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A b s t r a c t 

The task of learning from environment is spec­
ified. It requires the learner to infer the laws of 
the environment in terms of its percepts and 
actions, and use the laws to solve problems. 
Based on research on problem space creation 
and discr iminat ion learning, this paper reports 
an approach in which explorat ion, rule creation 
and rule learning are coordinated in a single 
framework. W i t h this approach, the system 
LIVE creates STRIPS-Iike rules by noticing the 
changes in the environment when actions are 
taken, and later refines the rules by explain­
ing the failures of their predictions. Unlike 
many other learning systems, since L I V E treats 
learning and problem solving as interleaved ac­
t iv i t ies, no t ra in ing instance nor any concept 
hierarchy is necessary to start learning. Fur­
thermore, the approach is capable of discover­
ing hidden features f rom the environment when 
normal d iscr iminat ion process fails to make any 
progress. 

1 I n t r o d u c t i o n 

Whi le solving problems in a new environment, as when 
we learn how to swim, a learning system must explore 
the environment to correlate its actions wi th its senses, 
to induce the laws of the environment, and to create 
feasible problem representations for problem solving. We 
refer to this task as learning from environment, and give 
its specification in Table 1. 
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Given: 
• Actions: Effectors executable in the environ­

ment; 
• Percepts: Objects' features or relations observ­

able from the environment; 
• Constructors: A set of pr imi t ive predicates 

(e.g. =, > ) , functions (e.g. +, *) and logical 
connectives (e.g. A,-¬, and 3); 

• Environment: A process that provides the ob­
servable information and determines the effects 
of the actions; 

• Goal: A state description of the environment; 
Learn: 

• The laws of the environment that predict ac­
tions' effects and reach the given goal. 

Table 1: The Definit ion of Learning form Environment 

For example, consider the Tower of Hanoi as an en­
vironment. Suppose that the learner has actions: (pick 
diskx peg r) and (put diskx pegx) , percepts: (on diskx 

peg x) , (in-hand disk x ) , and (size> diskx d isk y ) , and con­
structors: A, ¬, and 3. To solve problems, the learner 
must learn consequences of its actions and the laws of 
the Tower of Hanoi. The environment enforces its laws 
by refusing to carry out illegal actions. The specified 
learning task has a wide range of complexity. It becomes 
harder as the learner's actions and percepts become more 
environment independent and the environment contains 
larger laws and hidden features. For example, the Tower 
of Hanoi problem becomes much harder if (pick diskx 

pegx) is replaced by more pr imit ive actions like pick(), 
turn-hand(0) and slide-hand(d), and (on diskx pegx) is 
replaced by objects' shape, size, and their locations. 

This paper wi l l focus on the rule creation and rule 
learning approach used by a learning system called LIVE 
that can solve the specified task wi th pr imi t ive per­
cepts (objects' features) and pr imi t ive actions (moving a 
hand). The learned rules are similar to STRIPS's opera­
tors, but they are used for both prediction and problem 
solving, and their prediction does not change the world 
as STRIPS'S add and delete lists. W i t h this approach, 
LIVE creates new rules by noticing the changes caused 
by actions, and later refines them by discr iminat ing the 
failures and successes of their prediction. When the dis­
cr iminat ion process fails, hidden features wi l l be defined 
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by searching back in the history. After briefly describing 
some related work and a survey of the L I V E system (de­
tails of L I V E ' S other components, such as exploring, plan-
ning w i th incomplete rules, integrat ing plan execution 
w i th learning, and construct ing qual i tat ive predicates 
f rom numerical percepts, w i l l be discussed in another 
paper [Shen, 1989b]), we w i l l discuss the three parts of 
the rule creation and rule learning method and demon­
strate them w i th examples. 

2 Related Work 
There are many approaches to the problem of rule cre­
at ion and rule learning. The candidate el iminat ion al­
gor i thm [Mitchel l et a/., 1983] is well known for learning 
conjunctive rules w i th a given concept hierarchy. Qu in-
lan's ID3 [1987] is probably the best example of a system 
for learning disjunct ive rules f rom many examples when 
learning and problem solving are separated. For discrim­
inat ion learning, Vere [1980] uses it as counterfactuals, 
and Langley [1987] util izes it in his S A G E system and 
develops a theory. More recently, Falkenhainer [1988] 
uses discr iminat ion as disanalogy, and Newell and Flynn 
[Newell, 1987] use it to modi fy incorrect productions in 
SOAR. Carbonel l and G i l [1987] also use a similar method 
in learning by exper imentat ion. 

W i t h respect to automatic creation of a problem space, 
Hayes and Simon [1974] have bui l t a system capable of 
construct ing problem spaces f rom wr i t ten English, which 
is extended by Yost and Newell [Newell, 1987] in the 
SOAR system. However, few at tempts have been made 
to create problem spaces f rom interactions w i th an envi­
ronment, al though Drescher [1987] did some interesting 
work on implement ing early Piagetian learning. As for 
discovering hidden features, the B A C O N system [Langley 
et al, 1983] creates new terms to infer laws from given 
data. [Mi tchel l et a/., 1983] and [Utgoff, 1986] present 
methods for detecting the insufficiency of a concept de­
script ion language in problem solving and define new 
terms. [Diet ter ich and Michalski , 1983] gives a survey 
on some of the exist ing constructive induction systems 
for discovering hidden features in t ime-independent en­
vironments (see Section 6), and present their solutions. 

3 Overview of L I V E 
The L I V E system is an extension of the GPS problem 
solving framework w i th a learning component that cre­
ates and learns rules through environmental explorat ion. 
Each rule consists of three parts: condi t ion, action and 
predict ion, al l constructed in terms of the given per­
cepts, actions and constructors. When applied forward, 
a rule whose condit ion matches the current environmen­
tal state can predict the consequence of the action per­
formed; when applied backward, a rule that predicts 
the current goal can be used to propose new subgoals 
as if it were a problem reduction rule or inference rule. 
LIVE is capable of learning disjunct ive rules when con­
structors include logical connectives In 
this case, the form of the condit ions and predictions is: 

1 Solution Planning: find the differences between 
the goals and the current state; for each differ­
ence find a rule, order the differences by their 
rules; 

2 If the first difference has no rule, propose an 
explorat ion p lan; 

3 If an explorat ion plan exists, then select an ac­
t ion f rom i t , else select the first difference wi th 
its rule f rom the solution plan; 

4 If the rule is not executable, then identi fy new 
differences, order them by their rules, and in­
sert them in the solution plan, go to 3; 

5 Make predict ion and execute the action; 
6 If the outcome is expected, then go to 3; 

If the outcome is surprising, then explain the 
surprise and revise the rule set; 
If the current action is f rom the solution plan, 
then go to 1; else go to 3. 

Table 2: The Out l ine of L I V E ' S A lgo r i thm 

As we can see in the a lgor i thm outl ine in Table 2, when 
L I V E is solving problems in a new environment, it wi l l 
alternate its at tent ion between environment exploration 
and problem solving because no knowledge is given at 
the outset. The decision for al ternat ion mainly depends 
on surprises, situations where an action's consequences 
violate its predict ion. When no rule can be found for 
solving the problem, LIVE wi l l generate and execute an 
exploration plan, or a sequence of actions, seeking for 
surprises to extend the rule set. When new rules are 
learned, problem solving is resumed and a solution plan 
may be constructed through means-ends analysis. Since 
the correctness of a solution plan cannot be guaranteed, 
learning is inevitable at execution t ime. When a rule's 
prediction fails dur ing execution, LIVE wi l l revise the rule 
set and then plan another solution for the problem. 

To i l lustrate the rule representation and the algor i thm, 
let us consider again the Tower of Hanoi environment, 
and suppose the in i t ia l state is (on d isk l pegl) (on disk2 
peg l ) (on disk3 peg l ) . Since L I V E starts wi th no rules at 
al l , it does not know how to reach the given goal stale: 
(on d isk l peg3) (on disk2 peg3) (on disk3 peg3). So it 
generates an explorat ion plan, say, pick up a disk from 
pegl and then put it down on peg2. RuleO and Rule l are 
created in the explorat ion. Rule l is defined as follows: 

After the explorat ion, LIVE plans to put disks on peg3 
one by one, believing that the order is unimportant . As 
a result, d isk l is successfully put on peg3, but not disk2. 
After (put disk2 peg3), L I V E is surprised that disk2 is 
st i l l in the hand. An explanation for the surprise is then 
found (details wi l l be discussed later), and LIVE splits 
the above rule in to two w i th the help of the explanation 
(the 3 quantif ier is necessary because the match process 
examines the action and the positive condit ion before 
any negative condi t ion, and disky is a free variable here): 
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After these rules are learned, L I V E begins to plan an­
other solution but finds that the current rules cause un-
resolvable goal interactions: no matter which goal is 
achieved first, it wi l l be destroyed in order to achieve 
other goals. At this point , L I V E switches itself f rom 
problem solving to explorat ion, in the hope that new 
surprises wi l l arise for learning better rules. 

4 Creat ing New Rules through 
Explorat ion 

LIVE learns f rom a new environment by correlating its ac­
tions w i th its percepts. At the very beginning, i t simply 
executes its actions and compares the states before and 
after. When not ic ing that facts disappear and emerge as 
actions are taken, the system wi l l bui ld a new rule, us­
ing the disappeared facts as conditions, and the emerged 
facts plus the negation of disappeared facts as predic­
tions. For example, to figure out what (pick diskx pegx) 
does, L I V E may try (pick d isk l peg l ) , and then f ind d isk l 
moved f rom pegl to its hand. RuleO is then bui l t (Rule l 
is bui l t in the same way): 

] 

The main objective for rule creation is to keep the 
new rule as general as possible. In the example above, 
the rule is indeed most general because the action hap­
pens to make one and only one change. But what if there 
is no change at a l l , or there are many changes? In the 
case of no change, as when a robot hand does put( ) when 
nothing is in its hand, the system wi l l build a new rule 
wi th equal condit ions and predictions made by the facts 
related to the act ion. For example, a new rule about 
the put( ) wi l l use the posit ion of the hand both as the 
condit ion and as the predict ion because the hand is the 
actor. In the example above, if (pick d isk l pegl) did 
not change anyth ing, then (on diskx pegx) wi l l also be 
the prediction because diskx and pegx appear in the ac­
t ion. In the case of many changes, the system wi l l select 
necessary relational changes just adequate for specifying 
the action. For example, suppose that a robot hand is 
above a stack of disks (disk1 , disk2 , ..., disk,;), when it 
turns away all the relations (direction= hand disk i) wi l l 
become false. In this case, LIVE wi l l not include all these 
relations in the rule but choose one, any one, of them. 

Perhaps a more impor tant question to ask here is what 
if there are no given relation predicates, and all that can 
be perceived are objects' features such as shape, size, 
and location. The answer is to construct new relation 
predicates by not ic ing the features that changed [Shen, 
1989b], However, we wi l l not discuss this topic further 
in this paper. 

5 Spl i t t ing Rules by Explaining 
Surprises 

The newly constructed rules, as we saw in the last sec­
t ion, are clearly over-general and incomplete, but they 
serve as a springboard for further exploration. Because 
of their generality, L I V E wi l l have chances to make mis­
takes, to be surprised, and hence to increase its knowl­
edge about the environment. 

Incomplete rules can be easily identified in LIVE, be­
cause all rules predict and LIVE compares their predic­
tions wi th the actual outcomes in the environment when­
ever a rule's action is executed. A surprise occurs when 
the actual outcomes falsify the predictions, and the rule 
that made the predictions is the faulty rule. 

L I V E uses discrimination to revise its rules. It remem­
bers each rule's latest application, which contains the 
rule index, a state, and the rule's variable bindings. Once 
a rule causes a surprise, L I V E wi l l search for the rule's last 
application, find the difference (using Langley's method 
[1987]) between the state now and the state then, and 
use the differences found to split the rule into two. 

For example, suppose the current state is (on d isk l 
peg3) (on disk3 pegl) (in-hand disk2) (size> disk3 d isk l ) 
(size> disk2 d isk l ) (size> disk3 disk2), and L I V E tries 
to put disk2 on pegl with the prediction ( in-hand disk2) 
made by Rule2 wi th variable bindings: ((disky . disk3) 
(pegx . pegl) (diskx . disk2)). After executing (put 
disk2 pegl ) , L I V E is surprised because disk2 is now on 
peg l . To explain the surprise, the system fetches the 
rule's last application which contains a state: (on d isk l 
peg3) (on disk3 pegl) (in-hand disk2) (size> disk3 d isk l ) 
(size> disk2 disk l ) (size> disk3 disk2), and bindings: 
((disky . d isk l ) (pegx . peg3) (diskx . disk2)). Com­
paring these two applications, LIVE finds the difference 
to be (size> diskx disky) A (on disky pegx) (the details 
are omit ted here because readers can find similar exam­
ples in [Langley, 1987]). Based on the difference, Rule2 
is then split into two new rules (shown below): one is 
a variant of the old rule wi th the condit ion augmented 
by the difference; the other is a new rule, whose condi­
tion combines the old condition w i th the negation of the 
difference, and whose prediction is the surprising conse­
quences (constructed by the same method used in rule 
creation). Note that LIVE keeps both rules after split­
t ing, and this is one of the main distinctions between 
LlVE's discrimination process and the one employed by 
Langley [ 1987]; for if Rule2 were thrown away when split­
t ing Ru le l , as his method does, the good Rule3 might 
never be found. 
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reason and the rule later becomes too specific? Such 
rules w i l l be wasted and new rules w i l l be re-learned. 
To prevent learning wasted rules again, LIVE wi l l reject 
an explanation if the result of sp l i t t ing is equivalent to 
some existing rule. Second, it seems that even though 
the order of surprises may cause rules' condit ions to be 
bui l t differently, the rules learned are always useful and 
effective for LIVE to reach the given goal, as we have 
found in many running examples. T h i r d , i f the outcomes 
include more changes than predicted, no surprise arises, 
but LIVE wi l l remember those extra changes. In further 
plan execution, if these changes violate the conditions 
of the later rules in the plan, LIVE wi l l then insert the 
changes in to the rule's predictions. 

6 Discovering and Assimi lat ing Hidden 
Features 

Previous research in d iscr iminat ion learning has devel­
oped many methods for finding the cr i t ical difference 
between two states, but what if the two states have no 
difference at a l l , as when two pairs of green peas look ex­
actly the same but produce different offspring? In this 
case, we say that the environment has hidden features, 
something unobservable that yet can discriminate two 
states that appear identical. 

LIVE has two ways to discover hidden features, de­
pending on whether an environment is t ime dependent 
or not. In a t ime-independent environment, where states 
do not depend on the previous actions, LIVE discovers 
hidden features by apply ing its constructor functions to 
the exist ing features and test ing whether the result dis­
criminates the ambiguous states. For example, when 
predict ing whether a balance-beam [Siegler, 1983] wi l l 
t ip or balance, L I V E discovers the invisible " torque" con­
cept by mu l t ip l y ing distance and weight. (This kind of 
hidden features is normal ly categorized by the term con­
structive induction.) In t ime-dependent environments, 
where states do depend on the previous actions, L I V E 
discovers hidden features by searching back in its his­
tory to find differences in the states preceding the two 
indistinguishable states. We w i l l give a detailed descrip­
t ion of the discovery of genes in a later section. 

Discovering hidden features is only the first half of the 
whole story; they have to be assimilated into the sys­
tem to be useful in the future. In a t ime-independent 
environment, since hidden features are defined in terms 
of observables, the system can simply use the newly de­
fined features as if they are visible because they are com­
putable f rom the observables. For example, when the 
concept of torque is discovered by a system that per­
ceives only objects' distances and weights, the concept 
wi l l s imply be added as another object feature. Any rule 
that needs torque to discriminate its condit ion can use 
it by comput ing the value weight*distance. In a t ime-
dependent environment, since hidden features determine 
the observables, two addi t ional things must be done be­
fore these features can be used: determine how the h id­
den features define the observables; and determine how 
the hidden features are inherited through actions. One 
strategy is used for both tasks: test ing al l the construc­

tor functions to find one that is consistent w i t h all the 
examples collected. We wi l l have more to say about this 
later when LIVE at tempts to discover genes. 

Al though LiVE's discovering method has been tested 
in both t ime-independent and t ime-dependent environ­
ments and the hidden features to be discovered can be 
quite complex in principle (previous discovered features 
can be used to discover new features), it depends heavily 
on the constructors that are given. For example, if * is 
not given, no features like torque can be discovered. In 
the future, we hope LIVE wi l l start w i th a parsimonious, 
domain independent set of pr imit ives f rom which neces­
sary constructors like * can be constructed dur ing the 
interaction w i th environment. Some early results along 
this direction have been reported in [Shen, 1989a]. 

7 Solving the Low-Level Tower of Hanoi 

In this section, we complete the description of how L I V E 
learns a set of correct and useful rules in the Tower of 
Hanoi environment. We call it low-level, because LIVE's 
innate percepts and actions do not, include high-level 
concepts and actions that previous studies have used. 
In this environment, no matter what the in i t ia l state is, 
LIVE always creates a set of good rules (different rules 
may be learned in different runs) and reaches the given 
goal state. In the run we have been ta lk ing about so 
far, it takes LIVE 35 steps, including both actions and 
proposing subgoals, to solve the problem. We have ex­
plained how RuleO through Rule3 are created. In the 
later stage, LIVE meets three more surprises, the first 
surprise conies when it tries to pick up a disk when an­
other disk is in the hand, which splits RuleO into RuleO 
and Rule4; the second surprise comes when it tries to 
put a bigger disk on a smaller one, which splits Rule3 
into Rule3 and Rule5; the th i rd surprise comes when it 
tries to pick up a bigger disk underneath a smaller disk, 
which spilts RuleO into RuleO and Rule6. The following 
is a list of all seven rules learned by L I V E : 
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9 Conclusion 
In this paper, the problem of learning and problem solv­
ing in new environments is specified as a problem of cor-
relat ing a learner's percepts and actions and inferr ing 
the rules f rom the given environment. A discr iminat ion-
based learning method is investigated that creates gen­
eral rules by not ic ing the changes in the environment, 
and then specifies the rules by explaining their failures in 
predict ion. The method has two dist inct characteristics. 
First , when an over-general rule is spl i t , the method wi l l 
keep both new rules for further development. Second, 
when the discr iminat ion process is unable to find any 
difference between a success and a fai lure, the method 
wi l l define hidden features in terms of existing or histor­
ical features. We have been investigating the method in 
several very different domains and further studies are fo­
cusing on apply ing it to more complex exploration tasks 
and learning problem solving strategies. 
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