2 T h o u g h t E x p e r i m e n t s : A F o r m a l 
Desc r i p t i on 

The thought experiment methodology is formally devel­
oped as a state space problem solver. 

2.1 S t a t e Space 

States are described using predicates. The arguments of 
the predicates refer to domain objects and qual i tat ive 
variables used to describe these objects. To avoid be­
ing side tracked, we postpone a discussion on qual i tat ive 
variables (in terms of quantity spaces or landmark values) 
unt i l Section 3. Predicates used for state description are 
called descriptors. For a given problem domain we as­
sume a fixed set, Z, of possible descriptors. These form 
the d e s c r i p t o r space. 

The q u a l i t a t i v e s ta te space, Q is defined as the 
power set of Z, (the set of all possible subsets of Z), i.e., 
Q = P(Z), where P denotes the power set funct ion. 
Note that a qual i tat ive state is just a set of descriptors 
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wi thout regard to the consistency or semantic correct­
ness of the set. The only requirement is that it comes 
f rom the set of descriptors, Z, so as to be syntactically 
acceptable to the problem solver. A nonsensical or con­
tradictory state may be flagged dur ing the simulation 
process, though depending on the design of the problem 
solver, nonsensical input may produce nonsensical states 
as answers. 

As a next step, we define descriptions of states in terms 
of A, a set of a d j e c t i v e s . W i t h each adjective i in A is 
associated an adjective funct ion, say Fi : Q —> Q. F, has 
the property: q' — Fi(q) ==> q' C q, i.e., the subset of 
descriptors of q which satisfy adjective i is q'. A state 
q can have more than one adjective; however, the focus 
is on distinct adjectives. T w o adjectives are distinct if 
they always describe different parts for all states, i.e., i 
and j are dist int if Fi(q) and Fj(q) are dist inct for all q. 

A d e s c r i p t i o n of a state is defined as a set of distinct 
adjectives which describe i t , i.e., D : Q —► P(A). This 
can be looked upon as replacing different parts (subsets) 
of a state by corresponding adjectives that describe those 
parts. Any higher order structure bui l t f rom states has 
a description which consists of the corresponding struc­
ture w i th states replaced by their descriptions. Two 
states w i th the same descriptors are considered identi­
cal. At the finest level of description the adjectives are 
the descriptors themselves and the description of a state 
is simply the state itself. 

2.2 T h o u g h t E x p e r i m e n t s 

Assume a problem solver wi th the necessary informat ion 
to reason about states in Q using qual i tat ive simulat ion. 
The problem solver acting on a state q produces a di­
rected graph of states star t ing at q. This directed graph 
represents the evolution of the state q w i th t ime. Results, 
a subset of the state graph, are obtained by a well de­
fined method. This subset is ordinari ly the leaves of the 
graph, and represents the collection of final states. Thus 
the problem solver has an associated results funct ion: 
R : Q —> P(Q). R(q) is the set of states that constitute 
the result of the qual i tat ive s imulat ion. A more concise 
form of stat ing the results is D(R(q)), a set of descrip­
tions of the states in R(q). Note that if several states in 
R(q) have the same description, this description occurs 
only once in D(R(q)). 

A s impl i f icat ion, 5, is a funct ion S : Q —> Q which 
maps states to simpler states. A prototype of q is S(q), 
where S is a simpl i f icat ion. 

Direct qual i tat ive simulat ion goes f rom a qualitat ive 
state, q, direct ly to R(q). A given description of R{q) 
is D(R(q)). A thought experiment goes through the fol­
lowing sequence: 

q -> S(q) -> R(S(q)) -> C(R(S(q))). 

The first step is the simpl i f icat ion, the next is the solu­
t ion of the prototype and the last is the conjecture (w i th 
verif ication). The expectation is that C(R(S(q))) — 
D(R(q)). 

The major components of the thought experiment 
scheme are explained in greater detail below. 



S i m p l i f i c a t i o n s 
Conceptually, simplif ications can be derived from sim­

plification hierarchies. A simplif ication hierarchy is a 
subset of Q that is part ia l ly ordered f rom simpler to 
more complex states. A simplif ication can then be de­
scribed as a funct ion S : Q —> Q which maps a state in 
a given level to a simpler level of the hierarchy, if one 
exists. 

There exist a number of ways for embedding a state 
q in a simpli f icat ion hierarchy. For example, one can in­
duce a hierarchy by embedding any feature of the state 
in a hierarchy involving that feature. The term feature 
includes a state descriptor contained in the state, a sub­
set of state descriptors in the state, or a argument to a 
state descriptor in the state. This feature hierarchy then 
induces a simpli f icat ion hierarchy for the entire state. 

Feature simpl i f icat ion could be bui l t into the problem 
solver in a number of ways. One example involves iden­
tical objects. Given that the problem solver has type 
informat ion about the kinds of arguments a predicate 
takes it can distinguish arguments which refer to ob­
jects. It can then determine whether a state contains 
identical objects by checking if the objects are in other­
wise identical descriptors. This embeds the problem in a 
hierarchy involv ing the number of identical objects, and 
simpli f ication involves reducing that number. For exam­
ple, given a system wi th n identical objects (n large), 
the simpli f icat ion procedure might suggest reducing the 
problem to one w i th only two identical objects. 

Another method involves numerical arguments. If 
type informat ion indicates that an argument to a de­
scriptor is numerical then that value can be embedded 
in a numerical hierarchy such as zero, infinitesimal, fi­
nite, and inf ini te. The thought experiment method in 
this case would be similar to the exaggeration technique 
of Weld [1988]. A more detailed discussion of this issue 
is presented in Section 4. 

Following Q P T [1984], the problem solver contains 
modules describing generic objects (individual views) 
and causal processes (processes). Any such module may 
contain informat ion that is useful for feature simplifi­
cation. For example, an indiv idual view describing a 
generic bui ld ing structure may contain descriptors for 
a prototype bui ld ing that could replace those for the 
more complicated bui ld ing structure. Furthermore, i f 
the problem domain imposes hierarchies on individual 
views, then this might form the basis for simplif ication. 
To continue the example, a spectrum of levels ranging 
f rom a very simple generic structure w i th just two rooms, 
to arb i t rar i ly complex structures w i th mult iple rooms 
can be defined. The level of complexity of the structures 
would depend on the number of rooms, and the spatial 
configuration of the rooms wi th respect to each other. 
These techniques are termed Simplification by Abstrac­
tion to contrast them f rom direct feature simplif ication. 
Examples of the use of abstraction hierarchies appear in 
Hibler and Biswas [1989]. 
C o n j e c t u r e s 

A conjecture is a guess about a description of R(q) 
based on R(S(q)). The most precise description of R(q) 
would be R(q) itself, however, it is our belief that a less 

precise description often suffices to describe and explain 
behavior in quali tat ive problem solving. We must, there­
fore, add to the thought experiment process the abi l i ty 
to specify the type of description desired for the result. 
This is done by specifying a set of separate adjectives and 
associated adjective functions, which forms the descrip­
tion basis. The conjecture uses R(S(q)) and the given 
description basis to find D(R(q)). 

One obvious way to form conjectures is to use the in­
verse of the simplif ication 5. Unfortunately 5 is usually 
a many-to-one funct ion, so the inverse of a state results 
in a set of states. Let T be the function on sets of states 
induced by the inverse of 5, i.e., T — S~1. (The bar 
above S~] indicates that T may be an approximation 
and not a true inverse in the mathematical sense). We 
define T : P(Q) -> P(Q) such that T(X) is the set of all 
states q such that S(q) is in A'. One conjecture method 
is to use the composition of D w i th T for the conjecture. 
Thus, we assume D(R(q)) = D(T(R(S(q)))). 

The function T need not be defined on R(S(q)). 
Therefore, if the feature involved in the simplification 
changes from S(q) to R(S(q)) it may not be clear what 
the correct inverse should be. Even if it is, it is often 
better to pick a different inverse-like function that has 
better properties, e.g., it is more specific. Note that the 
construction of T from 5 requires that we define 5 not 
only for the particular state q which was to be simpli­
fied, but for all qualitative states q that are meaningful 
for that problem. There could be many such definitions. 

Our experiences indicate that the easiest way to form 
conjectures is to get away from inverses and use cross 
descriptions. A cross description is a description ba­
sis which is applicable across the levels of the hierarchy 
which generates 5. For cross descriptions the conjecture 
is D(R(q)) = D(R(S(q))), i.e., the same description 
applies to R(q) and R(S(q)). As an example, consider 
a problem with 20 objects in a row, and the descrip­
tion refers to object 20. Directly applying a simplifica­
tion that reduces the number of objects to less than 20 
does not produce a cross description that can be applied 
across the simplification hierarchy. On the other hand, 
reformulating the problem so that the description refers 
to the last object in the row, makes the description gen­
eral enough so that it applies to rows of arbitrary length, 
and, therefore, across the hierarchy. 

It might be argued that the composition of a descrip­
tion D wi th a simplif ication inverse T is essentially the 
same as constructing a cross description, but this is usu­
ally not true because D does not refer to the entire state. 
In the example wi th the 20 objects, since the final result 
is desired only for object 20, it really does not matter 
how the mapping is performed on the first 19 objects, so 
in defining D, no commitment has to be made on these 
mappings. Therefore, the cross description mapping wi l l 
be inherently simpler. 
V e r i f i c a t i o n 

Verification can be rigorous or heuristic. It could even 
be empirical. If a rigorous proof cannot be established, 
a possible method for verification is to use different sim­
plifications and see if they produce the same result. If 
C1(R(S1(q))) = C2(R(S2(q))) this increases our confi-
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dence in the result. 

3 T E P S - A Though t Expe r imen t 
P r o b l e m Solver 

The basic steps of T E P S implemented in Prolog are-
out l ined below: ( i) determine the i n p u t d e s c r i p t i o n 
in terms of a set of state descriptors, and the descrip­
t ion basis that specifies the informat ion desired in the 
f inal state of the system, ( i i ) apply S i m p l i f i c a t i o n , i.e., 
pick an appropriate simpli f icat ion procedure f rom a list 
of simplif ications, and create a prototype problem, ( i i i ) 
perform E n v i s i o n m e n t , i.e., apply the Q P T simulator 
by ident i fy ing and f i r ing all active processes at each step 
t i l l the graph of states cannot be extended, ( iv) G e n ­
e ra l i ze , i.e., f ind an appropriate conjecture procedure, 
apply, and t ry to verify, and (v) o u t p u t some or all 
state descriptors of the f inal state as requested. A de­
tailed example is presented below, but a more complete 
description of the a lgor i thm and the implementat ion is 
available in Hibler [1988]. 

The problem solver has the fol lowing: (i) a set of pro­
cesses (ideally this would be very extensive, but , for now 
we restrict it to a part icular domain of interest, e.g., 
static electr icity and sets of pendulums), ( i i ) a set of 
simplif ication procedures (these include conditions for 
tr iggering the procedures, i.e., appl icabi l i ty condit ions), 
( i i i ) a set of conjecture procedures (these include condi­
tions for tr iggering the procedures, in part icular, which 
simplif ication they might correspond to ) , and ( iv) a set 
of verif ication procedures (they should include specifi­
cation of the conjecture procedures for which they are 
appropriate). The verif ication procedure may call quali­
tative simulation in order to test the conjecture in other 
cases. 

The qual i tat ive simulat ion method is implemented as 
a generalization of Q P T [Forbus, 1984]. A major differ­
ence is that the Q P T focuses on numerical-valued param­
eters. Even though qual i tat ive values are used for these 
parameters the approach tends to be too specialized for 
our purposes. We replace the quant i ty space w i th an a t ­
t r i b u t e space. An at t r ibute space is a directed graph. 
The nodes of the graph represent qual i tat ively signifi­
cant regions. An edge between two nodes indicates that 
the regions are adjacent in terms of the possibilities for 
change of at t r ibute of an object. The direction of the 
edge indicates direction of change. Thus edges serve as 
directional derivatives. For example, consider a solid 
conducting rod in the static electricity domain. Rather 
than consider geometrical regions based on the shape 
of the rod, or locational coordinates, a more elegant de­
scription that suffices for most qual i tat ive static electric­
i ty problem solving is to consider the division of space 
into three topological regions: the interior, surface, and 
the exterior of the conductor, w i th 

int(c) —> surf(c) —> ext(c) 

defining the adjacency regions. A more complete discus­
sion of the at t r ibute space approach and i t 's effectiveness 
appear in Hibler and Biswas [1989]. For comparison pur­
poses, our at t r ibute space approach is somewhat similar 
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to the Kuipers and Byun [1988] qual i tat ive methods de­
signed for a robot learning a spatial environment. 

A major issue that arises in the description of TEPS as 
a general problem solver is the issue of control. In other 
words, given a number of possible simplif ications (e.g., 
the ones discussed in Section 2; others are discussed in 
Hibler and Biswas [1989]), how does the program de­
cide which simplif ication is the most appropriate in a 
part icular situation? One way to answer this question 
is to check whether appropriate conjecture and verifica­
t ion procedures can be applied after the results of the 
prototype system have been derived. This implies that 
the simpli f icat ion and generalization methods are closely 
tied, and heuristics can be defined that rank the suitabi l­
i ty of simpli f icat ion and generalization procedures based 
on the problem definit ion and desired results. We have 
investigated a number of simpli f ication and conjecture 
techniques in Hibler and Biswas [1989]. However, our 
emphasis in this paper is to demonstrate the effective­
ness of the basic methodology. 

Even for the class of simplif ications involving identi­
cal objects the problem solver can solve a wide variety 
of problems. We demonstrate this for the domain of 
static electricity in Hibler [1988]. For i l lustrat ive pur­
poses, we discuss the problem solving steps for one of 
these problems. This problem involves a line of pendu­
lums hanging f rom a support under the force of grav­
i ty. Each pendulum consists of a sphere hanging by a 
non conducting thread or str ing. Each sphere has the 
same radius, each pendulum has the same length, and 
the separation between adjacent pendulums is the same. 
A certain amount of charge is placed on one or more of 
the spheres. The problem is to determine properties of 
the final state of the array of pendulums. The final state 
consists of the final posit ion of each pendulum and the 
final d is t r ibut ion of charge among the pendulums. It is 
assumed that each pendulum mot ion is damped due to 
viscosity of the air or the nature of the support ing thread 
so that a static configuration is reached quickly. 

To be more specific, consider a certain amount of 
charge, c, is placed on the first of the series of pendu­
lums. There are a total of 30 pendulums and all but the 
first have zero in i t ia l charge. The aim is to determine 
various descriptions of the final state of the pendulums. 

How might a human describe what happens? Using 
reasonable assumptions, a human might decide that the 
in i t ia l charge on the first pendulum causes a polariza­
t ion of the charge on the second. Thus, even though the 
second pendulum has no net charge the result is an at­
t ract ion between these adjacent pendulums. These pen­
dulums move toward each other. Assuming they touch 
and are conductors, charge is shared equally. The two 
pendulums now have like charges and, therefore, repel. 
Having analyzed this, the result can then be propagated 
down the line of pendulums. (See Figure 1). 

A l though we can easily describe what happens, a di­
rect qual i tat ive simulat ion using conventional techniques 
is hopelessly involved. The reason is that relative t im­
ing information on the mot ion of each pendulum absent, 
and, therefore, too many different possibilities have to 
be considered at once. To explain using an analogous 



Figure 1 : C h a r g e D i s t r i b u t i o n - R o w o f P e n d u ­
l u m s . 

example, a qual i tat ive simulat ion of a horse race wi th ­
out a relative ranking of the speeds of the horses, would 
indicate that every possible ordering (or permutat ion) of 
horses was a possible outcome for the race. 

For this example, the input to TEPS for this problem 
is given below. 
prob lem(sta te : [conductor(p),pendulum(p),mobi le(p), 
locat ion(p,center (p)),charge(p(l) ,c),number (p,N,30)], 

u n k n o w n s : [charge(p ,X)]) . 

The first part is a specification of the in i t ia l state q. 
The number predicate indicates that there are 30 ob­
jects each of which has the properties indicated for the 
generic object p. This representation for identical ob­
jects triggers the simpli f icat ion procedure before a more 
involved analysis is in i t ia ted. The predicate involving 
the specific object p ( l ) is carried through unchanged 
to the prototype. Simpli f icat ion eliminates the number 
predicate and constructs a prototype involving two pen­
dulums, S(q). A qual i tat ive simulat ion, R(S(q)), is per­
formed on this prototype. Once specific processes and 
indiv idual views are defined, the qual i tat ive simulation 
process R is very similar to the method of Forbus [1984]. 

The conjecture procedure associated wi th the simpli­
fication determines a description basis from the specifi­
cation for unknowns. Type information for the charge 
predicate indicates to the system that the charge is nu­
merical. The adjective set is A — {+, - , 0 } , f+(q) is the 
set of all descriptors in q of the form charge(p(X),Y), 
where Y is posit ive. f-(q) and fo(q) are defined sim­
ilarly. D(R(S(q))) turns out to be { { + } } , i.e., for all 
states in R(S(q)) all objects have positive charge. (On 
the other hand, a result ({ + , - } , { 0 } ) would imply that 
for some states some objects have positive charge and 
some objects have negative charge, and for other states 
all objects have zero charge). 

Using cross descriptions, we conjecture D(R(q)) 
to be { { - f } } too. Verif ication checks that the 
same description holds for the case involving three 
and then four pendulums and produces the answer: 
[result(allstates,charge(p,[-f]))]. In future, an induction 
technique wi l be developed to formally verify the result. 
If the location of the pendulums were the desired result, 
the answer would be expressed in terms of left, r ight, 
and center. 

The TEPS problem solver is set up to produce results 
at different levels of detail. In the problem specifica­
tion given above, if the unknowns predicate is modified 
to read: charge(p(30,X)), and the description basis is 
changed from +,—,0 to exact, a more detailed solution 
is attempted. 

In this case, the envisionment on the prototype S(q) 
determines that charge on p(2) is c/2, half of the original 
charge on p ( l ) . (For a detailed step by step solution see 
Hibler [1988]). The specification of an exact description 
basis, and the fact that amount of charge on a specific 
pendulum is desired, triggers a different conjecture pro­
cedure than the one discussed above. This procedure 
is based on dimensionless ratios, and results in the list­
ing of all dimensionless ratios between the final derived 
quanti ty and the original quantities in the prototype. 
For this problem, it is ½, and it relates to charge on 
the pendulums. The procedure then proceeds to con­
jecture that the rat io for the actual problem is a simple 
function of the prototype. A l ibrary of simple functions 
are bui l t into the system. Verification then entails ex­
amining enough values of N to determine the function's 
parameters and to confirm its correctness for at least 
two addit ional values. Suppose verification fails for all 
functions, the system attempts to produce results at a 
coarser level of description. In this case the result pro­
duced would be + , i.e., there exists some amount of 
positive charge on the last pendulum. 

The program is set up to work wi th arbitrary N (e.g., 
number(p,N,large)). The problem is then solved sym­
bolically, and cross description used to conjecture the 
general solution. The solution for pendulum N of N pen­
dulums is (½)N-1 

From the above discussion, the effectiveness of thought 
experiment methodology in dealing w i th complexity aris­
ing f rom a large number of identical objects has been 
demonstrated. The specification of the description basis 
and the description hierarchies produce results at the de­
sired level of granularity. However, if the solution process 
becomes computationally infeasible or a solution cannot 
be derived (probably because of lack of sufficient details), 
TEPS sutomatically attempts to generate solutions at 
coarser levels of detail. Thus the manner of handling 
the grain size issue is largely automatic. Note that re­
sults produced by the problem solver can be speculative, 
especially if a formal verification procedure cannot be 
applied. Also, as the concept of complexity is expanded 
beyond just large numbers to include other situations, 
like complexity of processes and individual views or sys­
tem description in terms of large numbers of interacting 
parameters, the simplification-conjecture strategy may 
produce inaccurate results. But they may st i l l be com-
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patible w i th in tu i t ive and default notions that humans 
formulate when they reason w i t h incomplete knowledge. 
Th is issue is discussed in more detai l in the next section. 

4 D i s c u s s i o n 

How does the thought experiment method compare 
w i th other techniques for handl ing complex problems? 
Falkenhainer and Forbus [1988] discuss the use of sim­
plifying assumptions based on CONSIDER statements 
to decompose a domain in to different grain sizes and 
perspectives which may be reasoned about separately. 
The thought experiment method is more general than 
the CONSIDER method. Changing grain size and per­
spective can both be considered simplif ications in our 
method. However, simplif ications can generate other 
kinds of changes, therefore, overall it is more powerful. 
This power is purchased at the price of some disadvan­
tages. When more extreme simplif ications (as in the pen­
du lum problem) are made, the correspondence between 
problem and prototype is more complex. Also, the re­
sults of this type of thought experiment often represent 
reasonable beliefs about the behavior of the system and 
may not be as strong as the results of a qual i tat ive sim­
ulat ion. 

Consider the problem of a bui ld ing that has a sunny 
side and a shady side. Can our problem solver reach 
the in tu i t ive ly reasonable conclusion that the warmest-
rooms are on the sunny side? It is quite possible for a 
room on the sunny side to be cooler than one on the 
shady side. For example, a long hallway could carry 
heat to a poorly insulated room on the shady side, while 
a well insulated room on the sunny side might stay cool. 
A qual i tat ive s imulat ion because it generates all possi­
bi l i t ies, would contain both predictions wi th no clue to 
indicate which one is more likely. TEPS solves this prob­
lem by first generating a prototype for a simple bui ld­
ing. This prototype comes f rom a module (an indiv idual 
view) which describes a generic bui ld ing. The conjecture 
predicts the same pat tern of variat ion for the tempera­
tures in the prototype and in the original bui ld ing. Thus 
the warmest rooms are on the sunny side. This example 
also shows that conjectures need not always be correct, 
but they do seem to correspond to default notions (e.g., 
birds f ly) that humans use. 

Other researchers have stated the importance of sim­
pl i f icat ion. Iwasaki and Bhandar i [1988] say "Abstract­
ing a detailed description to produce a simpler descrip­
t ion is essential in reasoning about a complex system". 
Aggregation of variables has been suggested and fits in 
our framework. Aggregation involves replacing the vari­
ables in a problem by other variables each of which de­
pends on a collection of the original variables. Basi­
cally, any approximat ion technique can be used for sim­
pl i f icat ion, and the approximat ion of the original sys­
tem becomes the prototype. The exaggeration tech­
nique of Weld [1988a,1988b] uses extreme perturbat ions 
so that parameters have inf ini te or inf initesimal values. 
His t ransform, simulate, and scale correspond roughly 
to our simplify, solve, and conjecture. An advantage of 
the TEPS framework, is that it allows even more drastic 
versions of some of these methods to be used. 
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In summary, the thought experiment methodology 
is viable, it generalizes a number of problem solving 
schemes, and it adds a new dimension to quali tat ive 
problem solving. I t 's effectiveness in handl ing size com­
plexi ty and grain size issues have been demonstrated. 
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