
Represen ta t i on a n d H idden Bias I I : E l i m i n a t i n g De f in ing L e n g t h Bias 
in Genet ic Search v i a Shuff le Crossover 

Abst rac t 

The t rad i t iona l crossover operator used in genetic 
search exhibits a position-dependent bias called the 
dcfining-length bias. We show how this bias results 
in hidden biases t ha t are difficult to anticipate and 
compensate for. We introduce a new crossover 
operator, shuffle crossover, tha t eliminates the posi­
t ion dependent bias of the t rad i t iona l crossover 
operator by shuffling the representation prior to 
applying crossover. We also present experimental 
results that show tha t shuffle crossover outperforms 
t rad i t iona l crossover on a suite of five function 
opt imizat ion problems. 

1. In t roduc t ion 
The selected knowledge representation serves as a 
strong learning bias: it defines the concept space to 
be searched by the learning algor i thm [Utgoff 1983]. 
Add i t iona l biases are often employed to direct 
search towards favored regions in the space. We 
show tha t unforeseen interactions between the 
representation and search mechanism can result in 
hidden biases t ha t hinder search. We present an 
example where position dependent search biases 
interact w i t h representations of identical expressive­
ness to yield different search behavior. The search 
mechanism we investigate is the crossover operator 
of the genetic a lgor i thm developed by Hol land [Hol­
land 1975]. 

A genetic a lgor i thm (GA) is a powerful 
general-purpose search method based on mechan­
isms abstracted f rom populat ion genetics. The GA 
maintains a set of t r i a l solutions called a popula­
t ion. It operates in cycles called generations tha t 
produce successive populations by survival-of-the-
fittest selection followed by genetic recombination. 
T r ia l solutions are represented as strings called 
chromosomes tha t are usually coded w i th a binary 
character set. 

The two most commonly employed genetic 
search operators are crossover and mutation. Cross­
over produces offspring (new t r i a l solutions) by 
recombining the informat ion f rom two parents in 
the manner i l lustrated in Figure 1. It is the major 
exploratory mechanism of the GA. Muta t ion 
prevents convergence of the populat ion by flipping a 
small number of randomly selected bits to continu­
ously introduce var ia t ion. 

Since its int roduct ion, the GA has been the 
focus of research at tempt ing to better understand 
its power, overcome its weaknesses, and apply it to 
problems call ing for efficient and flexible search 
[Grefenstette 1985, Grefenstette 1987, Schaffer 
1989]. Much of this research has centered on 
representational issues; the effectiveness of the GA 
depends heavily on the chosen representation. In 
this paper we discuss one such issue, the positional 
dependence of str ing representations when t rad i ­
t ional crossover is used, and present a new crossover 
operator, shuffle crossover, tha t eliminates i t . We 
present experimental results tha t indicate shuffle 
crossover is superior to t rad i t iona l crossover. We 
believe that the position dependent bias of the t rad­
i t ional crossover operator is an instance of a general 
knowledge representation problem: unanticipated 
search bias emerging f rom an interact ion between 
the representation and search heuristics. 
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2. Shuf f le Crossover 

Trad i t iona l one-point crossover operates by (1) ran­
domly pair ing two individuals, (2) selecting a ran­
dom position along the str ing, and (3) then exchang­
ing the segments to the r ight of this position (see 
Figure l ) . A side effect of this operation is tha t 
interact ing bits which are relatively far apart on 
the str ing are more l ikely to be disrupted 
(separated) by crossover than bits which are rela­
t ively close together. Conversely, non-interacting 
bits which are close together on the str ing are more 
likely to be treated by crossover as related com­
ponents (i.e., not separated) than bits which are far 
apart . 

Trad i t iona l crossover's bias in favor of short 
schemata (small clusters of neighboring bits) can be 
exploited by placing interact ing bits next to each 
other on the chromosome when designing the 
representation for a part icular problem. There are, 
however, problems w i th this solution. First , i t may 
not be known which bits are related and which are 
not. In fact, the GA is most useful for large, com­
plex, poorly understood search spaces where there is 
l i t t le or no a pr ior i knowledge about which bits 
interact. Second, a linear str ing may not allow all 
interact ing bits to be placed close to each other if 
some of them also interact w i th other bits. Th i rd , 
the task is not simply to place interact ing bits close 
to each other, but also to place non-interacting bits 
as far apart as possible. Unfortunately, there is 
usually no way to position bits on a one-dimensional 
str ing so that their relative locations reflect their 
degree of expected interact ion even when this is 
known. 

Hypothesizing tha t the positional bias of one-
point crossover is more l ikely to work against the 
GA than to aid i t , we developed an alternat ive form 
of crossover, shuffle crossover, to eliminate the bias . 
Shuffle crossover is similar to one-point crossover 
except that it randomly shuffles the bi t positions of 
the two strings in tandem before crossing them over 
and then unshuffles the strings after the segments to 
the r ight of crossover point have been exchanged. 
Thus, crossover no longer has a single, consistent 
positional bias because the positions are randomly 
reassigned each t ime crossover is performed. 

Shuffle crossover is similar, but not identical, 
to Ackley's "un i form" crossover operator [Ack-
ley 1987]. Uni form crossover exchanges bits rather 

1. Hol land [Hol land 1975) proposed the inversion operator 
to amel iorate the posit ional bias, but i ts use requires genes 
tha t can be in terpreted independent of posi t ion. Other 
crossover operators t ha t have less posit ional bias have also 
been proposed, inc lud ing two-po in t crossover 
[De Jong 1975] and punctuated crossover |Schaffer and 
Mor ish ima 1987|. See |Eshelman, Caruana, and 
Schaffer 1989] for a more complete discussion of the 
posit ional bias of various crossover operators. 

than segments, i.e., for each b i t posit ion, bits are 
exchanged between the paired individuals w i th fixed 
probabi l i ty p. The number of bits exchanged w i th 
uniform crossover follows a binary distr ibut ion. 
Shuffle crossover can also be viewed as exchanging 
bits whose shuffled positions are to the r ight of the 
crossover point, however, the distr ibut ion of the 
number of bits exchanged is uni form, just as it is 
w i th t rad i t iona l one-point crossover. This means 
that shuffle crossover preserves the same number of 
schemata as t rad i t iona l crossover (although, of 
course, these wi l l usually not be the same sche­
mata). Moreover, l ike uni form crossover, shuffle 
crossover overcomes the positional bias of t rad i ­
t ional one-point crossover, but w i thout introducing 
an addit ional parameter to define the bi t exchange 
probability. 

In order to exhibit the qual i tat ive difference 
between t rad i t iona l crossover and shuffle crossover, 
we devised two special functions which we call the 
Plateau and Trap functions . Both functions con­
sist of a series of th i r t y independent parameters, 
each represented by a 4-bit gene. The evaluation of 
the chromosome is the sum of the scores of the indi­
v idual genes. In the Plateau function each gene is 
given a score of four if a l l four bits are 07s, other­
wise, a score of zero. In the Trap function each 
gene is given a score of four if al l four bits are O's, 
otherwise its score is determined by assigning one 
half point for each 1. Thus, the Plateau function is 
a series of independent al l-or-nothing subtasks, 
whereas the Trap function is a series of independent 
bimodal subtasks w i th par t ia l credit leading away 
from the global opt imum for the subtask. 

These functions were designed so tha t the 
building blocks, the 4-bit genes, would be indepen­
dent of each other, but so tha t the bits w i th in a 
gene would interact. In order to exhibit the effect of 
positional bias, two representations for these prob­
lems were studied: adjacent, in which the 4 bits in 
each gene are placed next to each other on the chro-
mosome, and distributed, in which the 4 bits in each 
gene are maximally separated (i.e., the 4 bits of 
gene one were at loci 1,31,61 and 91 , etc.) 

Each of these functions was searched 50 times 
wi th both the adjacent and distr ibuted representa­
tions using a population of 30 chromosomes, a mat­
ing rate (crossover rate) of 0.95 and a mutat ion rate 
of 0.01. These are values previously suggested as 
giving generally good search over a range of tasks 
[Grefenstette 1986]. Each search was allowed a 
maximum of 2000 tr ials (chromosome evaluations). 
The results of these experiments are shown in 
Tables 1 and 2. Note tha t the values in these 
tables reflect invert ing (because our GA minimizes) 
and scaling the functions, so tha t the worst possible 

2. Simi lar to Ackley's funct ions of the same name 
|Ackley 1987]. 
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score is one and the best possible score is zero. 

T A B L E 1. The 4-bit Plateau Problem' 

Each cell contains the mean of the best individuals from 50 
genetic searches, each to 2000 trials. The standard error of the 
mean for all cells was less than 0.006. 

As expected, the GA using t rad i t iona l one-point 
crossover does significantly worse using the distr i ­
buted representation than it does using the adjacent 
representation because of the bias against long sche­
mata. Shuffle crossover, however, yields the same 
performance on both tasks w i th both representa­
tions; it has no length bias. 

One interesting difference between the two 
functions is tha t t rad i t iona l one-point crossover out­
performs shuffle crossover on the Trap problem 
using the adjacent representation, but shuffle cross­
over is better on the Plateau problem than t rad i ­
t ional crossover using either representation. 
Al though the T rap funct ion shows that it is possible 
for a task to be. constructed in such a way that the 
bias of the GA w i th t rad i t iona l crossover works to 
advantage, we find tha t this is diff icult to do in 
practice. 

3. Empi r ica l Tests 
Tests w i th the Plateau and T rap functions show 
how t rad i t iona l crossover's position dependent bias 
can influence search performance. They also 
demonstrate tha t shuffle crossover eliminates this 
bias and can yield improved performance. Both of 

these results, however, were obtained w i th functions 
and representations devised to exhibit specific 
characteristics. In this section we at tempt to deter­
mine if t rad i t iona l crossover's defining length bias 
hinders search in practice, and whether shuffle cross-
over eliminates this bias wi thout otherwise hamper­
ing search. To do this, we compare the performance 
of t rad i t ional crossover and shuffle crossover on the 
minimizat ion of five scalar-valued functions used by 
De Jong [De Jong 1975] to test the GA's perfor­
mance on search spaces w i th a var iety of charac­
teristics. The test functions are summarized in 
Table 3. To compare the two methods, we adopted 
an arduous but , we hope, unbiased methodology. 
The objective of this methodology is to determine 
the parameter settings tha t should be used to com­
pare the two crossover operators on the test prob­
lems. 

Grefenstette [Grefenstette 1986] found a set of 
GA parameters (crossover rate, mutat ion rate, 
population size, and scaling window) that were 
opt imal or near-optimal on f l - f5 using t radi t ional 
one-point crossover. Unfortunately, we are unable 
to use the parameters he found because our experi­
ments differ from his in four important ways. First, 
Caruana and Schaffer [Caruana and Schaffer 1988] 
demonstrated the superiority of Gray coding to 
binary coding for these functions; we now use Gray 
coding in all of our experiments . Second, we use an 
improved selection procedure devised by Baker 
[Baker 1987] tha t was not available at the time 
Grefenstette ran his experiments. Th i rd , Grefen­
stette compared online performance at a fixed 
number of evaluations (5000). Gray coding 

3. See |Schaffer et al. 1989] for a discussion of how genetic 
search is influenced by changes in the control parameters. 
4. For an extension of this work that shows mixing binary 
and Gray representations is better yet, see [Caruana, 
Schaffer, and Eshelrnan 1989]. 
5. Online performance is the average performance of all 
trials explored by the search. It is appropriate when every 
trial must be "paid for" during a search [De Jong 1975| 
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improves performance enough tha t comparison at 
5000 evaluations is no longer interesting: on some of 
the functions, the searches consistently find the 
opt imum before 5000 evaluations. Rather than t ry 
to find a new fixed number of evaluations at which 
to compare performance, we use the mean number 
of evaluations required to find the global opt imum 
as our criterion [Ackley 1987]. To locate an 
opt imal or near-optimal parameter set for this cr i ­
terion for the suite of problems, one must compen­
sate for the fact tha t the mean and variance of this 
performance measure wi l l be different for each of 
the five functions; one must normalize for these 
differences. 

We compensated for the relative difficulty of 
the different functions by first estimating how well a 
GA could do on each one independently. To do this, 
we used a meta-GA [Grefenstette 1986] to find the 
best parameters for each of the two crossover 
schemes on each of the five functions. This required 
10 meta-searches. Each meta-search considered 
mutat ion rates from 0.0 to 0.2, crossover rates from 
0.0 to 1.0, and populations of 5 to 200 individuals. 
(We used the elit ist strategy, scaling window = 1, 
and a modified GA that performs restarts - reini­
t ia l iz ing the population w i th random strings — 
when 5 generations in a row fai l to produce a new 
individual.) For each function we selected the per­
formance of the crossover operator that worked 
best. The minimum average number of tr ials to find 
the opt imum for functions f l - f5 were 600, 8872, 
1310, 1944, and 1375 respectively. 

To locate the best single set of parameters for 
each crossover operator for the whole suite of func­
tions, we performed a second set of meta-searches 
using a single performance measure that consisted of 
a weighted sum of the performance on each of the 
test functions: 

where perfi is the performance of the GA on 
functioni (i.e., the number of evaluations required to 
find the opt imum of tha t function) and weighty is 
the average number of evaluations required by the 
best GA for that function (above). This measure is 
at t ract ive because it equalizes the importance of all 
functions by scaling them by their relative diff iculty 
and by compensating for unequal variances. Tota l 
performances near zero indicate that the GA is able 
to do as well on the test functions using a single 
crossover operator and parameter set as it could do 
using the best operator wi th a parameter setting 
optimized for each funct ion. Surprisingly, the two 
meta-GAs found the same best parameter set for 
both crossover operators: population size 10, muta­
tion rate 0.023, and crossover rate 0.6. 

Using these parameter values, each crossover 
operator was used to search each function 50 times. 

These results suggest tha t shuffle crossover is, 
in practice, generally superior to t rad i t ional cross­
over. Shuffle crossover stat ist ical ly outperformed 
t radi t ional crossover on two of the five test func­
tions and is not significantly worse on the other 
three. (Finding two of the five independent tests 
favoring shuffle crossover is itself significant at the 
0.05 level.) Shuffle crossover's to ta l performance is 
also better (though not statist ical ly significantly so) 
than t radi t ional l p t crossover's. (Other experiments 
have consistently given shuffle crossover the edge 
over t radi t ional lpt-crossover in total-performance.) 

4. Discussion 
Inductive learning algorithms use bias in order to 
make learning more effective [Utgoff 1983], For 
example, biasing search towards certain regions of 
the search space is an important means of enabling 
efficient learning from a manageable set of exam­
ples. In the case of the GA, tr ials are allocated to 
clusters of genes based on their observed fitness. 
The GA's bias, as expressed in the schema sampling 
theorem, implies that an exponentially increasing 
number of tr ials wi l l be allocated to sets of bits 
(schemata) occurring in the better performing indi-
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Table 4 shows the average number of function 
evaluations required to find the global opt imum of 
each of the five test functions as well as the mean 
to ta l performance for each crossover operator. 
Lower mean values suggest faster, more effective 
search. The table also contains the results of two-
tai led t-tests of the means obtained w i th the two 
crossover operators. The significantly better per­
formers are shown in bold pr int in the table. 



viduals. However, the GA using t rad i t iona l cross­
over also exhibits a sampling bias tha t is sensitive 
to the position of genes on the chromosome. 

It is recognized tha t the GA's positional bias, 
like most biases, can be detr imental if not properly 
exploited, but it has always been assumed tha t 
there are ways of exploit ing i t . In part icular , genes 
tha t are thought to interact should be placed near 
each other on the chromosome. The assumption has 
been tha t for some classes of problems there are 
natural representations tha t are opt imal or nearly 
opt imal . For example, it seems natura l to place al l 
of the bits coding for a single numeric parameter 
next to each other as was done in the tests on f l - f 5 . 
Unfortunately, i t is not clear tha t this k ind of 
representation wi l l usually, or even often, be good. 
If the funct ion exhibits behavior similar to a par i ty 
funct ion, then t rad i t iona l crossover's posit ional bias 
suggests tha t it would be better to group the least 
significant bits together. In fact, for par i ty prob­
lems, the natura l representation of keeping the bits 
defining each parameter together is quite similar to 
the distr ibuted representations used on the test 
problems in section 2. Thus for par i ty- l ike problems 
the natura l representation is l ikely to be one of the 
worst representations. 

The results presented suggest tha t the natura l 
representation probably is not often the best — or 
perhaps even a good — representation. Any 
at tempt to exploit t rad i t iona l crossover's positional 
bias is in danger of being counterproductive because 
the obvious effects of the bias are counteracted by 
less visible, but st i l l impor tant , effects. Caruana 
and Schaffer noted a similar ly opaque bias resulting 
from an interact ion between representations (binary 
coding and Gray coding) and the mutat ion operator 
[Caruana and Schaffer 1988]. They used the term 
hidden bias to refer to the general class of biases 
resulting f rom unforeseen interact ion between 
representations and search operators. The posi­
t ional bias of t rad i t iona l one-point crossover leads, 
we believe, to another instance of hidden bias. 

The precise mechanisms by which t rad i t ional 
crossover's positional bias hinder search using 
natura l representations is not in tu i t ive ly obvious. 
We hypothesize tha t there are two undesirable 
aspects to the sampling bias caused by t rad i t ional 
crossover's favoring of short schemata. One of these 
is well known, the other is not. First , interact ing 
clusters of bits tha t are far apart on the chromo­
some are less l ikely to propagate together. Second, 
short clusters of non-interact ing genes (i.e. not 
causally related to the good performance, but occur­
r ing by chance in better individuals) are less l ikely 
to be disrupted, contr ibut ing to premature conver­
gence of the gene pool to suboptimal individuals. 
This later phenomenon we call spurious correlation. 

We believe tha t it is the combination of these 
two effects tha t accounts for the behavior observed 

on the test functions. The new shuffle crossover 
operator is designed to el iminate these biases by 
having a schema disruption probabi l i ty tha t is 
independent of schema defining length. More gen­
erally, shuffle crossover provides for better sampling 
of interact ing bits which are far apart (i.e., long 
defining length) and more disruption of neighboring 
bits tha t are only spuriously correlated. It is true 
tha t shuffle crossover w i l l also be more disruptive of 
neighboring bits tha t t ru ly interact , but our data 
shows this to be a price wor th paying. In the 
absence of informat ion prescribing how to work in 
concert w i th crossover's posit ional bias, we recom­
mend el iminat ing this bias altogether. Our results 
indicate tha t el iminat ing this bias is relatively 
s t ra ight forward, incurs l i t t le computat ional cost, 
and is indeed beneficial. 

5. Summary 
Although the positional bias of the t rad i t ional one-
point crossover operator is well known in the GA 
community, l i t t le has been done to suggest how to 
work in concert w i th i t . Our experiments demon­
strate tha t it may be harder to exploit this bias 
than had been thought, and tha t it may be more 
useful to eliminate it v ia shuffle crossover. Our 
experiments indicate tha t shuffle crossover is often 
superior to , and probably not often worse than, 
t rad i t iona l crossover for GA function opt imizat ion. 
We believe tha t our results apply to most domains 
where it is not obvious how to select a representa­
t ion to take advantage of t rad i t ional crossover's 
positional bias. We also believe that the hidden 
bias resulting from the interact ion between t rad i ­
t ional crossover's positional bias and the representa­
t ion is not alone, and that other hidden biases wait 
to be made less hidden and then exploited, if possi­
ble, or eradicated. 
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