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Abstract 
Analogies are often used to help provide expla-
nations of unfamiliar phenomena by comparing 
them to familiar phenomena. Analogical expla­
nations are of two kinds: ones that provide sys­
tematic clarification, and ones that give a causal 
account of why something happened. We 
describe a theory and implementation of ana­
logical mapping that applies to both kinds of 
explanation. The theory says that the elements 
of one analog are mapped onto the elements of 
another on the basis of structural, semantic, and 
pragmatic constraints. Our program ACME 
(Analogical Constraint Mapping Engine) uses 
localist networks of units representing mapping 
hypotheses to determine the correspondences 
between analogs. This paper describes 
ACME'S application to eight analogies that 
have been used by chemistry teachers. 

1 Analogy and Explanation 
Analogies have numerous functions. In problem 

solving and decision making, analogies to past cases can be 
used to suggest solutions to new problems [Holyoak & Tha­
gard 1989, Hammond 1986, Kolodner and Simpson 1988, 
Carbonell 1983, 1986.1. Analogical arguments are some­
times used to reach conclusions, as in the philosophical 
argument for other minds: since I have a mind, and you are 
similar to me in numerous respects, I infer that you have a 
mind also [Thagard 1988]. Analogies have various literary 
uses, serving to evoke emotions ("Love is a rose"). Finally, 
analogies can be very valuable in teaching, when an unfami­
liar phenomenon is explained in terms of something fami­
liar. For example, we can explain heat flow in terms of 
water flow, the structure of the atom in terms of the struc­
ture of the solar system [Gcntner 1983], or variables in a 
programming language in terms of boxes that contain 
objects [Burstein 1986]. 

The research reported in this paper was supported by 
Contract MDA903-86-K-0297 from the Basic 
Research Office of the U.S. Army Research Institute 
for Behavioral and Social Sciences. 

Analogical explanations are of two different kinds, 
corresponding to two senses of "explain" distinguished by 
dictionaries: 

1. To make plain or clear. 
2. To give the reason for or cause of. 

We shall call the first kind of explanation clarifying, and the 
second kind why-answering. Consider how one might 
explain the British parliamentary system to an American 
ignorant of it. The best strategy, at least initially, would be 
to point out correspondences between the American system 
and the British: 

President - Prime Minister 
Congress - Parliament 
House of Representatives - House of Commons 
Senate - House of Lords 

There are problems with this analogy, for example that the 
Prime Minister is a member of parliament while the 
President is not a member of congress, but the analogy 
would give the American a start at understanding the British 
system. In this case, the analogy serves to make plain the 
nature of parliament by displaying its systematic correspon­
dences with something that is (for the American) more fam­
iliar. A different kind of explanation would be prompted by 
questions such as "Why was Margaret Thatcher elected 
Prime Minister in the last British election?" Such why-
questions are a request for causal explanations: the ques­
tioner wants to know what events or situation produced her 
victory. Sometimes explanations that answer such questions 
are analogical: Thatcher's victory was like Bush's victory 
in the 1988 U.S. election, in that the economy was strong 
and the opposition was not very formidable. The point of 
this analogy is to suggest how similar phenomena have 
similar causes. 

Both clarifying and why-answering analogical expla­
nations can be found in an interesting section of the Journal 
of Chemical Education called "Applications and Analo-
gies'. This feature consists of letters from chemistry teach­
ers at both high school and college levels who describe 
analogies that they have found useful in teaching chemistry 
to their students. For example, one analogy compared flow 
of energy through molecular motion in a gas to flow of 
wealth in a population. To learn using the analogies that 
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their teachers give to them, students have to be able to bring 
the familiar everyday events offered as source analogs into 
correspondence with the target chemical phenomena. Of 
thirty-five chemical analogies we have examined, 17 arc 
clarifying analogies and 18 are why-answering. 

A crucial stage in learning by analogy is mapping one 
analog onto another. In order to use a source analog to 
learn about a target analog, people and machines need to be 
able to determine what elements in the target correspond to 
what elements in the source. Holyoak and Thagard Tin 
press] proposed a constraint satisfaction theory of analogi­
cal mapping that was applied to numerous examples and 
used to model the results of several psychological experi­
ments. ACME has now been applied successfully to eight 
additional analogies selected (as being particularly interest­
ing) from the Journal of Chemical Education. Several of 
these analogies are primarily intended to provide the clarify­
ing kind of explanation, while others have as their primary 
function explaining why something occurs. 

2 A Constraint Satisfaction Theory 
Holyoak and Thagard fin press] identified three major 

kinds of constraints that govern how parts of two analogs 
can be placed in correspondence with each other: semantic 
similarity, structural consistency, and pragmatic centrality. 
These constraints are not absolute requirements on success­
ful mappings, but rather arc pressures that operate to some 
degree [Hofstadter 1984]. 

2.1 Structural Consistency 

If we represent analogues as sets of interrelated pro­
positions [Gentner 1983], then structural consistency 
requires that if a proposition P in the target is in correspon­
dence with a proposition P* in the source, then the predicate 
and argument(s) of P must each correspond to the respective 
predicate and argument(s) of P*. If two propositions are 
mapped, then their constituent predicates and arguments 
should also map. Two analogues constitute an isomorphism 
if the mapping between them is structurally consistent and 
one-to-one. Sensitivity to structural consistency has been a 
crucial component in virtually all AI models of analogical 
mapping [e.g., Carbonell 1983; Falkenhainer, Forbus, & 
Gentner 1986, in press; Kolodner & Simpson 1988; Thagard 
& Holyoak 1988; Winston 1980]. Gentner's [1983] "sys-
tematicity principle" can be interpreted as a special case of 
structural consistency, in which correspondences between 
higher-order predicates (those such as "cause", which take 
propositions as arguments) enforce correspondences involv­
ing lower-order relations and their arguments. 

2.2 Semantic Similari ty 

More controversially, Holyoak and Thagard [in press] 
claimed that mappings should also favor correspondences 
between elements that are semantically similar. For exam­
ple, dog should tend to map to cat more than it does to 
house, since cat and dog are both a kind of animal and a 
kind of pet. Sophisticated judgments of the semantic simi­
larity of two analogs cannot rely merely on finding identical 

matches of predicates, but rather require a richer semantics 
to identify similar concepts. The semantic similarity of con­
cepts in two analogs appears to depend on numerous seman­
tic relations, including: 

(1) being represented by the same predicate; and 

(2) being connected by semantic relations such as 
synonymy or kind and part-whole relations. 

2.3 Pragmatic Central i ty 

The constraint of pragmatic centrality favors map­
pings that help to accomplish the purposes of the analogy. 
In why-answering explanations, for example, the purpose is 
generally to give a causal explanation that answers a ques­
tion or set of questions, so the elements of the propositions 
to be explained wi l l be particularly important. Hence a 
mapping should tend to produce correspondences involving 
the important elements. Numerous AI theorists have argued 
that causal relevance to goal accomplishment should 
influence retrieval [Winston 1980, 1982; Schank 1982; Car­
bonell 1983, 1986; Hammond 1986; Kolodner & Simpson 
1988]. We maintain that causal relevance should be con­
sidered in mapping between analogs as well as in the pro­
cess of retrieval. Mapping thus involves the simultaneous 
satisfaction of structural, semantic, and pragmatic con­
straints. 

3 ACME 
3.1 Creating a Network of Mapping Hypotheses 

The input to ACME (Analogical Constraint Mapping 
Engine) consists of predicate-calculus representations of the 
source and target analogs, plus optional information about 
semantic similarity and pragmatic importance. We assume 
that a mapping may be computed either from a target analog 
to a source or vice versa. When given two structures as 
input, ACME automatically generates a network in accord 
with the constraints postulated by the theory. The first step 
in building a mapping network is to construct mapping units 
corresponding to each possible hypothesis about pairings 
between elements. To limit the number of units formed, 
correspondences are only allowed between elements of the 
same basic type: propositions to propositions, n-place predi­
cates to n-place predicates, and objects to objects. ACME 
constructs units to represent all possible pairings of ele­
ments of the same type. 

As the units are established, links are formed between 
them to implement the constraint of structural consistency. 
A l l links are symmetrical, with the same weight regardless 
of direction. A l l excitatory links have a default excitation 
weight given by parameter e. For predicates that lake more 
than one argument, the argument mappings support each 
other. Links are also created between predicate-mapping 
units and their corresponding argument-mapping units. 
Each potential correspondence between propositions thus 
generates an interconnected subnetwork of mutually con­
sistent correspondences between elements of the proposi­
tions. After all the units have been formed, inhibitory links 
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with weights equal to a parameter i are formed to connect 
all units that represent alternative mappings for the same 
element. 

In addition to the units representing mapping 
hypotheses, the network includes two special units. The 
semantic unit is used to convey information about the 
system's prior assessment of the degree of semantic similar­
ity between each pair of meaningful concepts in the target 
and source, and the pragmatic unit similarly is used to con­
vey information about the pragmatic importance of possible 
correspondences. The semantic-similarity constraint is 
enforced by placing excitatory links from the semantic unit 
to all units representing mappings between predicates. The 
weights on these links are made proportional to the degree 
of semantic similarity between the mapped concepts. Simi­
larly, the pragmatic-centrality constraint is represented by 
weights on links connecting the pragmatic unit to relevant 
mapping units. Section 4.2 and Figure 1 below provide an 
example, and a ful l statement of the algorithms used can be 
found in Holyoak and Thagard fin press]. 

3.2 Running the Network 

The manner in which the network is run to arrive at a 
solution is a straightforward application of constraint-
satisfaction methods that have been investigated extensively 
in other applications (see Rumclhart and McClelland 1986]. 
To initialize the network, the activation levels of the seman­
tic and pragmatic units are fixed at 1 and the activations of 
all other units are set to 0. On each cycle of activity, all 
units (except the semantic and pragmatic units) have their 
activation levels updated on the basis of the activation levels 
and weights associated with neighboring units and links. 
The updating procedure is based on that suggested by 
Grossberg [1978]. The activation level of un i t ) on cycle 
t+1 is given by: 

As we noted earlier, many previous simulation 
models of analogical mapping have been proposed [see 
Hall, in press; Thagard, 1988]. Other models have included 
structural, semantic, and pragmatic constraints on mapping, 
but no single model has integrated these constraints as 
ACME does. The most closely related previous simulation 
is the SME program, which was developed as an implemen­
tation of Gentner's structure-mapping theory [Falkenhainer 
et al., 1986; Gentner, 1983, 1989].* ACME and SME have 
several important similarities. Both models derive a global 
"best " mapping from a set of constituent hypotheses about 
element correspondences (the mapping units of ACME and 
the "match hypotheses" of SME). Both programs operate 
on predicate-calculus representations of analogs, and both 
emphasize the role of proposition mappings in enforcing 
mappings between corresponding elements of the proposi­
tions. 

ACME follows SME in using constraints of structural 
consistency and one-to-one mapping, but there are notable 
differences. Whereas SME insists on mappings that are 
one-to-one, ACME operates with pressures that prefer but 
need not necessarily produce such mappings. ACME treats 
isomorphism as a separate constraint from semantic similar­
ity: Whereas SME requires multi-place relations to be 
identical in order to be mapped, ACME allows mappings 
between relations with no similarity beyond having the 
same number of arguments. More generally, ACME 
includes semantic and pragmatic constraints on the mapping 
component, as well as purely structural constraints. ACME 
prefers mappings between elements that are semantically 
similar, whereas SME excludes such information as relevant 
only to stages of analogy outside mapping. To implement 
the constraint of pragmatic centrality, ACME allows prefer­
ences for "presumed" mappings and for mappings involving 
"important" elements. 

Mapping is at least implicitly part of every analogy 
program, but space restrictions prevent us from comparing 
ACME with models that have been proposed by, for exam­
ple, Winston [1980, 1982], Hofstadter [1984], Anderson and 
Thompson [1989], Kolodner and Simpson [1988], Ham­
mond [1986], Carbonell [1982, 1983], and Burstein [1986]. 
For analogies restricted to a single domain in which the 
same predicates and arguments turn up in both structures to 
be mapped, mapping becomes a simple special case of the 
more complex processes used by ACME and SME for 
cross-domain analogies. 

4 Application of ACME to Chemical Analogies 
4.1 Eight Analogies 

ACME hits been successfully applied to a total of 
eight analogies from the Journal of Chemical Education. A 

1 SME runs in several different modes. Our com­
parison here is with SME running in the mode that im­
plements Gentner's structure-mapping theory. 
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few of these were quite simple, whereas others involved 
numerous propositions and complicated mappings. Here is 
a list of the analogies with a brief description of each. The 
first 5 are why-answering analogies, whereas the last 3 are 
clarifying. 

(1) Leveling effect of solvents and opening jars 
[Macomber 1984]. Students have difficulty understanding 
how the basicity of a solvent can affect the apparent acidity 
of a compound. This analogy compares strongly and 
weakly basic solvents to a father and son who differ in their 
abilities to open stuck jars: the father can open some jars 
that are too tightly stuck for the son to open, just as a 
strongly basic solvent can dissociate weaker acids (that have 
protons bound tightly) than can a weakly basic solvent. 

(2) Chemical bonds and tug of war [Tsaperlis 1984]. 
This is intended to help students understand how atoms are 
held together. Atoms with bonds between them are com­
pared to two people playing tug of war with a rope. The 
atoms are bonded together because they compete for elec­
trons, just as the people are held together because they com­
pete for the rope. 

(3) Gas chromatography and store escalators [Star-
key 1986]. Students have the misconception that the 
separation of a mixture of compounds in a gas chromatogra­
phy column involves different lengths of time that each 
compound spends in the mobile (gas) phase, whereas the 
difference really comes in the stationary (liquid) phase. The 
gas column is compared to a store with escalators, where 
shoppers enter at the first floor and make their way up eight 
floors to the top. The different length of time it takes them 
to get to the top does not depend on the amount of time they 
spend in transit on the escalators, but only on how much 
time they spend shopping on the floors. 

(4) Distribution of molecular velocities and distribu­
tion of wealth [White 1981a]. This analogy compares the 
distribution of molecular velocities to the distribution of 
money. Just as a series of financial gains can lead a mil­
lionaire to have an action-filled life, so a series of collisions 
can cause a molecule to gain enough energy to react. 

(5) Soluble vs. insoluble mixtures and marble/magnet 
mixtures [Kjonaas 1984]. Mix ing polar molecules such as 
water and non-polar molecules such as oi l produces an inso­
luble mixture, just as putting marbles and magnets together 
fails to produce a homogeneous mixture because the mag­
nets stick together. 

(6) Chiral molecules and people's hands [Richard­
son 1982]. How chiral molecules react to one another is 
compared to how people are more easily able to shake the 
right hands of other people with their right hands than with 
their left hands. There is no attempt here to explain why 
molecules have these relationships, only to point out sys­
tematic correspondences with human hands. 

(7) Entropy as degree of disorder and classroom 
attire [White 1981b]. In order to convey an understanding 
of entropy, this analogy considers a classroom in which 
every member owns a pair of blue jeans and a white shirt or 
blouse, as well as other clothes. It is highly improbable that 
the class wi l l end up in a uniform state with all of them 
wearing the same color jeans and shirt on a given day. No 
explanation is given of why order and disorder arise in 
chemical phenomena. 

(8) Reactions yields and voter turnout [Rocha-Filho 
1986]. Just as in an election only some of the members of 
the electorate actually vote, so in a chemical reaction the 
actual yield is often less than the theoretical yield. No 
explanation is given of why the theoretical yield is less; the 
point of the analogy is merely to clarify the discrepancy in 
reactions by relating it to the more familiar discrepancy in 
elections. 

In order to apply ACME to them, each of these analo­
gies was formalized in predicate calculus. The resulting 
representations were then used by ACME to generate con­
straint networks. Table 1 gives information about the 
results of running each analogy. It displays for each anal­
ogy the total number of propositions used to represent each 
pair of analogs, the number of units created by the network, 
the number of links set up, the number of cycles of updating 
it took before ACME came up with the correct mapping 
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(when the unit representing the correct mapping for each 
predicate had higher activation than competing units), the 
number of cycles it took the network to settle (when every 
unit had reached asymptote), and two sensitivity measures 
explained in section 4.3. 

4.2 A Sample Network 

Most of the networks produced in these examples are 
too complex to show in a one-page figure, but Figure 1 
shows the network produced for analogy (8) which was by 
far the simplest, requiring only 15 units and 35 links. The 
input for this analogy consisted of only 3 propositions per 
structure: 
Election 

(electorate (number-possible-voters) s1) 
(turnout (number-actual-voters) s2) 
(greater (number-possible-voters number-actual-voters) 

s3) 

Reaction 
(theoretical-yield (number-rcactant-molecules) t l ) 
(actual-yield (number-product-molecules) t2) 
(greater (number-reactant-molecules number-product-

molecules) t3) 

In this case, but not in all the others, the structures are iso­
morphic. The last element in the list is the name of the pro­
position. For conciseness, Figure 1 uses the abbreviations 
EL, TU, G, TY, and AY for the predicates above, and pv, 
av, rm, and pm for the objects. For example, EL=TY is the 
unit that represents the hypothesis that electorate 
corresponds to theoretical-yield. Excitatory links are shown 
by solid lines, while inhibitory links are shown by dotted 
lines. 

Figure 1. 
Network Constructed for the Reaction/Election Analogy 

4.3 Sensitivity Analyses 

All of the simulations reported here have used the 
same parameter values: .05 for excitation. -.2 for inhibition, 
and .1 for decay. In general, lowering excitation and mak­
ing inhibition closer to 0 tends to prolong settling time. 
Increasing decay tends to flatten the activation curves, both 
positive and negative, keeping them closer to 0. Varying 
excitation and inhibition systematically reveals that there is 
a critical value for each. Table 2 lists excitation ceilings 
and inhibition floors for the four major examples. The exci­
tation ceilings are the maximum values that excitation can 
have without the networks requiring more than 100 cycles 
to settle; inhibition here is constant at the default value of 
-.2. The inhibition floors are the minimum values that inhi­
bition must have to de-activate units representing inferior 
hypotheses; excitation here is constant at the default value 
of .05. The excitation ceiling and the inhibition floor indi­
cate the most important respects in which quantitative 
parameter changes in ACME have qualitative effects. 

Analogical mapping is highly sensitive to representa­
tional matters, but ACME's success on the chemical analo­
gies does not depend on our particular encodings. To test 
the representational sensitivity of our inputs, we amal­
gamated the solvents/jars analogy with the bondsAug of war 
analogy and mapped a combined solvents + bonds structure 
with a combined jars + tug of war structure. The resulting 
network had 700 units and 11,788 links, but settled in 52 
cycles, only slighdy more slowly than the networks used in 
the original analogies. ACME found the same mappings for 
the solvents and bonds predicates that it did in the original 
runs, showing that the additional representations did not 
impede its ability to find correct mappings.2 

5 Conclusion 
In sum, the 8 chemical analogies have provided 

interesting additional applications of the constraint satisfac­
tion theory of analogical mapping. There are more than 
twenty analogies in the Journal of Chemical Education that 
we have not yet attempted to model. It will be interesting to 
see if they highlight additional extensions needed to our 
theory and program. The most important future work 
planned for ACME is to integrate it with ARCS, a program 
for modeling the retrieval of analogs [Thagard, Holyoak, 
Nelson, & Gochfeld, 1989]. Retrieval of a source analog 
from a target has also proven understandable in terms of 
satisfaction of a variety of constraints. The psychological 
evidence suggests, however, that retrieval depends more on 
semantic similarity and less on structural consistency than 

2 Holyoak and Thagard tin press] show that the 
space complexity of ACME is 0(n4), considering 
number of links created as a function of number of 
propositions in the input representations. Experiments 
have shown that cycles to settle does not tend to in­
crease with size of network. 
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does mapping, so ARCS differs from ACME in giving a 
much bigger role to semantics. 
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