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Abstract

In this paper, we consider a new definition of
abduction that makes it depend on an under-
lying formal model of belief. In particular, dif-
ferent models of belief will give rise to differ-
ent forms of abductive reasoning. Based on
this definition, we then prove three main the-
orems: first, that when belief is closed under
logical implication, the corresponding form of
abduction is precisely what is performed by
the ATMS as characterized by Reiter and de
Kleer; second, that with the more limited "ex-
plicit" belief defined by Levesque, the required
abduction is computationally tractable in cer-
tain cases where the ATMS is not; and finally,
that something is believed in the implicit sense
Iff repeatedly applying a limited abduction op-
erator eventually yields something that is be-
lieved in the explicit sense. This last result re-
lates deduction and abduction as well as limited
and unlimited reasoning all within the context
of a logic of belief.

1 Introduction

Using the terminology of C. S. Peirce, given sentences
a, B, and (a D, ﬁ) there are three operations one can
consider: from a and (a D ﬂ), one might deduce f; from
a and B, one might induce (@« D' #); and from B and
(a D, ﬂ) one might abduce a Of course, characterizing
precisely what should be deduced, induced, or abduced
In various circumstances is quite another matter, and the
last of these is the subject of this paper.

Abduction can be thought of as a form of hypothet-
ical reasoning. To ask what can be abduced from [3 is
to ask for an a which, in conjunction with background
knowledge,” is sufficient to account for B. When a and
B are about the physical world, this normally involves
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'"More likely, one would want to induce Vz(a D ﬂ) from
instances of a and g.

“The distinction between knowledge and belief is not im-
portant here, and we will use the terms interchangeably.
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finding a cause a for an observed effect B. For instance,
B might say that a symptom of some sort is observed
and a might say that a disease is present. We often say
In this case, that a explains . But not all abduction is
concerned with cause and effect. If we happen to known
that Marc is 3 or 4 years old, the fact that he is not yet
4 does not explain his being 3, although it does imply it,
given what is known.’ It would be more accurate to say
that the a is sufficient to tell us that the B is true. But
this is a bit cumbersome, so with this caveat in mind,
we will often use the explanation terminology here.

When it comes to formally characterizing abduction,
existing approaches fall into two broad camps: those, like
[Reggia, 1983, Allernand et a/., 1987], that are set-cover
based, and those, like [Poole, 1988, Eshghi and Kowalski,
1988], that are logic based. In the former case, abduc-
tion is defined over sets of observations and hypotheses,
iIn terms of coverings, parsimony, plausibility, and the
like. A disadvantage of this approach is that it is dif-
ficult to express how a small change in the background
knowledge can contribute to changing what counts as an
explanation. In the latter case, however, this knowledge
IS represented directly as a logical theory, and a is con-
sidered an explanation for B if (1) it is logically consistent
with what is known, and (2) together with this knowl-
edge, logically implies . The disadvantage of defining
abduction in this way is that it locks the specification
of reasoning into global properties of the logic such as
consistency and implication. Different reasoning abili-
ties, deductive or abductive, will then require different
notions of implication or consistency.

Here we take a different approach and characterize
abduction in terms of a model of belief. When belief is
closed under ordinary logical consequence, this account
will coincide with the idealized logic-based version. How-
ever, we can look at different forms of abduction by vary-
ing the underlying notion of belief, without changing the
meaning of implication. This knowledge-level approach
[Newell, 1982, Levesque and Brachman, 1986] will also

> Another reason for distinguishing this from explanation
is that we normally say that a explains B only when we be-
lieve B to be true, for example, when we have observed the
symptoms in question. So a true account of explanation per
se is complicated by the fact that it must consider what was
known prior to believing B [Gardenfors, 1988], or else there
will be nothing left to explain, given what is known.
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force us to characterize the abduction task independently
of how the knowledge is represented, and thus afford the
greatest freedom in how to represent and manipulate this
knowledge at the symbol level.

In the next section, we 1ntroduce notation, discuss
the need for a simplicity measure, and define a new
knowledge-level operator EXPLAIN. In Section 3, we
discuss the concept of regular belief and 1ts relation to
EXPLAIN. In Section 4, we examine a form of belief that
1s closed under logical consequence, and the ATMS as an
abductive reasoner. In Section 5, we consider the spec-
ification of a more hmited abductive reasoner. Finally,
we draw conclusions in Section 7.

2 Abduction at the knowledge level

To define abduction, we start with £, a standard proposi-
tional language (except that for convenience, we include
a special constant [, for falsity). All beliefs will be
expressed in L. We use p, ¢, and r to range over the
propositional letters of £; «, 3, and v to range over the
sentences of £; m to range over the literals of £; m to
mean the complement of m; and, A{a;} to conjoin a set
of sentences, and \/{«,} to disjoin them.

To talk about what 1s or 1s not believed, we use a
logical language L£* that 1s structured like £, except that
all of its atomic sentences are of the form Ba, where a
is a sentence of £.* For different kinds of belief, we use
a subscript on the behef operator. So, Bya says that o
1s a belief of type A.

The languages £ and L* are both interpreted in the
standard way in that the truth values of non-atomic sen-
tences are the usual functions of the truth values of their
components. For the atomic sentences of £, an assign-
ment 1s a total function from the propositional letters
to 10,1}, and w =« means that « is true with respect
to assignment w according to the ordinary truth table
(where 0O always comes out false). For the atomic sen-
tences of £*, we assume that an epistemic state of some
sort determines which sentences of £ are believed. The
notation e = Bja says that Bya 1s true at epistemic
state e, which we will take as a primitive notion for now,
until we look at specific types of belief.

For any sentence a of £, 1t will be useful to talk about
| ||, the proposition expressed by «. Nothing hinges
on how exactly propositions are defined, but for con-
creteness, they can be taken to be the set of all assign-
ments where the sentence in question is true. Simlarly,

[ {a1,...,an}|| is defined as {||a1 ||, .., || a@n]|}-

2.1 Simplicity and uniqueness

Deductive and abductive reasoning appear to be duals,
but one difference between the two is that in the case
of deduction, we are usually interested in testing if some
sentence is deducible, while in the case of abduction, we
want to produce a sentence that is abducible.”

For the purpose of this paper, therefore, we will not con-
sider beliefs about other beliefs.

*However, see Section 7 where the symmetry between de-
duction and abduction is reconsidered.
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For example, consider a medical domain where sen-
tences of £ stand for properties that may or may not
hold of a certain patient. Suppose we know that male
and (hepatitis D) jaundice) are both true. If we observe
jaundice in the patient, we might be interested in deter-
mining what might explain it, based on what we know
about the patient. In other words, we want to reason ab-
ductively from jaundice, to find something that accounts
for it, given what is known. In this case, the answer is
clearly hepatitis, but it is not obvious how to characterize
In general the answers we are looking for.

First of all, we cannot expect a single explanation
since, for example,

(( "~ hepatitis A migraines) V  (hepatitis A\ —~migraines))

also accounts for jaundice. But even if we factor out logi-
cally equivalent sentences and think in terms of proposi-
tions, there will be propositions that are logically too
strong, and others that are logically too weak. For
instance, (hepatitis A migraines) accounts for the jaun-
dice in that it is consistent with what is known, and
If it were true, then jaundice would be too. Similarly,
(hepatitis V- male) accounts for jaundice since it too is
consistent with what is known, and if it were true, then
Jjaundice would be also, since male is known to be true.
Yet (hepatitis/\ migraines) implies hepatitis which implies
(hepatitis V -"malc).

So what is it that distinguishes || hepatitis\\| from these
other propositions? Is there a way to sort this out purely
logically (in terms of sets of possible worlds and dis-
tance measures or whatever) and define an appropriate
explanation? As it turns out, the answer is no. To see
this, suppose to the contrary that there were a func-
tion F that given the proposition expressed by ( )
and the one expressed by B would always return the one
expressed by a. That is, suppose that for every a and

B, F(ll (¢« D B IlLl BI=I|| «||. Then, we would have
F(lte = ) LI elD=l¢ll and F(|[(O D g)|l.|[¢lD=]l O |-
However, || (¢ D ¢) {|=|[ (O D ¢) || since the two sen-
tences are logically equivalent.® But this implies that
| O ||=|| ¢ ||, which is incorrect. So such @ function F
cannot exist, and we are forced to go beyond the logic
of the sentences (that is, beyond the propositions ex-
pressed) to differentiate hepatitis from other potential
explanations.

One obvious approach is to maintain a list of sen-
tences that are marked as possible hypotheses as is done
iIn [Poole, 1988, Reiter, 1987] and to only consider sen-
tences appearing in this list. But this fails to account
for why we find hepatitis so compelling as the unique
explanation for jaundice in the above. Perhaps it is be-
cause hepatitis does not deal with any other conditions,
either to insist on (conjoin) irrelevant restrictions like
migraines, or to allow for (disjoin) possibilities known to
be false like -imalc. This suggests that we should be look-
ing for sentences that are as simple as possible in their
subject matter. With this notion of simplicity in mind,
we are ready to provide a formal definition of abduction
iIn terms of belief.

°A stronger argument would be needed for a notion of
proposition that was finer-grained than logical equivalence.



2.2 A general definition

First, we define explanation wrt an epistemic state e for
a type of belief A:

Definition 1 «a expl, 8 wrt e iff
e =[Bx(a D B) A —'B)\-na].7

This definition does not distinguish between trivial and
non-trivial occurrences of B(a D f3). For example, as-
suming that (jaundice D jaundice) is believed but that
-jaundice is not, jaundice expl, jaundice wrt e holds,
that is, having jaundice is clearly (and trivially) suffi-
cient to account for having jaundice. More generally, if
nothing is believed about B other than logical truths,
then there will only be trivial explanations. In addition,
for many types of belief, we have that if [ is believed,
then there will be no explanations at all, whereas iff3 it-
self is believed, then =[] will be-the unique explanation.

As discussed above, the definition of explanation must
depend on some syntactic criterion of simplicity. Per-
haps the easiest one is the following:

Defimition 2 The literals of «, LITs(a), is defined by:
Lirs(0)=0;  irs(p)={p};
LITS(—a)={m | m € L1Ts(w)};
LITS(x A B)=LITS(ax V B)=1L1TS () U LITS(3).

Definition 3 « s simpler than 3 (written o < ) ff
LITS(cr) C LITS(S); also a < A ff L1Ts(ar) C 1.175().

So “sympler” « . | el
o “simpler” means “containing fewer propositional let
ters,” but keeping track of their polanty. For example

(p A —q) < (q.D (pVr)), but (p A—q) # (““{ D(pVr)
We define a simplest explanation in the obvious way:

Definition 4
a min-cxply, S wrt ¢ Il aexpl, f wrt ¢ and
for no @® < a 1s 1t the case that o* expl, [ wrt e.

Finally, since there may be more than one simplest- ex-
planation, and since we do not really care at this level
how each simplest explanation is expressed, the task of
abduction will be to return the set of propositions of all
simplest explanations:

Definition 5
EXPLAIN,)[e, 8] = || {e | @ min-expl, # wrt e} |].

These simplest explanations should be understood dis-
junctively. For example, if we know that (p;D q\) and
(P2 D q2), then pi is a simplest explanation of (g Vq2)
and so is P2. However, it is the disjunction (p1 VP2) that
fully and non-trivially accounts for (q\ V q2).

"In the final paper, various other options for these two
conjuncts will be examined. Instead of the first one, we might
want to say that if we were fold at, then we would believe G,
which need not be the same as believing (@« D f) in the
presence of defaults; instead of the second one, we might
prefer saying for a given 7 that we do not believe (@ D ¥)
(to handle negative evidence), which for regular belief (see
below) coincides with the above when 7 is 0O

°For some applications, we might wish to use a superset of
this relation. For example, we might want to say that p <gq
even though both are atomic, if we consider p to be much
more likely than q. But we should never have to consider a
subset of the relation.

This completes the knowledge-level characterization of
abduction. The theorems to follow below (especially the
relationship to the ATMS) are the best evidence that the
definition is apt. But it is worth noting here how simple
and general the account is. It is the first (to my knowl-
edge) that not only works for sentences [ of arbitrary
syntactic form, but is also sensitive to what is known
without requiring an explicit list of the known sentences.
In other words, it does not depend in any way on how
the epistemic state e is represented (and so is truly at
the knowledge level). Computations at the symbol level,
of course, will need to operate on finite symbolic rep-
resentations of that state. Typically, for each type of
belief A, there will be a function Ry that maps (finite)

sets of sentences into epistemic states. At the symbol
level, there will be a procedure of some sort that takes a
representation of knowledge KB and a sentence [ as ar-
guments, and produces a set of sentences by abductive
reasoning. For an abductive procedure to be correct,
the sentences it returns must express all and only the
simplest explanations of (3 wrt the epistemic state rep-
resented by KB. Thus, what we will want to establish
for various types of belief and associated computational
procedures explain[KB,B] is the following:®

EXPLAIN, [Rr(XB), 8] = || explain|kB, 3]]|.

Note that for this general account, correctness does not
require the sentences returned by the symbol-level pro-
cedure to be in a certain syntactic form, provided that
they express the right propositions.

3 A generic abduction operation

Before looking at two specific types of belief, we define
what it means for belief to be regular. In what follows,
we use the following notation: x, y, and z stand for
clauses, that is, finite sets of literals always understood
disjunctively; the empty clause is OO ; (x —y) is the clause
whose literals are those in the set difference of x and y; x
Is the set of complements of the literals in x, now under-
stood conjunctively; E and F stand for sets of clauses; for
any ., u2. is the set of smallest (in the sense of subset)

elements of 3; and finally, CNF(cx) is the set of small-
est clauses that result from converting a to conjunctive
normal form, and analogously for DNF(a).

Definition G A type of belief A is regular iff for every

epistemic state, the following sentences of £* are true:
1. B,—~0O;
2. (BxaVB,\3) D Bi(aVp);

. By(aAB) D (Bra ADBy\pB);

. (Bye ADByG) D Ba(a A pP);

B, = B,a*, if a* 1s a 1n CNF or DNF, or 1s

the result of replacing any subformula £ 1n « by g%,

where (recursively) B)f = B,(* is always true.'®

Cv oo O

We now define a very general operation on two sets of
clauses (which we will eventually use for both types of
belief below) as follows:

We use this font to indicate a symbol level procedure.
""Note that this does not sanction replacing 8 by every-
thing logically equivalent to it.
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Definition 7 V(X,T') =

_ WyeEST, ygz and
H ZIVa:GF,HyEE,xﬂy#@and(y-—-:n)Cz

This generalizes the MIN-SUPPORTS operation of [Re-
iter and de Kleer, 1987: MIN-SUPPORTS(z,L) =

V(mprs(X), {z}), where IMPS(X) 1s defined below. In-
formally, the elements of ¥ should be thought of as the
clauses that are believed, the elements of I' as the clauses
to be explained, and V(Z,I') as the minimal explana-
tions. For instance, if

E::{(pl ng), (p1 Vﬁs VP?): (szﬁe VP','), (-’53\/58)’ (-ﬁdlv—p-S)}
an

I'={p1, (p2 VP3)},

then V(Z, T)={(paAps AD7), (Ps APs AD7), (Ps AP7APs)}.
That is, if we take one of these explanations, (p4ApsAD,),

and assume that it and the elements of ¥ are true, we
get that (p; A p2) must be true, which implies that the
clauses of T must all be true. The other two explanations
work analogously. Note that (pg A ps) is not returned as
an explanation since it is believed to be false, that is, its
negation is an element of X.

The important property of V is that although it only
deals with clauses, it can be used to provide correct ab-
ductive reasoning for regular belief:

Theorem 1 For reqular belief,

expLaiNale, 4] = [[V({y | ¢ EBay), oNr(B))].
Proof: The proof depends on two key lemmas:

Lemma 1.1 If o expl, B wrt e then
Jdz € DNF(a), Z exply, § wrt e.

Lemma 1.2 7 exply, § wrt e iff
dz C z,Z7 € V({y | e =EByy}, CNF(F)).

The final paper proves these and the theorem. u

What this theorem establishes at a very abstract level is
that for regular belief, it is sufficient to work with the
set of clauses believed and the CNF of the sentence to be
explained. This will immediately lead to two abductive
procedures below.

4 Case 1: Implicit belief

The first notion of belief we consider is the "classical”
one where beliefs are closed under logical consequence.
Following [Levesque,
and use B, as the belief operator. An epistemic state for
implicit belief can be modeled by any set of assignments,
where we have the following:

e=Bja 1ff forevery we€e wioa.

If KB is a set of sentences, then R4{(KB), the epistemic
state represented by KB, is modeled by the set of all
assignments that satisfy every element of KB. What is
believed in this state is precisely what follows from KB,
that is, if e = Ry(KB), we have that e|=Ba iff KB | a.
From this it follows that

a expl, f wrt e 1ff
KBU{a} = f# and KB U {a} is consistent,

which is precisely the account of explanation given by
(among others) Poole in [Poole, 1988].
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1984], we call this implicit belief

4.1 The ATMS

One abductive procedure that is receiving considerable
attention is the ATMS [de Kleer, 1986]. Unfortunately,
descriptions of the overall function computed by the
ATMS have been largely in terms of how it goes about
computing it. The first account that attempted to pro-
vide a logical reconstruction was that of Reiter and de
Kleer in [Reiter and de Kleer, 1987]. Although idiosyn-
cratic terms like labels, nodes, and nogoods are no longer
part of the formulation, their definition is in terms of
clause intersections and differences, notions that are (ar-
guably) still best understood as symbol level manipula-
tions of sentences in a certain form. However, given their
characterization, they are able to show the following:

Definition 8
The tmplicants of £, IMPS(X) = {y | £ | y}.

Theorem 2 (Reiter and de Kleer) Given a set of
Horn clauses ¥ and a letier p, the ATMS procedure 1is
defined by atms[X,p] = {(¢1A...Aq) | k> 0 and

'{51, - - 1q—k’p} S ‘”MPS(E)}'

In fact, Reiter and de Kleer generalize the account of
the ATMS to where the first argument is not necessarily
Horn and the second argument is any clause. However,
we can go even further by noting that

atms[X, p] = {(¥ - {P}) | p € y and y € pmPs(Z)}
= pl{z |Vy € IMPS(X), y & 2 and
dy € MPs(X), p € y and (y — {p}) = 2}
= V(iMPs(X), {{p}})-

Using this as a pattern, we can define a generalized
ATMS as follows:"'

Definition 9 gatms[¥, 8] = V(iMPs(X), cNF(B)).

Clearly this coincides with the ATMS specification when
2. is a set of Horn clauses and B is a propositional letter.
But what do these operations mean, and why should
anyone care about them? The answer, we claim, is that
the ATMS procedure correctly performs abduction for
implicit belief:

Theorem 3 EXPLAIN{[R(X), A] = ||gatms[Z, 5] ]|.

Proof: It 1s not hard to show that implicit belief is reg-
ular, and we have that

Ri(X)EDBiz iff z €i1Mmps(X).
The theorem then follows from Theorem 1. =

However else it has been characterized in the past, this
theorem establishes that an ATMS can be understood
as computing all simplest explanations with respect to
this type of implicit belief. Among other things, this
guarantees that Poole's account of abduction (with the
addition of the notion of simplicity defined here) also
specifies the task performed by an ATMS.

5 Case 2: Explicit belief

The second notion of belief we consider is a variant ofthe
one introduced in [Levesque, 1984] called explicit belief.
We use Bg as the belief operator for beliefs of this type.

In the final paper, we will consider a very different way
of generalizing the ATMS to handle arbitrary sentences.



The motivation behind explicit beliefwas to study a form
of belief that was more computationally tractable than
implicit belief, but remained defined in terms of truth
conditions on the sentences believed. Since a sentence is
implicitly believed if it comes out true at each element of
a set of assignments (or alternatively, accessible possible
worlds), it follows that implicit belief is closed under
logical consequence. For explicit belief, instead of using
assignments, we use situations, which can be taken to
be total functions from the literals to {0,1}, such that
for every p, at least one of p or p is assigned to 1.1°
We can think of assignments as those situations where
s(p) = 1 — s(p) for every letter p. But because not every
situation is an assignment, we must define truth support
recursively over sentences and their negations:

skEpiff s(p)=1; sk=—-p ff s(p) =1,
sE(aAp)iff s=Eaand sk pg;
sE—(aApB)ff sE-aor sE-F;
sE——a iff skEa.

An epistemic state for explicit belief is modeled by a set
of situations where we have the following:

e=Bga iff foreverys€e, skEa.

As in [Levesque, 1984], it is also useful to talk about the
implicit beliefs of e:

e =Bia iff for every assignment s € e, sk a.

As before, Re(KB) is modeled by the set of all situa-
tions that satisfy every element of KB. What is explictly
believed in such a state is not what logically follows
from KB, but rather what is tautologically entailed by
the KB (once tautologies are taken into account) in the
sense of Relevance Logic [Anderson and Belnap, 1975,
Dunn, 1976]. More precisely, if e = Rg(KB), we have
that e =Bga iff KB U T tautologically entails a, where
T is the set of all clauses of the form {p,p}.

5.1 Limited abductivc reasoning

To establish what form of abductive reasoning is appro-
priate for explicit belief, we need something that will
play the role that IMPS(E) played for implicit belief:

Definition 10
EXPS(E) = {y | y is tautologous or dy* € T, y* C y}.

The abductive reasoning we will use for explicit belief
iIs the same as that performed by the ATMS, but using
EXPS(E) instead of IMPS(E):

Definition 11 abd[X, 8] = V(EXPS(X), CNF(f)).

To see the difference between this procedure and the
ATMS, suppose that KB1 = {{¢},{sVp}L,{PVTVr}}
In this case, atms[KBi,r]={r,s,{pA q}}, so there are
three simplest explanations for r wrt implicit belief; but
abd[KB1, r]={r, {p A q}}, so s is not a simplest explana-
tion for r wrt to explicit belief. The difference is that

"“This restriction on situations was not present in
[Levesque, 1984]. It has the effect of making explicit be-
lief similar to the knowledge retrieval of [Frisch, 1988] in that
tautologies are always believed. This does not adversely af-
fect the desirable computational properties of explicit belief,
since for (non-quantificational) CNF, tautologies can be de-
tected in linear time.

whereas (s V r) is implicitly believed (since it follows
from KBy), it is not explicitly believed. In other words,
unlike the ATMS, abd[2,B] will not chain backwards to
see what might explain [, and this is exactly what is
required for explicit belief:

Theorem 4 ExXPLAIN:Re(X), 8] = ||abd[L, F]||.

Proof: Like implicit belief,
Also we have that

%E(E) —Bgzx ff z € EXPS(E).

The theorem then follows from Theorem 1. m

explicit belief is regular.

This theorem establishes that abd[E, B] correctly calcu-
lates all simplest explanations with respect to this type
of explicit belief.

But why should we care about a procedure that can-
not find some perfectly reasonable explanations that can
be found by an ATMS? The problem is that we may
have to wait too long for an ATMS to find them. This
has caused researchers to look for parallel realizations
of the procedure [Dixon and de Kleer, 1988]. But this
Is not just an ATMS implementation problem; the task
it performs is inherently difficult: in general, there will
be an exponential number of clauses to find,'® and just
deciding if {p,p} has any explanations at all is equiv-
alent to determining whether or not the set of clauses
E is satisfiable. So although (a parallel version of) the
ATMS may work fine in many application areas, as a
general-purpose mechanism for abductive reasoning, it
has serious computational drawbacks.

On the other hand, just as explicit belief is easier than
implicit belief when it comes to deductive reasoning, a
similar result carries over to abductive reasoning:

Theorem 5 [fKB is in CNF, there is an O(|KB|-|X])
algorithm for calculating abd[KB, Xx].

Proof: We use the fact that
abd[KB,z] = {{y — T) | y € hEXPS(KB), x Ny # B}.
We construct the answer as follows: cycle through
the elements of yKB, and for each y that is not tau-
tologous and that has an intersection with x, put
(y — x) into a set T. Then, for each m € x, put m
into T, unless {m} € KB. Finally, return z for each

zeul'. =
So for single clauses anyway, abductive reasoning for ex-
plicit beliefis considerably easier than abductive reason-
ing for implicit belief.

For arbitrary sentences , the case is not so clear
even if (3 is in CNF. Although we can quickly calcu-
late abd[E, x] for each clause x in 3, putting the answers
together involves converting a sentence into DNF:

Theoreta 6 Suppose CNF(f) = {z1,...Tn}.
~bd[Y, A] = u{Z | Vy € EXPS(X), y € z and
z € DNF(AT, Vabd[E, 2.]))

Proof: The proof will appear in the final paper. =

To see how this works, let KB, be kKByU{{aVb}, {¢Vb}},
where KB; is defined above. Then abd[KBs2, (rAb)] can be

computed by calculating \/abd[KBz, r] (as above), which
gives (rV(pAq)), then \/abd[KBy, b}, which gives (aVbVc),

In an unpublished note, David McAllester shows that
this remains true even when X is a set of Horn clauses.
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and then conjoining and putting the result into DNF,
which gives

{{pAqgna},{pAgAb},{PAgAc}
{rAa},{rAb},{rAc}}.

The only potential difficulty here is calculating the DNF.
When [ has very few clauses, or when almost all of the
abd[2,x] return fewer than 2 simplest explanations, the
entire operation will be fast. But to guarantee that it
will work well in all cases appears to require an even
more restricted form of belief."”

6 From explicit to implicit belief

One of the reasons for introducing explicit belief in
[Levesque, 1984] was to specify a tractable deductive
service for Knowledge Representation in terms of a set
of beliefs which, unlike the implicit ones, could always
be reliably computed. However, one difficulty with this
whole approach is how exactly to go beyond what is ex-
plicitly believed. When deliberately trying to solve a
problem (in what is called puzzle mode in [Levesque,
1988]), it is necessary to combine beliefs and follow
through on their consequences in a controlled and sys-
tematic way. If all that is available at the knowledge
level is a way of finding out if something is explicitly
believed and a way of finding out if something is im-
plicitly believed (in one very large unsupervised step),
there is nothing the agent can do to begin exploring in
a controlled way the implications of what is explicitly
believed. For instance, the agent cannot simply perform
theorem proving over what is known without access to
the sentences at the symbol level used to represent that
knowledge.

With a limited abduction operation, on the other
hand, there is a way of moving under the control of the
agent from the explicit beliefs towards the implicit be-
liefs. To find out if a sentence Is implicitly believed, the
procedure (roughly) is this: first find out iff is explicitly
believed; ifit is, then exit with success; otherwise, calcu-
late the full (explicit) explanation for /?; if there is none
or it is trivial, then exit with failure; otherwise replace
by the explanation, and repeat. In other words, the pro-
cedure deals with the following questions, starting with
some ft’: according to what is believed,

is ft° true? what would it take for ft’
to be true? (call that B7)

is ft' true? what would it take for B’
to be true? (call that ft°)

is ft* true? efc.

This "backward-chaining" procedure terminates when it
either finds something that is believed or fails to find a
non-trivial explanation. Each step in this procedure is
tractable,' and the agent can exit the loop if it seems

It appears that a type of belief that is regular except for
condition 4, closure under conjunction, does the trick here,
but this needs further investigation.

Strictly speaking this is not true because of the DNF
problem noted in the previous section. | suspect, however,
that the procedure will also work for the more restricted no-
tion of belief, but this has yet to be established.
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to be taking too long relative to the importance of the
original question. More formally, we have the following:

Definition 12 For any epistemic state e and any 3 from
L, a sequence of sentences 85, k =0,1,2, ... is defined

by =43 and pBf¥t! =\/ExprLAINg[e, §¥].1°
Theorem 7 eE=B18 iff for somek, el=Bgp*.

Proof: The proofis based on the following:

Lemma 7.1 IfX is satisfiable, XNI' = @, and there
extsts a linear set-of-support resolution refutation of

YUT, with ' as the set of support, then e=Bga*
where e = Re(X), o = \/{ZT | = € T'}, and k 1s the
depth of the refutation tree.

In the final paper, we prove this lemma and the
theorem. =

So a sentence is implicitly believed iffit is accounted for
ultimately by something that is explicitly believed.

To see this in action, let KB3;=KkB2 U {{s}, {a V c}},
where KB2 is defined above, and let e=Rg(KB3), the epis-
temic state represented by KB3. Although (r A b) is not
explicitly believed in state e, it is implicitly believed and
so should be derivable. First we set (3° to (r Ab), and
compute B' = EXPLAINg[e, 3°] = abd[kB3, 8°], which is

{{rAgna}, {pAgAd}, {PAgAc}
{rAa),{rAb},{rAc)).

as presented above for KB,. Putting this into CNF, we
get {{avbVe}, {qgVvr}, {pVr}}.!" Notice that the first two
clauses of B! are already explicitly believed by KB3. Now
calculate 32 = EXPLAINg[e, '] = abd[kB3,(pV r)] =
{r,p,s}. But then ° is explicitly believed (since s is),
and so we are done. Notice how the iterative procedure
works its way hack to s the way an ATMS would, but
now in bite-sized pieces under the control of the agent.'®

This theorem thus has the following perhaps surprising
conclusion: we can determine if something is a logical
consequence of what is (explicitly) believed without ever
getting access to the set of sentences that are believed.
We need only be able to ask for any specific sentence
two questions: is it believed? and if not, what would be
sufficient to account for it, according to what is believed?

The theorem also provides for the first time a
knowledge-level account, that is, an account that is inde-
pendent of how knowledge is symbolically represented, of
how a limited notion of belief can be extended systemati-
cally to include all ofits logical consequences. It also sug-
gests a knowledge-level account of how an agent's beliefs
could be made to evolve deductively over time: starting
with some beliefs in some state e0, the agent would be-
lieve a in state efc+i iff he believed an explanation of a

We are abusing notation here in treating the result of
EXPLAIN as a set of sentences.

In practice, one would not want to iterate an abductive
procedure that takes the trouble of putting its answer into
DNF, since the next step of the iteration requires an argu-
ment that is in CNF.

'® Similar iterative techniques, we suspect, will lead to a
procedure for full (implicit) abductive reasoning, as a con-
trolled alternative to the ATMS itsellf.



in state e,.'® With a deductive architecture of this form,
we would have that a sentence was implicitly believed
Iff at some point in the future it would be explicitly be-
lieved. Interestingly enough, to represent at the symbol
level the epistemic state ek, it is not necessary (though
certainly sufficient and perhaps desirable) to use a set
of sentences KB (calculated from some initial represen-
tation KBg). We might just as well represent the state
ex by a pair of symbols <KBg, k>, since this pair also
determines whether or not ex= Bga, for any a. One
nice property of our knowledge-level characterization is
that it does not commit us to representing what is known
using a set of sentences.

/ Conclusion

There are a number of questions left open by this re-
search: how should nested beliefs be handled? What
about quantified beliefs? Is there indeed (as hinted
above) an account of limited belief that leads to tractable
abduction for any sentence and yet can be iterated to
produce all implicit beliefs? Can explicit abduction be
used to produce implicit abduction?

On another front, one possibility suggested by this
work is a new deductive operation. If abductive rea-
soning asks "what would tell you that [ is true," we
might also consider asking "what would a tell you/' and
expect to find a simplest sentence (or a set of them) that
captures what or adds to what is believed. This would
be very useful information when doing "what-if" exper-
Iments, for example. In the medical domain, we could
ask what we should expect to see if hepatitis were present
and get jaundice as the only (non-trivial) answer. This
Is just the dual of abduction, and the two operations
should be interdefmable. Indeed, the appropriate defini-
tion appears to be something like - \/EXPLAIN,[e, na].
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