
A Correct Non-Monotonic ATMS

Ulrich Junker
GMD

Hybrid Inference Systems Research Group
Postfach 1240

5205 Sankt Augustin
Fed. Rep. of Germany

Abstract

In this paper, we investigate technical methods to
deal with exceptions, inconsistencies, and
ambiguity. Existing reason maintenance systems are
only suitable for some of these problems. Doyle's
TMS handles exceptions properly, but gets in
trouble with non-monotonic odd or even loops. On
the other hand, de Kleer's ATMS produces too many
contexts if there are exceptions of exceptions.
Therefore, we present a hybrid reason maintenance
system that benefits from the advantages of the
ATMS and TMS. First of al l , we use Reiter's
default logic as a specification for this system.
Second, we develop a criterion that decides which
assumption sets are valid. Then, we extend the
ATMS by a test algorithm that takes account of
exceptions and obeys this criterion. We verify the
resulting system using default logic. Finally, we
discuss some problems involved with special
techniques for resolving inconsistencies (e.g. TMS-
like backtracking).

1. Introduct ion

Reason maintenance systems can be applied to capture
special phenomena occurring in non-monotonic reasoning.
E.g. Doyle's TMS [Doyle, 1979] handles exceptions
properly. On the other hand, the multiple context facility of
de Kleer's ATMS [de Kleer, 1986a] may be used to deal with
ambiguity in the presence of inconsistencies. However, none
of these systems is suitable for non-monotonic reasoning in
general. Let us consider some examples that demonstrate the
advantages and limits of reason maintenance techniques. For
this purpose we use Reiter's default logic (DL) [Reiter,
1980] because it is powerful enough to illustrate all
problems. On the other hand, it is simple enough to relate
its concepts and reason maintenance constructs1 .

Example 1: (the familiar Nixon example)
As usual, quakers typically are doves and republicans
normally are hawks. Nobody can be a hawk and a dove, but

Nixon is a quaker and a republican. Thus, we get two
(simplified) defaults and some premises:

There are two extensions of this default theory: One
contains DOVE and --HAWK, the other one -DOVE and
HAWK. First, we want to determine these extensions using
the ATMS. Following [Dressier, 1988a] and [Junker, 1988],
we can translate a default (a: Mb/ b) into a monotonic
justification a, b and an assumption out(--b).
DL premises are also ATMS premises. Furthermore, assume
that modus ponens is applied and that every inference step is
protocoled by an ATMS justification. Then, we obtain:

justifications:

assumptions:
nogoods:
maximal consistent
assumption sets:

In this case, every maximal consistent assumption set
corresponds to an extension (and vice versa). Therefore,
ATMS may be used for normal defaults (whose prerequisites
are theorems of premises). In contrast to Doyle's TMS it
finds all extensions. However, there are examples where
Doyle's system is superior to ATMS:

Example 2: (working example)
On workdays, Peter must normally go to work. This is not
true, if he has an excuse. If he is i l l he normally has an
excuse. However, his employer does not accept this if Peter
has only caught a cold. Hence, there is an exception of an
exception* Now, assume that Peter is i l l on a workday.
What happens? Again, we formalize this story using
simplified defaults:

(WORKDAY: M-EXCUSE / WORK),
(ILL: M - T C O L D / EXCUSE)

There exists only one extension that contains EXCUSE,
but not WORK. If we use Doyle's TMS to compute this
extension, we obtain two non-monotonic justifications:

(SL WORK (WORKDAY) (EXCUSE)),
(SL EXCUSE (I L L) (COLD))

junker 1049

WORKDAY and ILL are labelled with IN because they are
premises. COLD is labelled with OUT because it has no
justification at all. Then, EXCUSE gets IN and the only
justification for WORK is invalid. Therefore, WORK is
labelled with OUT just as we expected. Figure 1 shows the
complete labelling using Goodwin's notation [Goodwin,
1987].

Figure 1: Complete labelling for the working example

However, if we apply the ATMS we get in trouble. In
addition to example 1, we use extra consistency rules to
ensure that no context contains out(x) and x:

justifications: WORKDAY, out(EXCUSE) -> WORK
ILL, out(COLD) -> EXCUSE
EXCUSE, OUt(EXCUSE) -> FALSE
COLD, out(COLD) -> FALSE
OUt(COLD), out(EXCUSE)
0
{(out(COLD)}}
{{out(EXCUSE))}
{(out(COLD), out(EXCUSE))}

{out(COLD)}, {out(EXCUSE)}

assumptions:
label of COLD:
label of EXCUSE:
label of WORK:
no goods:
maximal consistent
assumption sets:

Astonishingly, there are two maximal consistent
assumption sets. One, namely (out(COLD)}, corresponds to
the extension mentioned above. However, also the set
(out(EXCUSE)} which infers WORK is consistent! The
ATMS detects the conflict between both conflicing defaults,
but it does not know anything about priorities between
interacting defaults. Expressions like out(COLD) are simple
assumptions. Reasons for such expressions are ignored. The
same problem arises if we apply de Kleer's original encoding
of non-monotonic justifications [de Kleer, 1986b]. The
TMS, however, uses a special rule to label a node with out:

If all justifications of a node x are invalid label x with OUT.
To sum up, both reason maintenance systems are restricted

to special cases: ATMS is suitable for normal defaults, but
gets in trouble with exceptions of exceptions. Doyle's TMS
works correctly if the default theory is stratified or acyclic
(i.e. the justification network contains no non-monotonic
odd or even loop). Then the existence of a unique extension
is guaranteed. If there are even loops there may be different
extensions, but the TMS finds only one. If there are odd
loops a TMS may enter an endless loop [Doyle, 1979] or
stop without definite result [Goodwin, 1987].

In the sequel, we develop a hybrid reason maintenance
system that benefits from advantages of the ATMS and the
TMS and overcomes their limitations. We use the ATMS as
a basic system that records the applications of non­

monotonic or monotonic rules in different contexts.
However, not all assumption sets occurring in ATMS labels
are valid in the sense that they describe a subset of any
extension. Therefore, a separate test algorithm is needed that
takes account of exceptions. For this purpose we adapt
Doyle's Out-labelling rule mentioned above. We also want
to verify the resulting system. Therefore we need a suitable
specification of non-monotonic reasoning. Again, we choose
Reiter's default logic.

2. Theoret ical Considerations

In this section, we develop the theoretical framework for
realizing non-monotonic reasoning using the ATMS. First
of all, we consider Reiter's definition of a default logic
extension.
Definit ion 1: Let A = (D,W) be a closed default theory
(D is a set of defaults and W is a set of first-order formulas).
An extension of A is a fixpoint of an operator T that is
defined as follows: Let S be an arbitrary set of first-order
formulas. Then T(S) is the smallest set such that

(1) r(S) contains W
(2) T(S) is closed with respect to first order derivability
(3) if (a:Mb1;...;Mbn/c) D,a T(S), -bi S

then c e T(S).
Can we determine T(S) using a monotonic reasoner for

multiple contexts? At least, the definition of T resembles
the usual definition of a closure of a monotonic inference
system: Let I = (L, AX, R) be an arbitrary monotonic
inference system (L is a formal language, AX is a set of
axioms, and R contains inference rules). The closure Th1 of
a subset P of L can be defined by: Th1(P) is the smallest set
such that:
(4) Th1(P) contains AX and P
(5) if (a1 ak/c) R and at Th1(P) then c Th1(P).

Both definitions mainly differ in the condition -bi S
used in (3). In the monotonic case, we don't ask whether a
formula is not contained in a set. Fortunately, this unusual
condition only refers to S, not to T(S). We can introduce
additional expressions of the form out(—.bj) for -bi S.
Furthermore, we replace S by a corresponding set A(S)
containing such out-expressions. Then we ask out(-b i)
Th1(A(S)) instead of -bi S. Let O be the set of all out-
expressions needed for any default of D. Then A(S) must
contain out(x) if and only if S does not contain x:

A(S) := {out(x) O/x S}
There is another difference between both definitions. (2)

requires completeness with respect to first-order derivability.
Therefore, we need a complete and sound inference system
for first-order derivability. Later, we wi l l restrict the first-
order language to horn clauses and consider only derivability
of atomic formulas. Then modus ponens wi l l be sufficient
to achieve (2).

Now, let L be a first-order language and A = (D,W) be a
closed default theory using L. Furthermore, let LI = (L, AX,
R) be a complete inference system for first-order derivability
in L. We extend this inference system to obtain a tool for

1050 Commonsense Reasoning

determining T(S). We add the premises of W as axioms and
translate every default of D into an inference rule as follows.
We apply a default (a:Mb1,...;Mbk/c) and derive c if we infer
a, out(-b1),...,out(--.bk):

MD := {(a,out(-b1),...,out(-bn)/c) / (a:Mb1;...;Mbk/c)€ D)

Then we obtain a new inference system D1 ;= (L U 0,
AX W, R MD). Because we are not interested in
derivation of out-expressions we modify the closure ThDI of
DI slightly: Let A be a set of out-expressions. Then Th(A):=
ThDI(A) n L. Now, we can formulate the first result:

Theorem 1: Let S be a set of first-order formulas. Then
US) = Th(A(S))
Proof: in [Junker, 1988]

Thus, we are able to determine T(S) using a monotonic
reasoner if A(S) is specified. However, we are only interested
in fixpoints of T.is there a simple criterion that decides
which assumption sets correspond to extensions? A fixpoint
S satisfies: S = T(S) = Th(A(S)). Then an assumption out(x)
is contained in A(S) if and only if x is not contained in S =
Th(A(S)). Therefore we define:

Def in i t ion 2: A subset A of O is an extension base
iff for every out(x) € 0 either out(x) € A or x € Th(A) (not
both!).

We already know that this criterion is a necessary
condition for an assumption set obtained from a fixpoint S.
Is it also a sufficient condition for a fixpoint ? Assume that
A is an extension base. Then out(x) is contained in A if and
only if x ¢ Th(A) if and only if out(x) E A(Th(A)). Since
every out-expression satisfies this fact the sets A and
A(Th(A)) arc equal. Hence, Th(A) is an extension because of
Th(A) = Th(A(Th(A))) = r(Th(A)). Now, we can summarize:
Theorem 2: If E is an extension then A(E) is an
extension base. If A is an extension base then Th(A) is an
extension.

We illustrate this result using example 2. We get four
cases because there are two out-expressions, namely
out(COLD), out(EXCUSE):

(SL c (a1 ... ak) ()) as propositional implications (or horn
clauses). Therefore, we restrict the language L to pro-
positional horn clauses. We use the special symbol FALSE
as a consequent of horn clauses without positive literal. In
section 4 and 5, we consider only defaults of the form
(a :M-b 1 ; . . . ;M-b k /c) where a,b1,...,bk,c are propositional
constants. Such defaults correspond to non-monotonic
justifications of the form (SL c (a) (b1 ... bk)) (cf. [Brewka,
1989]).

Now, it is easy to satisfy the completeness requirement of
(2). We are only interested in the derivation of propositional
constants. There are two cases: If an assumption set is
consistent we need only generalized modus ponens to derive
any constant. If an assumption set is inconsistent (i.e.
FALSE is derivable) then any formula can be derived. Modus
ponens is also sufficient to detect inconsistencies. Besides
the set MD, we take only account of inference rules of the
form

(a 1 . . . a k , a 1 & . . . & a k clc)

where a1,...ak are constants and c is a constant or FALSE.

4, Techniques for Mult iple Contexts

The results of section 2 are still independent from the
ATMS. If we want to determine extensions we must
consider a lot of overlapping contexts. Therefore, we can
benefit from the facilities of the ATMS. First we translate
the concepts of section 2 into the ATMS terminology:

Every premise of the inference system DI is also a
premise of ATMS. An out-expression out(x) is added as an
assumption to the ATMS. Furthermore, every inference rule
(a 1 , . . .a k / c) mentioned in the paragraph above is trans­
formed into a justification a1,...ak —> c. Now, we can check
whether a formula x is contained in Th(A) by inspecting its
ATMS-label which is denoted by LABEL(x):
x € Th(A) iff LADEL(x) contains a subset of A or

A is inconsistent
Furthermore, we can check the inconsistency of an

assumption set by inspecting the set NOGOODS that is
maintained by the ATMS and contains all minimal
inconsistent assumption sets:
A is inconsistent iff NOGOODS contains a subset of A

However, it is still possible that x is inferred from an
assumption set containing out(x). Consider the set
(out(EXCUSE), out(COLD)} of the working example where
EXCUSE Th(A) and out(EXCUSE) € A. According to
definition 2, this set is no extension base. Even if the
default theory is extended by new defaults or premises
EXCUSE € Th(A) remains true. Such a set is completely
useless. We can use the consistency mechanism of the
ATMS to get rid of such sets. Following [Dressier, 1988a],
we introduce additional constraints of the form

x, out(x) —> FALSE
for every out-expression. Now, assume that a set A
containing out(x) infers x. Then it infers FALSE and is
handled as a nogood. These additional nogoods do not

Junker 1051

In the first and second case, we miss out(COLD) and don't
infer COLD. In the last case, we assumed out(EXCUSE) and
inferred EXCUSE. Thus, we only obtain an extension base in
the third case, where out(COLD) is assumed and EXCUSE is
inferred.

3. Which defaults & formulas are needed ?

Because we only want to develop a reason maintenance
system we introduce some restrictions concerning the
defaults and first-order formulas. First of all, we assume that
the number of defaults and premises is finite. In [Doyle,
19791, reason maintenance nodes are viewed as propositional
constants. We interpret monotonic justifications of the form

represent logical inconsistencies, but are also used to get rid
of assumption sets that can never become extension bases.
Therefore, we call them pruning nogoods.

With respect to this extended form of inconsistency,
extension bases are maximal consistent assumption sets of
the ATMS. If we extend an extension base A by a further
assumption out(y) A then y Th(A (out(y)}) because
of y Th(A). Normally, an extension base is consistent.
Only if FALSE then there is an inconsistent
extension base, namely the empty set:
Lemma 1: If A is a non empty extension base then A is a
maximal consistent set of out-expressions. An inconsistent
set A is an extension base if and only if FALSE and

Example 2 shows that there are still maximal consistent
sets that are no extension bases (e.g. {out(EXCUSE)}).
Therefore, the ATMS techniques are not sufficient

5. Techniques for Exceptions

In a lot of cases, we are not interested in complete
extensions, but in a particular formula x. We want to know
the extensions containing x. For this purpose, we can
inspect the ATMS label of x. It contains minimal sets of
out-expressions that infer x, but we don't know whether
these sets are contained in any extension base. In example 2,
we are interested in the formula WORK the label of which
consists of the set (out(EXCUSE)}. Then we ask whether
this set is valid in the following sense:
Definition 3: A set A of out-expressions is valid if A is
contained in any extension base.

How can we check this property? We try to add further
out-expressions to A. For every out-expression out(x), we
choose out(x) or test whether x can be inferred afterwards.
Thus, we obtain a binary search tree and apply a
backtracking procedure. In the sequel, we ignore the special
case that the empty set is inconsistent. Hence, we drop
inconsistent supersets of A. Then we obtain a first version
of a test algorithm. We assume that the elements of O are
ordered in a sequence out(x1),out(xk).

Algorithm SLOWTEST
input: an assumption set A and an optional number i

(default value: 1)
output: true, if there is a consistent extension base E

that {out(xi),....,out(xk)} A E A
false, otherwise

ij NOGOODS contains a subset of A then false else
if i > k and LABEL(x) contains a subset of A

for all out(x) O - A then true else
if i> k then false else
if SLOWTEST(A {out(xi)}, i+]) then true

else SLOWTEST(A, i+1).

This algorithm does not handle exceptions efficiently.
Consider a long chain consisting of (: M - A i / Ai+1) where
i=l,...,k. At worst, SLOWTEST needs 0(2 k) steps, while
Doyle's TMS finishes after k steps. How does TMS gain
this efficiency ? In contrast to SLOWTEST, TMS exploits

1052 Commonsense Reasoning

dependencies between out-assumptions. There are
circumstances, where a formula x cannot be derived even if
out-assumptions are added. Then we must choose out(x). In
section 1, we showed that TMS uses a rule to determine an
out-label of a node. We need a corresponding argument for
the ATMS-based system.

Can we check whether xi is inferred by a superset of A or
not? If A already infers XI we cannot choose out(xi) any
more. Otherwise, XI Th(A). Now, assume that every out-
assumption out(xj) occurring in L A B E L (X J) has been
considered before out(x i) (i.e. j < i). Then the remaining
out-assumptions out(x|),...,out(x^) do not contribute to any
proof of xi. We summarize this fact after introducing another
term: Let PRED(x) := (out(y) LABEL(x): out(y)

A} be the set of all out-expressions that can be used to
prove x. We call members of PRED(x) predecessors of
out(x).
Lemma 2: Let A and PRED(xi) be subsets of {out(xj),
...,out(xi-1)}. Let B be a consistent superset of A and a
subset of A U {out(xi),...,out(x0}. Then B infers xi; if and
only if A infers Xi.

If the prerequisites of lemma 2 are satisfied we can easily
check whether we must add or drop out(x). Thus, we can
improve SLOWTEST if we order the set of out-expressions in
a useful sequence. In example 2, we start with out(COLD)
because LABEL(COLD) and PRED(COLD) are empty. Because
out(COLD) is the only predecessor of out(EXCUSE) we add it
and get a complete sequence. Things are not so easy if there
are non-monotonic loops. E.g. consider a non-trivial odd
loop consisting of three defaults:

(:M - iA /B) , (: M - B / C) , (: M - C / A)
Then out(A) is a predecessor of out(B) which is a

predecessor of out(C). However, out(C) is predecessor of
out(A). Therefore, we must cut off this loop, choose any
assumption e.g. out(A) and investigate two cases. We can
generalize this idea:
Definition 4: A cut Cut is a minimal subset of O (with
respect to set inclusion) such that the elements of O can be
ordered in a sequence out(x1),...,out(x0 that satisfies for all
i = 1,...,k: out(xi) € Cut or PRED(xi) is a subset of
{out(xj) out(x^j)}.

We can compute such a cut and a sequence using an
algorithm with quadratic time complexity. We only
determine a cut and a sequence if the ATMS has finished.
Afterwards, we can apply a fast modification of SLOWTEST
to any assumption set of interest.
Algor i thm TEST
input: an assumption set A and an optional number i

(default value: 1)
output: true, if there is a consistent extension base E

that {out(xi),...,out(x0}
false, otherwise

The improvements of TEST are explained briefly: If out(x)
is already contained in A or x is inferred from A we have no
choice. Otherwise, if out(x) is no cut assumption, out(x)
must be added to A because x cannot derived from A (cf.
lemma 2). Only for cut assumptions, we have to consider
both cases. If we don't choose a cut assumption out(x) we
must check afterwards whether x Gan be inferred.

Now, we apply TEST to the working example:

First, we try TEST({out(EXCUSE)}). Since COLD cannot
be proved the algorithm adds out(COLD) and calls
TEST({out(EXCUSE), out(COLD)}, 2). Then the first
argument is a nogood and TEST returns false. Hence, the
single set of the label of WORK is invalid. However, calling
TEST({out(COLD)}) results in true: Because out(COLD) is
already contained in A, TEST({out(COLD)}, 2) is called
immediately. Then we can infer EXCUSE and must not add
o u t (E X C U S E) . As there is no cut assumption
TEST({out(COLD)}, 3) yields true.

In contrast to this stratified example a cut assumption, say
out(A), is introduced for the odd loop mentioned above. Then
we obtain the sequence out(A), out(B), out(C). If we call
TEST(0) we first choose out(A). Then we can proof B and
must not add out(B). Hence, we cannot prove c and must add
out(C) yielding a nogood, namely (out(A), out(B)} .
Therefore, we go back and drop out(A). Then we must add
out(B) and drop out(C). However, we cannot prove A using
(out(B)}. Hence, TEST(0) results in false. TEST has detected
that there is no extension at all.

In the worst case, the complexity of TEST is 0(n * 2 m)
where n is the number of all out-assumptions and m is the
number of cut assumptions or choice points. If there are no
non-monotonic loops we can avoid cut assumptions and the
complexity reduces to O(n). Otherwise, TEST explores
different alternatives if it chooses a wrong assumption of an
even loop or runs into an odd loop. Efficiency is strongly
influenced by the number of cut members and their ordering.

TEST is a non-incremental algorithm because it
presupposes that all proofs for some formulas have been
found. That's not so bad because all monotonic inference
steps are performed by an incremental system, namely the
ATMS. Furthermore, we should only call TEST after the
problem solver added all justifications.

6. Dealing with Inconsistencies

We are still not able to handle the Nixon example because
we restricted our default language in section 3. What is the
special problem of the Nixon example ? Nixon is a dove and
a hawk per default. However, the conjunction of both
properties implies a logical inconsistency. How can we
resolve this inconsistency? In default logic, we just require
that the consequent c of a default is consistent by writing
(a: M-ib; Mc / c). Such an expression is similar to a semi-
normal default. Let (aj: M-ity; Mc, / Cj) be some defaults
(i=l,...,n) whose consequents imply an inconsistency as in
the Nixon example. Assume that 1= denotes first-order
derivability. Then we can select an arbitrary c^ and apply the
deduction theorem (as in [de Kleer, 1988]):

Then (ak: M - b k ; Mck / ck) is blocked if we apply the
other defaults. In this case, there are no implicit priorities
between the defaults. Thus, a logical inconsistency can lead
to multiple extensions.

Now, we can use defaults of the form (a:M—>b1;...;M—bm;
Mc / c) to resolve logical inconsistencies. If we translate
such a default according to section 2 we obtain an out-
expression out(—.c) and must find all proofs for a negative
constant -ic. Are there special techniques to facilitate this
task? Can we exploit (*) and start a refutation proof for -ck?

For this purpose, Doyle's TMS uses dependency-directed
backtracking. If TMS detects an inconsistency by labelling
FALSE with IN it traces back and finds the non-monotonic
justifications underlying the contradiction. As above, it
selects an arbitrary justification (SL ck (a) (b1 ... bm)) and
any bj. Then it justifies bj with (SL bj (c1 ... ck-1] ck+1

(b1 ... bm)) . Hence, TMS justifies bj
instead of However, we could slightly change the
backtracking procedure if we want to achieve (*).

Can we adapt dependency-directed backtracking to
assumption-based techniques? Dressier proposes the
following meta rule that inspects nogoods:

Compared with (*), there are some important differences:
Because rule (**) inspects nogoods it refers to out-

expressions instead of consequents of non-monotonic
justifications.

Furthermore, we apply (**) to all nogoods while (*)
requires first-order-derivability. In our RMS, the translated
default rules and constraints of the form x, out(x) FALSE
do not correspond to first-order inference steps. Especially, if
we apply (**) to pruning nogoods our DL-specification is
violated. Consider again the pruning nogood (out(EXCUSE),
out(COLD)} of the working example (cf. section 4). Then,
rule (**) adds (out(EXCUSE)} to the label of COLD and
(out(EXCUSE)} becomes another extension base. This is
wrong because no DL-extension contains COLD. Therefore,
we must not apply (**) to pruning nogoods.

Junker 1053

However, if we restrict (**) to logical nogoods we get
another problem. The ATMS does not detect every logical
nogood:
(:MA / A), (: M - A /B), (:MC /C), A & B & C FALSE

Here, we obtain a pruning nogood {out(-A), out(A)} and a
logical nogood {out (-A) , out(A), out (-C)} . Because the
ATMS stores only minimal nogoods it ignores the second
one. Thus, we are not able to apply (**) to (out(--.A),
out(A),out(-.C)},

Finally, rule (**) implicitly applies defaults in 'backward'
direction. In the following example, it infers -A from out(B)
using the nogood (out(-A), out(B)}:

(:MA / A), (A :M-.B / FALSE)
Because of these problems, we do not get a sound method

that finds refutation proofs of -x if we inspect nogoods
consisting of out-assumptions. If we want to prove -x
directly we need further inference rules (and justifications).
For example, we can use contraposition rules:

(—c, a1' ..., aj-1, a j+] a k , a1&. . .&ak c I —ajk)
(a1, ..., aj-1, a+j+1,,..., ak, a1&....&a^ FALSE I —aj)

where c,a],...,ak are constants. With these prerequisites we
obtain the missing labels in the Nixon example:

LABEL(-DOVE) = {(out(4L\WK)})
LABEL(-HAWK) = {{out(-DOVE))}

This approach works for examples where unit clause
resolution is complete w.r.t. the derivation of negated
formulas.

7. Related Work

We started this work by examinating the ideas of O.
Dressier. In [Dressier, 1988a], he already proposed how to
encode defaults using monotonic justifications and out-
assumptions. Furthermore, he introduced the meta rule to
resolve inconsistencies. However, he did not verify his
approach using default logic and did not specify a semantics
for the meta rule. After the author had detected the problem
imposed by exceptions and presented a first solution, O.
Dressier developed an own test algorithm to deal with
exceptions of exceptions. In contrast to our test, it inspects
justifications instead of labels and uses a backward strategy
(cf. [Dressier, 1988b]). This algorithm is yet not verified and
a precise comparison is a goal of further discussions.

[de Kleer and Reiter, 1987] and [de Kleer, 1988] generalize
ATMS by propositional clauses, but do not capture non­
monotonic justifications. Brown et. al. [1987] translate
justifications into boolean equations where non-monotonic
antecedents are handled by the complement operator. Their
approach is also non-incremental. If we add a new
justification for x we must exchange the equation of x.
Furthermore, they need extra effort to find well-founded (or
grounded) solutions.

8. Conclusion

We developed a correct non-monotonic reason maintenance
system that is able to deal with exceptions, inconsistencies,

1054 Commonsense Reasoning

and multiple extensions. It overcomes the limits of Doyle's
TMS and ATMS. TMS only finds a single extension and
gets in trouble with odd loops. ATMS produces too many
extensions if there are exceptions of exceptions. Therefore,
we extended the ATMS by an additional test algorithm
which uses an efficient technique for exception handling. Its
complexity is nearly linear in a lot of examples. We
implemented this algorithm in Common Lisp and used the
hybrid RMS to realize a simple default prover.

We verified our hybrid reason maintenance system using
Reiter's default logic (DL). To enable this task, we related
DL concepts to the concepts of monotonic inference systems
and replaced the fixpoint criterion by a simpler criterion for
assumption sets.

Finally we discussed some problems caused by special
techniques for contradiction handling. We proposed to
resolve logical inconsistencies by semi-normal defaults.
Then the reason maintenance system must be able to derive
negated formulas.

Acknowledgements

Especially, I am grateful to Gerd Brewka and Hans Voss for
their support and encouragement. Furthermore, I would like
to thank Johan de Kleer, Paul Morris, and Oskar Dressier
who spent time for discussion.

References

[Brewka, 1989] G. Brewka, Nonmonotonic Reasoning:
From Theoretical Foundation Towards Eff icient
Computation, Dissertation, University of Hamburg

[Brown ct. al., 1987] A. Brown, D. Gaucas, D. Benanav,
An Algebraic Foundation for Truth Maintenance, Proc.
IJCA1 87

[de Kleer, 1986a] J. de Kleer, An Assumption-based TMS,
Artificial Intelligence 28

[de Kleer, 1986b] J. de Kleer, Extending the ATMS,
Artificial Intelligence 28

[de Kleer, 1988] A General Labelling Algorithm for
Assumption-based Truth Maintenance, Proc. AAAI 88

[Doyle, 1979] J. Doyle, A Truth Maintenance System,
Artificial Intelligence 12

[Dressier, 1988a] O. Dressier, Extending the Basic ATMS,
Proc. ECAI 88

[Dressier, 1888b] O. Dressier, An Extended Basic ATMS,
Proceedings of the 2nd International Workshop on Non-
Monotonic Reasoning, Springer LNCS 346

[Goodwin, 1987] J. Goodwin, A Theory and System for
Non-Monotonic Reasoning, PhD Dissertion, University
of Linkoping

[Junker, 1988] U. Junker, Reasoning in Multiple Contexts,
Arbeitspapiere der GMD 334

[Reiter, 1980] R. Reiter, A Logic for Default Reasoning,
Artificial Intelligence 13

[Reiter and de Kleer, 1987] J. de Kleer, R. Reiter,
Foundations of Assumption-based Truth Maintenance
Systems, Proc. AAAI 87

