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Abstract 

In this paper, we investigate technical methods to 
deal with exceptions, inconsistencies, and 
ambiguity. Existing reason maintenance systems are 
only suitable for some of these problems. Doyle's 
TMS handles exceptions properly, but gets in 
trouble with non-monotonic odd or even loops. On 
the other hand, de Kleer's ATMS produces too many 
contexts if there are exceptions of exceptions. 
Therefore, we present a hybrid reason maintenance 
system that benefits from the advantages of the 
ATMS and TMS. First of al l , we use Reiter's 
default logic as a specification for this system. 
Second, we develop a criterion that decides which 
assumption sets are valid. Then, we extend the 
ATMS by a test algorithm that takes account of 
exceptions and obeys this criterion. We verify the 
resulting system using default logic. Finally, we 
discuss some problems involved with special 
techniques for resolving inconsistencies (e.g. TMS-
like backtracking). 

1. Introduct ion 

Reason maintenance systems can be applied to capture 
special phenomena occurring in non-monotonic reasoning. 
E.g. Doyle's TMS [Doyle, 1979] handles exceptions 
properly. On the other hand, the multiple context facility of 
de Kleer's ATMS [de Kleer, 1986a] may be used to deal with 
ambiguity in the presence of inconsistencies. However, none 
of these systems is suitable for non-monotonic reasoning in 
general. Let us consider some examples that demonstrate the 
advantages and limits of reason maintenance techniques. For 
this purpose we use Reiter's default logic (DL) [Reiter, 
1980] because it is powerful enough to illustrate all 
problems. On the other hand, it is simple enough to relate 
its concepts and reason maintenance constructs1 . 

Example 1: (the familiar Nixon example) 
As usual, quakers typically are doves and republicans 
normally are hawks. Nobody can be a hawk and a dove, but 

Nixon is a quaker and a republican. Thus, we get two 
(simplified) defaults and some premises: 

There are two extensions of this default theory: One 
contains DOVE and --HAWK, the other one -DOVE and 
HAWK. First, we want to determine these extensions using 
the ATMS. Following [Dressier, 1988a] and [Junker, 1988], 
we can translate a default (a: Mb/ b) into a monotonic 
justification a, b and an assumption out(--b). 
DL premises are also ATMS premises. Furthermore, assume 
that modus ponens is applied and that every inference step is 
protocoled by an ATMS justification. Then, we obtain: 

justifications: 

assumptions: 
nogoods: 
maximal consistent 
assumption sets: 

In this case, every maximal consistent assumption set 
corresponds to an extension (and vice versa). Therefore, 
ATMS may be used for normal defaults (whose prerequisites 
are theorems of premises). In contrast to Doyle's TMS it 
finds all extensions. However, there are examples where 
Doyle's system is superior to ATMS: 

Example 2: (working example) 
On workdays, Peter must normally go to work. This is not 
true, if he has an excuse. If he is i l l he normally has an 
excuse. However, his employer does not accept this if Peter 
has only caught a cold. Hence, there is an exception of an 
exception* Now, assume that Peter is i l l on a workday. 
What happens? Again, we formalize this story using 
simplified defaults: 

( WORKDAY: M-EXCUSE / WORK ), 
( ILL: M - T C O L D / EXCUSE ) 

There exists only one extension that contains EXCUSE, 
but not WORK. If we use Doyle's TMS to compute this 
extension, we obtain two non-monotonic justifications: 

(SL WORK (WORKDAY ) ( EXCUSE ) ), 
(SL EXCUSE ( I L L ) (COLD)) 
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WORKDAY and ILL are labelled with IN because they are 
premises. COLD is labelled with OUT because it has no 
justification at all. Then, EXCUSE gets IN and the only 
justification for WORK is invalid. Therefore, WORK is 
labelled with OUT just as we expected. Figure 1 shows the 
complete labelling using Goodwin's notation [Goodwin, 
1987]. 

Figure 1: Complete labelling for the working example 

However, if we apply the ATMS we get in trouble. In 
addition to example 1, we use extra consistency rules to 
ensure that no context contains out(x) and x: 

justifications: WORKDAY, out(EXCUSE) -> WORK 
ILL, out(COLD) -> EXCUSE 
EXCUSE, OUt(EXCUSE) -> FALSE 
COLD, out(COLD) -> FALSE 
OUt(COLD), out(EXCUSE) 
0 
{(out(COLD)}} 
{{out(EXCUSE))} 
{(out(COLD), out(EXCUSE))} 

{out(COLD)}, {out(EXCUSE)} 

assumptions: 
label of COLD: 
label of EXCUSE: 
label of WORK: 
no goods: 
maximal consistent 
assumption sets: 

Astonishingly, there are two maximal consistent 
assumption sets. One, namely (out(COLD)}, corresponds to 
the extension mentioned above. However, also the set 
(out(EXCUSE)} which infers WORK is consistent! The 
ATMS detects the conflict between both conflicing defaults, 
but it does not know anything about priorities between 
interacting defaults. Expressions like out(COLD) are simple 
assumptions. Reasons for such expressions are ignored. The 
same problem arises if we apply de Kleer's original encoding 
of non-monotonic justifications [de Kleer, 1986b]. The 
TMS, however, uses a special rule to label a node with out: 

If all justifications of a node x are invalid label x with OUT. 
To sum up, both reason maintenance systems are restricted 

to special cases: ATMS is suitable for normal defaults, but 
gets in trouble with exceptions of exceptions. Doyle's TMS 
works correctly if the default theory is stratified or acyclic 
(i.e. the justification network contains no non-monotonic 
odd or even loop). Then the existence of a unique extension 
is guaranteed. If there are even loops there may be different 
extensions, but the TMS finds only one. If there are odd 
loops a TMS may enter an endless loop [Doyle, 1979] or 
stop without definite result [Goodwin, 1987]. 

In the sequel, we develop a hybrid reason maintenance 
system that benefits from advantages of the ATMS and the 
TMS and overcomes their limitations. We use the ATMS as 
a basic system that records the applications of non­

monotonic or monotonic rules in different contexts. 
However, not all assumption sets occurring in ATMS labels 
are valid in the sense that they describe a subset of any 
extension. Therefore, a separate test algorithm is needed that 
takes account of exceptions. For this purpose we adapt 
Doyle's Out-labelling rule mentioned above. We also want 
to verify the resulting system. Therefore we need a suitable 
specification of non-monotonic reasoning. Again, we choose 
Reiter's default logic. 

2. Theoret ical Considerations 

In this section, we develop the theoretical framework for 
realizing non-monotonic reasoning using the ATMS. First 
of all, we consider Reiter's definition of a default logic 
extension. 
Definit ion 1: Let A = (D,W) be a closed default theory 
(D is a set of defaults and W is a set of first-order formulas). 
An extension of A is a fixpoint of an operator T that is 
defined as follows: Let S be an arbitrary set of first-order 
formulas. Then T(S) is the smallest set such that 

(1) r(S) contains W 
(2) T(S) is closed with respect to first order derivability 
(3) if (a:Mb1;...;Mbn/c) D,a T(S), -bi S 

then c e T(S). 
Can we determine T(S) using a monotonic reasoner for 

multiple contexts? At least, the definition of T resembles 
the usual definition of a closure of a monotonic inference 
system: Let I = (L, AX, R) be an arbitrary monotonic 
inference system (L is a formal language, AX is a set of 
axioms, and R contains inference rules). The closure Th1 of 
a subset P of L can be defined by: Th1(P) is the smallest set 
such that: 
(4) Th1(P) contains AX and P 
(5) if (a1 ak/c) R and at Th1(P) then c Th1(P). 

Both definitions mainly differ in the condition -bi S 
used in (3). In the monotonic case, we don't ask whether a 
formula is not contained in a set. Fortunately, this unusual 
condition only refers to S, not to T(S). We can introduce 
additional expressions of the form out(—.bj) for -bi S. 
Furthermore, we replace S by a corresponding set A(S) 
containing such out-expressions. Then we ask out( -b i ) 
Th1(A(S)) instead of -bi S. Let O be the set of all out-
expressions needed for any default of D. Then A(S) must 
contain out(x) if and only if S does not contain x: 

A(S) := {out(x) O/x S} 
There is another difference between both definitions. (2) 

requires completeness with respect to first-order derivability. 
Therefore, we need a complete and sound inference system 
for first-order derivability. Later, we wi l l restrict the first-
order language to horn clauses and consider only derivability 
of atomic formulas. Then modus ponens wi l l be sufficient 
to achieve (2). 

Now, let L be a first-order language and A = (D,W) be a 
closed default theory using L. Furthermore, let LI = (L, AX, 
R) be a complete inference system for first-order derivability 
in L. We extend this inference system to obtain a tool for 
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determining T(S). We add the premises of W as axioms and 
translate every default of D into an inference rule as follows. 
We apply a default (a:Mb1,...;Mbk/c) and derive c if we infer 
a, out(-b1),...,out(--.bk): 

MD := {(a,out(-b1),...,out(-bn)/c) / (a:Mb1;...;Mbk/c)€ D) 

Then we obtain a new inference system D1 ;= (L U 0, 
AX W, R MD). Because we are not interested in 
derivation of out-expressions we modify the closure ThDI of 
DI slightly: Let A be a set of out-expressions. Then Th(A):= 
ThDI(A) n L. Now, we can formulate the first result: 

Theorem 1: Let S be a set of first-order formulas. Then 
US) = Th( A(S)) 
Proof: in [Junker, 1988] 

Thus, we are able to determine T(S) using a monotonic 
reasoner if A(S) is specified. However, we are only interested 
in fixpoints of T.is there a simple criterion that decides 
which assumption sets correspond to extensions? A fixpoint 
S satisfies: S = T(S) = Th(A(S)). Then an assumption out(x) 
is contained in A(S) if and only if x is not contained in S = 
Th(A(S)). Therefore we define: 

Def in i t ion 2: A subset A of O is an extension base 
iff for every out(x) € 0 either out(x) € A or x € Th(A) (not 
both!). 

We already know that this criterion is a necessary 
condition for an assumption set obtained from a fixpoint S. 
Is it also a sufficient condition for a fixpoint ? Assume that 
A is an extension base. Then out(x) is contained in A if and 
only if x ¢ Th(A) if and only if out(x) E A(Th(A)). Since 
every out-expression satisfies this fact the sets A and 
A(Th(A)) arc equal. Hence, Th(A) is an extension because of 
Th(A) = Th(A(Th(A))) = r(Th(A)). Now, we can summarize: 
Theorem 2: If E is an extension then A(E) is an 
extension base. If A is an extension base then Th(A) is an 
extension. 

We illustrate this result using example 2. We get four 
cases because there are two out-expressions, namely 
out(COLD), out(EXCUSE): 

(SL c (a1 ... ak) () ) as propositional implications (or horn 
clauses). Therefore, we restrict the language L to pro-
positional horn clauses. We use the special symbol FALSE 
as a consequent of horn clauses without positive literal. In 
section 4 and 5, we consider only defaults of the form 
(a :M-b 1 ; . . . ;M-b k /c ) where a,b1,...,bk,c are propositional 
constants. Such defaults correspond to non-monotonic 
justifications of the form (SL c (a) (b1 ... bk)) (cf. [Brewka, 
1989]). 

Now, it is easy to satisfy the completeness requirement of 
(2). We are only interested in the derivation of propositional 
constants. There are two cases: If an assumption set is 
consistent we need only generalized modus ponens to derive 
any constant. If an assumption set is inconsistent (i.e. 
FALSE is derivable) then any formula can be derived. Modus 
ponens is also sufficient to detect inconsistencies. Besides 
the set MD, we take only account of inference rules of the 
form 

( a 1 . . . a k , a 1 & . . . & a k clc) 

where a1,...ak are constants and c is a constant or FALSE. 

4, Techniques for Mult iple Contexts 

The results of section 2 are still independent from the 
ATMS. If we want to determine extensions we must 
consider a lot of overlapping contexts. Therefore, we can 
benefit from the facilities of the ATMS. First we translate 
the concepts of section 2 into the ATMS terminology: 

Every premise of the inference system DI is also a 
premise of ATMS. An out-expression out(x) is added as an 
assumption to the ATMS. Furthermore, every inference rule 
(a 1 , . . .a k / c) mentioned in the paragraph above is trans­
formed into a justification a1,...ak —> c. Now, we can check 
whether a formula x is contained in Th(A) by inspecting its 
ATMS-label which is denoted by LABEL(x): 
x € Th(A) iff LADEL(x) contains a subset of A or 

A is inconsistent 
Furthermore, we can check the inconsistency of an 

assumption set by inspecting the set NOGOODS that is 
maintained by the ATMS and contains all minimal 
inconsistent assumption sets: 
A is inconsistent iff NOGOODS contains a subset of A 

However, it is still possible that x is inferred from an 
assumption set containing out(x). Consider the set 
(out(EXCUSE), out(COLD)} of the working example where 
EXCUSE Th(A) and out(EXCUSE) € A. According to 
definition 2, this set is no extension base. Even if the 
default theory is extended by new defaults or premises 
EXCUSE € Th(A) remains true. Such a set is completely 
useless. We can use the consistency mechanism of the 
ATMS to get rid of such sets. Following [Dressier, 1988a], 
we introduce additional constraints of the form 

x, out(x) —> FALSE 
for every out-expression. Now, assume that a set A 
containing out(x) infers x. Then it infers FALSE and is 
handled as a nogood. These additional nogoods do not 
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In the first and second case, we miss out(COLD) and don't 
infer COLD. In the last case, we assumed out(EXCUSE) and 
inferred EXCUSE. Thus, we only obtain an extension base in 
the third case, where out(COLD) is assumed and EXCUSE is 
inferred. 

3. Which defaults & formulas are needed ? 

Because we only want to develop a reason maintenance 
system we introduce some restrictions concerning the 
defaults and first-order formulas. First of all, we assume that 
the number of defaults and premises is finite. In [Doyle, 
19791, reason maintenance nodes are viewed as propositional 
constants. We interpret monotonic justifications of the form 



represent logical inconsistencies, but are also used to get rid 
of assumption sets that can never become extension bases. 
Therefore, we call them pruning nogoods. 

With respect to this extended form of inconsistency, 
extension bases are maximal consistent assumption sets of 
the ATMS. If we extend an extension base A by a further 
assumption out(y) A then y Th(A (out(y)}) because 
of y Th(A). Normally, an extension base is consistent. 
Only if FALSE then there is an inconsistent 
extension base, namely the empty set: 
Lemma 1: If A is a non empty extension base then A is a 
maximal consistent set of out-expressions. An inconsistent 
set A is an extension base if and only if FALSE and 

Example 2 shows that there are still maximal consistent 
sets that are no extension bases (e.g. {out(EXCUSE)}). 
Therefore, the ATMS techniques are not sufficient 

5. Techniques for Exceptions 

In a lot of cases, we are not interested in complete 
extensions, but in a particular formula x. We want to know 
the extensions containing x. For this purpose, we can 
inspect the ATMS label of x. It contains minimal sets of 
out-expressions that infer x, but we don't know whether 
these sets are contained in any extension base. In example 2, 
we are interested in the formula WORK the label of which 
consists of the set (out(EXCUSE)}. Then we ask whether 
this set is valid in the following sense: 
Definition 3: A set A of out-expressions is valid if A is 
contained in any extension base. 

How can we check this property? We try to add further 
out-expressions to A. For every out-expression out(x), we 
choose out(x) or test whether x can be inferred afterwards. 
Thus, we obtain a binary search tree and apply a 
backtracking procedure. In the sequel, we ignore the special 
case that the empty set is inconsistent. Hence, we drop 
inconsistent supersets of A. Then we obtain a first version 
of a test algorithm. We assume that the elements of O are 
ordered in a sequence out(x1), ....out(xk). 

Algorithm SLOWTEST 
input: an assumption set A and an optional number i 

(default value: 1) 
output: true, if there is a consistent extension base E 

that {out(xi),....,out(xk)} A E A 
false, otherwise 

ij NOGOODS contains a subset of A then false else 
if i > k and LABEL(x) contains a subset of A 

for all out(x) O - A then true else 
if i> k then false else 
if SLOWTEST(A {out(xi)}, i+]) then true 

else SLOWTEST(A, i+1). 

This algorithm does not handle exceptions efficiently. 
Consider a long chain consisting of ( : M - A i / Ai+1) where 
i=l,...,k. At worst, SLOWTEST needs 0(2 k ) steps, while 
Doyle's TMS finishes after k steps. How does TMS gain 
this efficiency ? In contrast to SLOWTEST, TMS exploits 
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dependencies between out-assumptions. There are 
circumstances, where a formula x cannot be derived even if 
out-assumptions are added. Then we must choose out(x). In 
section 1, we showed that TMS uses a rule to determine an 
out-label of a node. We need a corresponding argument for 
the ATMS-based system. 

Can we check whether xi is inferred by a superset of A or 
not? If A already infers XI we cannot choose out(xi) any 
more. Otherwise, XI Th(A). Now, assume that every out-
assumption out(xj) occurring in L A B E L ( X J ) has been 
considered before out(x i) (i.e. j < i). Then the remaining 
out-assumptions out(x|),...,out(x^) do not contribute to any 
proof of xi. We summarize this fact after introducing another 
term: Let PRED(x) := (out(y) LABEL(x): out(y) 

A} be the set of all out-expressions that can be used to 
prove x. We call members of PRED(x) predecessors of 
out(x). 
Lemma 2: Let A and PRED(xi) be subsets of {out(xj), 
...,out(xi-1)}. Let B be a consistent superset of A and a 
subset of A U {out(xi),...,out(x0}. Then B infers xi; if and 
only if A infers Xi. 

If the prerequisites of lemma 2 are satisfied we can easily 
check whether we must add or drop out(x). Thus, we can 
improve SLOWTEST if we order the set of out-expressions in 
a useful sequence. In example 2, we start with out(COLD) 
because LABEL(COLD) and PRED(COLD) are empty. Because 
out(COLD) is the only predecessor of out(EXCUSE) we add it 
and get a complete sequence. Things are not so easy if there 
are non-monotonic loops. E.g. consider a non-trivial odd 
loop consisting of three defaults: 

( :M - iA /B ) , ( : M - B / C ) , ( : M - C / A ) 
Then out(A) is a predecessor of out(B) which is a 

predecessor of out(C). However, out(C) is predecessor of 
out(A). Therefore, we must cut off this loop, choose any 
assumption e.g. out(A) and investigate two cases. We can 
generalize this idea: 
Definition 4: A cut Cut is a minimal subset of O (with 
respect to set inclusion) such that the elements of O can be 
ordered in a sequence out(x1),...,out(x0 that satisfies for all 
i = 1,...,k: out(xi) € Cut or PRED(xi) is a subset of 
{out(xj) out(x^j)}. 

We can compute such a cut and a sequence using an 
algorithm with quadratic time complexity. We only 
determine a cut and a sequence if the ATMS has finished. 
Afterwards, we can apply a fast modification of SLOWTEST 
to any assumption set of interest. 
Algor i thm TEST 
input: an assumption set A and an optional number i 

(default value: 1) 
output: true, if there is a consistent extension base E 

that {out(xi),...,out(x0} 
false, otherwise 



The improvements of TEST are explained briefly: If out(x) 
is already contained in A or x is inferred from A we have no 
choice. Otherwise, if out(x) is no cut assumption, out(x) 
must be added to A because x cannot derived from A (cf. 
lemma 2). Only for cut assumptions, we have to consider 
both cases. If we don't choose a cut assumption out(x) we 
must check afterwards whether x Gan be inferred. 

Now, we apply TEST to the working example: 

First, we try TEST({out(EXCUSE)}). Since COLD cannot 
be proved the algorithm adds out(COLD) and calls 
TEST({out(EXCUSE), out(COLD)}, 2). Then the first 
argument is a nogood and TEST returns false. Hence, the 
single set of the label of WORK is invalid. However, calling 
TEST({out(COLD)}) results in true: Because out(COLD) is 
already contained in A, TEST({out(COLD)}, 2) is called 
immediately. Then we can infer EXCUSE and must not add 
o u t ( E X C U S E ) . As there is no cut assumption 
TEST({out(COLD)}, 3) yields true. 

In contrast to this stratified example a cut assumption, say 
out(A), is introduced for the odd loop mentioned above. Then 
we obtain the sequence out(A), out(B), out(C). If we call 
TEST(0) we first choose out(A). Then we can proof B and 
must not add out(B). Hence, we cannot prove c and must add 
out(C) yielding a nogood, namely (out(A), out(B)} . 
Therefore, we go back and drop out(A). Then we must add 
out(B) and drop out(C). However, we cannot prove A using 
(out(B)}. Hence, TEST(0) results in false. TEST has detected 
that there is no extension at all. 

In the worst case, the complexity of TEST is 0(n * 2 m ) 
where n is the number of all out-assumptions and m is the 
number of cut assumptions or choice points. If there are no 
non-monotonic loops we can avoid cut assumptions and the 
complexity reduces to O(n). Otherwise, TEST explores 
different alternatives if it chooses a wrong assumption of an 
even loop or runs into an odd loop. Efficiency is strongly 
influenced by the number of cut members and their ordering. 

TEST is a non-incremental algorithm because it 
presupposes that all proofs for some formulas have been 
found. That's not so bad because all monotonic inference 
steps are performed by an incremental system, namely the 
ATMS. Furthermore, we should only call TEST after the 
problem solver added all justifications. 

6. Dealing with Inconsistencies 

We are still not able to handle the Nixon example because 
we restricted our default language in section 3. What is the 
special problem of the Nixon example ? Nixon is a dove and 
a hawk per default. However, the conjunction of both 
properties implies a logical inconsistency. How can we 
resolve this inconsistency? In default logic, we just require 
that the consequent c of a default is consistent by writing 
(a: M-ib; Mc / c). Such an expression is similar to a semi-
normal default. Let (aj: M-ity; Mc, / Cj) be some defaults 
(i=l,...,n) whose consequents imply an inconsistency as in 
the Nixon example. Assume that 1= denotes first-order 
derivability. Then we can select an arbitrary c^ and apply the 
deduction theorem (as in [de Kleer, 1988]): 

Then (ak: M - b k ; Mck / ck) is blocked if we apply the 
other defaults. In this case, there are no implicit priorities 
between the defaults. Thus, a logical inconsistency can lead 
to multiple extensions. 

Now, we can use defaults of the form (a:M—>b1;...;M—bm; 
Mc / c) to resolve logical inconsistencies. If we translate 
such a default according to section 2 we obtain an out-
expression out(—.c) and must find all proofs for a negative 
constant -ic. Are there special techniques to facilitate this 
task? Can we exploit (*) and start a refutation proof for -ck? 

For this purpose, Doyle's TMS uses dependency-directed 
backtracking. If TMS detects an inconsistency by labelling 
FALSE with IN it traces back and finds the non-monotonic 
justifications underlying the contradiction. As above, it 
selects an arbitrary justification (SL ck (a) (b1 ... bm)) and 
any bj. Then it justifies bj with (SL bj (c1 ... ck-1] ck+1 

(b1 ... bm ) ) . Hence, TMS justifies bj 
instead of However, we could slightly change the 
backtracking procedure if we want to achieve (*). 

Can we adapt dependency-directed backtracking to 
assumption-based techniques? Dressier proposes the 
following meta rule that inspects nogoods: 

Compared with (*), there are some important differences: 
Because rule (**) inspects nogoods it refers to out-

expressions instead of consequents of non-monotonic 
justifications. 

Furthermore, we apply (**) to all nogoods while (*) 
requires first-order-derivability. In our RMS, the translated 
default rules and constraints of the form x, out(x) FALSE 
do not correspond to first-order inference steps. Especially, if 
we apply (**) to pruning nogoods our DL-specification is 
violated. Consider again the pruning nogood (out(EXCUSE), 
out(COLD)} of the working example (cf. section 4). Then, 
rule (**) adds (out(EXCUSE)} to the label of COLD and 
(out(EXCUSE)} becomes another extension base. This is 
wrong because no DL-extension contains COLD. Therefore, 
we must not apply (**) to pruning nogoods. 
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However, if we restrict (**) to logical nogoods we get 
another problem. The ATMS does not detect every logical 
nogood: 
( :MA / A ), ( : M - A /B ), ( :MC /C ), A & B & C FALSE 

Here, we obtain a pruning nogood {out(-A), out(A)} and a 
logical nogood {out ( -A) , out(A), out ( -C)} . Because the 
ATMS stores only minimal nogoods it ignores the second 
one. Thus, we are not able to apply (**) to (out(--.A), 
out(A),out(-.C)}, 

Finally, rule (**) implicitly applies defaults in 'backward' 
direction. In the following example, it infers -A from out(B) 
using the nogood (out(-A), out(B)}: 

( :MA / A ), (A :M-.B / FALSE ) 
Because of these problems, we do not get a sound method 

that finds refutation proofs of -x if we inspect nogoods 
consisting of out-assumptions. If we want to prove -x 
directly we need further inference rules (and justifications). 
For example, we can use contraposition rules: 

( —c, a1' ..., aj-1, a j+ ] a k , a1&. . .&ak c I —ajk) 
( a1, ..., aj-1, a+j+1,,..., ak, a1&....&a^ FALSE I —aj) 

where c,a],...,ak are constants. With these prerequisites we 
obtain the missing labels in the Nixon example: 

LABEL(-DOVE) = {(out(4L\WK)}) 
LABEL(-HAWK) = {{out(-DOVE))} 

This approach works for examples where unit clause 
resolution is complete w.r.t. the derivation of negated 
formulas. 

7. Related Work 

We started this work by examinating the ideas of O. 
Dressier. In [Dressier, 1988a], he already proposed how to 
encode defaults using monotonic justifications and out-
assumptions. Furthermore, he introduced the meta rule to 
resolve inconsistencies. However, he did not verify his 
approach using default logic and did not specify a semantics 
for the meta rule. After the author had detected the problem 
imposed by exceptions and presented a first solution, O. 
Dressier developed an own test algorithm to deal with 
exceptions of exceptions. In contrast to our test, it inspects 
justifications instead of labels and uses a backward strategy 
(cf. [Dressier, 1988b]). This algorithm is yet not verified and 
a precise comparison is a goal of further discussions. 

[de Kleer and Reiter, 1987] and [de Kleer, 1988] generalize 
ATMS by propositional clauses, but do not capture non­
monotonic justifications. Brown et. al. [1987] translate 
justifications into boolean equations where non-monotonic 
antecedents are handled by the complement operator. Their 
approach is also non-incremental. If we add a new 
justification for x we must exchange the equation of x. 
Furthermore, they need extra effort to find well-founded (or 
grounded) solutions. 

8. Conclusion 

We developed a correct non-monotonic reason maintenance 
system that is able to deal with exceptions, inconsistencies, 
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and multiple extensions. It overcomes the limits of Doyle's 
TMS and ATMS. TMS only finds a single extension and 
gets in trouble with odd loops. ATMS produces too many 
extensions if there are exceptions of exceptions. Therefore, 
we extended the ATMS by an additional test algorithm 
which uses an efficient technique for exception handling. Its 
complexity is nearly linear in a lot of examples. We 
implemented this algorithm in Common Lisp and used the 
hybrid RMS to realize a simple default prover. 

We verified our hybrid reason maintenance system using 
Reiter's default logic (DL). To enable this task, we related 
DL concepts to the concepts of monotonic inference systems 
and replaced the fixpoint criterion by a simpler criterion for 
assumption sets. 

Finally we discussed some problems caused by special 
techniques for contradiction handling. We proposed to 
resolve logical inconsistencies by semi-normal defaults. 
Then the reason maintenance system must be able to derive 
negated formulas. 
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