
Rule Crea t ion and Rule Learn ing t h rough
Env i ronmen ta l Exp lo ra t ion

W e i - M i n Shen*
School of Computer Science
Carnegie Mellon University

Pit tsburgh, PA. 15213, U.S.A.
email: shen@cs.cmu.edu

H e r b e r t A . S imon
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA. 15213, U.S.A.
email: has@cs.cmu.edu

A b s t r a c t

The task of learning from environment is spec­
ified. It requires the learner to infer the laws of
the environment in terms of its percepts and
actions, and use the laws to solve problems.
Based on research on problem space creation
and discr iminat ion learning, this paper reports
an approach in which explorat ion, rule creation
and rule learning are coordinated in a single
framework. W i t h this approach, the system
LIVE creates STRIPS-Iike rules by noticing the
changes in the environment when actions are
taken, and later refines the rules by explain­
ing the failures of their predictions. Unlike
many other learning systems, since L I V E treats
learning and problem solving as interleaved ac­
t iv i t ies, no t ra in ing instance nor any concept
hierarchy is necessary to start learning. Fur­
thermore, the approach is capable of discover­
ing hidden features f rom the environment when
normal d iscr iminat ion process fails to make any
progress.

1 I n t r o d u c t i o n

Whi le solving problems in a new environment, as when
we learn how to swim, a learning system must explore
the environment to correlate its actions wi th its senses,
to induce the laws of the environment, and to create
feasible problem representations for problem solving. We
refer to this task as learning from environment, and give
its specification in Table 1.

"This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 4976,
Amendment 20, monitored by the:

Avionics Laboratory
Air Force Wright Aeronautical Laboratories
Aeronautical Systems Division (AFSC)
United States Air Force
Wright-Patterson AFB, OHIO 45433-6543

under Contract F33615-87-C-1499.
The views and conclusions contained in this document are

those of the authors and should not be interpreted as rep­
resenting the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US
Government.

Given:
• Actions: Effectors executable in the environ­

ment;
• Percepts: Objects' features or relations observ­

able from the environment;
• Constructors: A set of pr imi t ive predicates

(e.g. =, >) , functions (e.g. +, *) and logical
connectives (e.g. A,-¬, and 3);

• Environment: A process that provides the ob­
servable information and determines the effects
of the actions;

• Goal: A state description of the environment;
Learn:

• The laws of the environment that predict ac­
tions' effects and reach the given goal.

Table 1: The Definit ion of Learning form Environment

For example, consider the Tower of Hanoi as an en­
vironment. Suppose that the learner has actions: (pick
diskx peg r) and (put diskx pegx) , percepts: (on diskx

peg x) , (in-hand disk x) , and (size> diskx d isk y) , and con­
structors: A, ¬, and 3. To solve problems, the learner
must learn consequences of its actions and the laws of
the Tower of Hanoi. The environment enforces its laws
by refusing to carry out illegal actions. The specified
learning task has a wide range of complexity. It becomes
harder as the learner's actions and percepts become more
environment independent and the environment contains
larger laws and hidden features. For example, the Tower
of Hanoi problem becomes much harder if (pick diskx

pegx) is replaced by more pr imit ive actions like pick(),
turn-hand(0) and slide-hand(d), and (on diskx pegx) is
replaced by objects' shape, size, and their locations.

This paper wi l l focus on the rule creation and rule
learning approach used by a learning system called LIVE
that can solve the specified task wi th pr imi t ive per­
cepts (objects' features) and pr imi t ive actions (moving a
hand). The learned rules are similar to STRIPS's opera­
tors, but they are used for both prediction and problem
solving, and their prediction does not change the world
as STRIPS'S add and delete lists. W i t h this approach,
LIVE creates new rules by noticing the changes caused
by actions, and later refines them by discr iminat ing the
failures and successes of their prediction. When the dis­
cr iminat ion process fails, hidden features wi l l be defined

Shen and Simon 675

by searching back in the history. After briefly describing
some related work and a survey of the L I V E system (de­
tails of L I V E ' S other components, such as exploring, plan-
ning w i th incomplete rules, integrat ing plan execution
w i th learning, and construct ing qual i tat ive predicates
f rom numerical percepts, w i l l be discussed in another
paper [Shen, 1989b]), we w i l l discuss the three parts of
the rule creation and rule learning method and demon­
strate them w i th examples.

2 Related Work
There are many approaches to the problem of rule cre­
at ion and rule learning. The candidate el iminat ion al­
gor i thm [Mitchel l et a/., 1983] is well known for learning
conjunctive rules w i th a given concept hierarchy. Qu in-
lan's ID3 [1987] is probably the best example of a system
for learning disjunct ive rules f rom many examples when
learning and problem solving are separated. For discrim­
inat ion learning, Vere [1980] uses it as counterfactuals,
and Langley [1987] util izes it in his S A G E system and
develops a theory. More recently, Falkenhainer [1988]
uses discr iminat ion as disanalogy, and Newell and Flynn
[Newell, 1987] use it to modi fy incorrect productions in
SOAR. Carbonel l and G i l [1987] also use a similar method
in learning by exper imentat ion.

W i t h respect to automatic creation of a problem space,
Hayes and Simon [1974] have bui l t a system capable of
construct ing problem spaces f rom wr i t ten English, which
is extended by Yost and Newell [Newell, 1987] in the
SOAR system. However, few at tempts have been made
to create problem spaces f rom interactions w i th an envi­
ronment, al though Drescher [1987] did some interesting
work on implement ing early Piagetian learning. As for
discovering hidden features, the B A C O N system [Langley
et al, 1983] creates new terms to infer laws from given
data. [Mi tchel l et a/., 1983] and [Utgoff, 1986] present
methods for detecting the insufficiency of a concept de­
script ion language in problem solving and define new
terms. [Diet ter ich and Michalski , 1983] gives a survey
on some of the exist ing constructive induction systems
for discovering hidden features in t ime-independent en­
vironments (see Section 6), and present their solutions.

3 Overview of L I V E
The L I V E system is an extension of the GPS problem
solving framework w i th a learning component that cre­
ates and learns rules through environmental explorat ion.
Each rule consists of three parts: condi t ion, action and
predict ion, al l constructed in terms of the given per­
cepts, actions and constructors. When applied forward,
a rule whose condit ion matches the current environmen­
tal state can predict the consequence of the action per­
formed; when applied backward, a rule that predicts
the current goal can be used to propose new subgoals
as if it were a problem reduction rule or inference rule.
LIVE is capable of learning disjunct ive rules when con­
structors include logical connectives In
this case, the form of the condit ions and predictions is:

1 Solution Planning: find the differences between
the goals and the current state; for each differ­
ence find a rule, order the differences by their
rules;

2 If the first difference has no rule, propose an
explorat ion p lan;

3 If an explorat ion plan exists, then select an ac­
t ion f rom i t , else select the first difference wi th
its rule f rom the solution plan;

4 If the rule is not executable, then identi fy new
differences, order them by their rules, and in­
sert them in the solution plan, go to 3;

5 Make predict ion and execute the action;
6 If the outcome is expected, then go to 3;

If the outcome is surprising, then explain the
surprise and revise the rule set;
If the current action is f rom the solution plan,
then go to 1; else go to 3.

Table 2: The Out l ine of L I V E ' S A lgo r i thm

As we can see in the a lgor i thm outl ine in Table 2, when
L I V E is solving problems in a new environment, it wi l l
alternate its at tent ion between environment exploration
and problem solving because no knowledge is given at
the outset. The decision for al ternat ion mainly depends
on surprises, situations where an action's consequences
violate its predict ion. When no rule can be found for
solving the problem, LIVE wi l l generate and execute an
exploration plan, or a sequence of actions, seeking for
surprises to extend the rule set. When new rules are
learned, problem solving is resumed and a solution plan
may be constructed through means-ends analysis. Since
the correctness of a solution plan cannot be guaranteed,
learning is inevitable at execution t ime. When a rule's
prediction fails dur ing execution, LIVE wi l l revise the rule
set and then plan another solution for the problem.

To i l lustrate the rule representation and the algor i thm,
let us consider again the Tower of Hanoi environment,
and suppose the in i t ia l state is (on d isk l pegl) (on disk2
peg l) (on disk3 peg l) . Since L I V E starts wi th no rules at
al l , it does not know how to reach the given goal stale:
(on d isk l peg3) (on disk2 peg3) (on disk3 peg3). So it
generates an explorat ion plan, say, pick up a disk from
pegl and then put it down on peg2. RuleO and Rule l are
created in the explorat ion. Rule l is defined as follows:

After the explorat ion, LIVE plans to put disks on peg3
one by one, believing that the order is unimportant . As
a result, d isk l is successfully put on peg3, but not disk2.
After (put disk2 peg3), L I V E is surprised that disk2 is
st i l l in the hand. An explanation for the surprise is then
found (details wi l l be discussed later), and LIVE splits
the above rule in to two w i th the help of the explanation
(the 3 quantif ier is necessary because the match process
examines the action and the positive condit ion before
any negative condi t ion, and disky is a free variable here):

676 Machine Learning

After these rules are learned, L I V E begins to plan an­
other solution but finds that the current rules cause un-
resolvable goal interactions: no matter which goal is
achieved first, it wi l l be destroyed in order to achieve
other goals. At this point , L I V E switches itself f rom
problem solving to explorat ion, in the hope that new
surprises wi l l arise for learning better rules.

4 Creat ing New Rules through
Explorat ion

LIVE learns f rom a new environment by correlating its ac­
tions w i th its percepts. At the very beginning, i t simply
executes its actions and compares the states before and
after. When not ic ing that facts disappear and emerge as
actions are taken, the system wi l l bui ld a new rule, us­
ing the disappeared facts as conditions, and the emerged
facts plus the negation of disappeared facts as predic­
tions. For example, to figure out what (pick diskx pegx)
does, L I V E may try (pick d isk l peg l) , and then f ind d isk l
moved f rom pegl to its hand. RuleO is then bui l t (Rule l
is bui l t in the same way):

]

The main objective for rule creation is to keep the
new rule as general as possible. In the example above,
the rule is indeed most general because the action hap­
pens to make one and only one change. But what if there
is no change at a l l , or there are many changes? In the
case of no change, as when a robot hand does put() when
nothing is in its hand, the system wi l l build a new rule
wi th equal condit ions and predictions made by the facts
related to the act ion. For example, a new rule about
the put() wi l l use the posit ion of the hand both as the
condit ion and as the predict ion because the hand is the
actor. In the example above, if (pick d isk l pegl) did
not change anyth ing, then (on diskx pegx) wi l l also be
the prediction because diskx and pegx appear in the ac­
t ion. In the case of many changes, the system wi l l select
necessary relational changes just adequate for specifying
the action. For example, suppose that a robot hand is
above a stack of disks (disk1 , disk2 , ..., disk,;), when it
turns away all the relations (direction= hand disk i) wi l l
become false. In this case, LIVE wi l l not include all these
relations in the rule but choose one, any one, of them.

Perhaps a more impor tant question to ask here is what
if there are no given relation predicates, and all that can
be perceived are objects' features such as shape, size,
and location. The answer is to construct new relation
predicates by not ic ing the features that changed [Shen,
1989b], However, we wi l l not discuss this topic further
in this paper.

5 Spl i t t ing Rules by Explaining
Surprises

The newly constructed rules, as we saw in the last sec­
t ion, are clearly over-general and incomplete, but they
serve as a springboard for further exploration. Because
of their generality, L I V E wi l l have chances to make mis­
takes, to be surprised, and hence to increase its knowl­
edge about the environment.

Incomplete rules can be easily identified in LIVE, be­
cause all rules predict and LIVE compares their predic­
tions wi th the actual outcomes in the environment when­
ever a rule's action is executed. A surprise occurs when
the actual outcomes falsify the predictions, and the rule
that made the predictions is the faulty rule.

L I V E uses discrimination to revise its rules. It remem­
bers each rule's latest application, which contains the
rule index, a state, and the rule's variable bindings. Once
a rule causes a surprise, L I V E wi l l search for the rule's last
application, find the difference (using Langley's method
[1987]) between the state now and the state then, and
use the differences found to split the rule into two.

For example, suppose the current state is (on d isk l
peg3) (on disk3 pegl) (in-hand disk2) (size> disk3 d isk l)
(size> disk2 d isk l) (size> disk3 disk2), and L I V E tries
to put disk2 on pegl with the prediction (in-hand disk2)
made by Rule2 wi th variable bindings: ((disky . disk3)
(pegx . pegl) (diskx . disk2)). After executing (put
disk2 pegl) , L I V E is surprised because disk2 is now on
peg l . To explain the surprise, the system fetches the
rule's last application which contains a state: (on d isk l
peg3) (on disk3 pegl) (in-hand disk2) (size> disk3 d isk l)
(size> disk2 disk l) (size> disk3 disk2), and bindings:
((disky . d isk l) (pegx . peg3) (diskx . disk2)). Com­
paring these two applications, LIVE finds the difference
to be (size> diskx disky) A (on disky pegx) (the details
are omit ted here because readers can find similar exam­
ples in [Langley, 1987]). Based on the difference, Rule2
is then split into two new rules (shown below): one is
a variant of the old rule wi th the condit ion augmented
by the difference; the other is a new rule, whose condi­
tion combines the old condition w i th the negation of the
difference, and whose prediction is the surprising conse­
quences (constructed by the same method used in rule
creation). Note that LIVE keeps both rules after split­
t ing, and this is one of the main distinctions between
LlVE's discrimination process and the one employed by
Langley [1987]; for if Rule2 were thrown away when split­
t ing Ru le l , as his method does, the good Rule3 might
never be found.

Shen and Simon 677

reason and the rule later becomes too specific? Such
rules w i l l be wasted and new rules w i l l be re-learned.
To prevent learning wasted rules again, LIVE wi l l reject
an explanation if the result of sp l i t t ing is equivalent to
some existing rule. Second, it seems that even though
the order of surprises may cause rules' condit ions to be
bui l t differently, the rules learned are always useful and
effective for LIVE to reach the given goal, as we have
found in many running examples. T h i r d , i f the outcomes
include more changes than predicted, no surprise arises,
but LIVE wi l l remember those extra changes. In further
plan execution, if these changes violate the conditions
of the later rules in the plan, LIVE wi l l then insert the
changes in to the rule's predictions.

6 Discovering and Assimi lat ing Hidden
Features

Previous research in d iscr iminat ion learning has devel­
oped many methods for finding the cr i t ical difference
between two states, but what if the two states have no
difference at a l l , as when two pairs of green peas look ex­
actly the same but produce different offspring? In this
case, we say that the environment has hidden features,
something unobservable that yet can discriminate two
states that appear identical.

LIVE has two ways to discover hidden features, de­
pending on whether an environment is t ime dependent
or not. In a t ime-independent environment, where states
do not depend on the previous actions, LIVE discovers
hidden features by apply ing its constructor functions to
the exist ing features and test ing whether the result dis­
criminates the ambiguous states. For example, when
predict ing whether a balance-beam [Siegler, 1983] wi l l
t ip or balance, L I V E discovers the invisible " torque" con­
cept by mu l t ip l y ing distance and weight. (This kind of
hidden features is normal ly categorized by the term con­
structive induction.) In t ime-dependent environments,
where states do depend on the previous actions, L I V E
discovers hidden features by searching back in its his­
tory to find differences in the states preceding the two
indistinguishable states. We w i l l give a detailed descrip­
t ion of the discovery of genes in a later section.

Discovering hidden features is only the first half of the
whole story; they have to be assimilated into the sys­
tem to be useful in the future. In a t ime-independent
environment, since hidden features are defined in terms
of observables, the system can simply use the newly de­
fined features as if they are visible because they are com­
putable f rom the observables. For example, when the
concept of torque is discovered by a system that per­
ceives only objects' distances and weights, the concept
wi l l s imply be added as another object feature. Any rule
that needs torque to discriminate its condit ion can use
it by comput ing the value weight*distance. In a t ime-
dependent environment, since hidden features determine
the observables, two addi t ional things must be done be­
fore these features can be used: determine how the h id­
den features define the observables; and determine how
the hidden features are inherited through actions. One
strategy is used for both tasks: test ing al l the construc­

tor functions to find one that is consistent w i t h all the
examples collected. We wi l l have more to say about this
later when LIVE at tempts to discover genes.

Al though LiVE's discovering method has been tested
in both t ime-independent and t ime-dependent environ­
ments and the hidden features to be discovered can be
quite complex in principle (previous discovered features
can be used to discover new features), it depends heavily
on the constructors that are given. For example, if * is
not given, no features like torque can be discovered. In
the future, we hope LIVE wi l l start w i th a parsimonious,
domain independent set of pr imit ives f rom which neces­
sary constructors like * can be constructed dur ing the
interaction w i th environment. Some early results along
this direction have been reported in [Shen, 1989a].

7 Solving the Low-Level Tower of Hanoi

In this section, we complete the description of how L I V E
learns a set of correct and useful rules in the Tower of
Hanoi environment. We call it low-level, because LIVE's
innate percepts and actions do not, include high-level
concepts and actions that previous studies have used.
In this environment, no matter what the in i t ia l state is,
LIVE always creates a set of good rules (different rules
may be learned in different runs) and reaches the given
goal state. In the run we have been ta lk ing about so
far, it takes LIVE 35 steps, including both actions and
proposing subgoals, to solve the problem. We have ex­
plained how RuleO through Rule3 are created. In the
later stage, LIVE meets three more surprises, the first
surprise conies when it tries to pick up a disk when an­
other disk is in the hand, which splits RuleO into RuleO
and Rule4; the second surprise comes when it tries to
put a bigger disk on a smaller one, which splits Rule3
into Rule3 and Rule5; the th i rd surprise comes when it
tries to pick up a bigger disk underneath a smaller disk,
which spilts RuleO into RuleO and Rule6. The following
is a list of all seven rules learned by L I V E :

678 Machine Learning

Shen and Simon 679

9 Conclusion
In this paper, the problem of learning and problem solv­
ing in new environments is specified as a problem of cor-
relat ing a learner's percepts and actions and inferr ing
the rules f rom the given environment. A discr iminat ion-
based learning method is investigated that creates gen­
eral rules by not ic ing the changes in the environment,
and then specifies the rules by explaining their failures in
predict ion. The method has two dist inct characteristics.
First , when an over-general rule is spl i t , the method wi l l
keep both new rules for further development. Second,
when the discr iminat ion process is unable to find any
difference between a success and a fai lure, the method
wi l l define hidden features in terms of existing or histor­
ical features. We have been investigating the method in
several very different domains and further studies are fo­
cusing on apply ing it to more complex exploration tasks
and learning problem solving strategies.

Acknowledgement
We thank Jaime Carbonel l , Tom Mi tche l l , Chuck Thorp
and Jeff Schlimmer for their valuable comments, and
Klaus Gross for the suggestion of using Mendel's discov­
ery as a testing domain. We also appreciate the support
f rom the Wor ld Modelers project upon which L I V E is
original ly developed.

References
[Carbonell and G i l , 1987] J.G. Carbonel l and Y. G i l .

Learning by experimentat ion. In Proceedings of 4th
In ternat iona l Workshop on Machine Learning, 1987.

[Dietter ich and Michalski , 1983] T . G . Dietter ich and
R.S. Michalski . A comparative review of selected
methods for learning f rom examples. In Machine
Learning. Morgan Kaufmann, 1983.

[Drescher, 1987] G.L. Dresc her. A mechanism for early
Piagetian learning. In Proceedings of A A A I - 8 7 , 1987.

[Falkenhainer, 1988] B. Falkenhainer. The u t i l i t y of
difference-based reasoning. In Proceedings of A A A 1 -
88, 1988.

[Hayes and Simon, 1974] J R . Hayes and H.A. Simon.
Understanding wr i t ten problem instructions. In
Knowledge and Cognit ion. Lawrence Er lbaum, 1974.

[Langley et al., 1983] P. Langley, H.A. Simon, and G.L.
Bradshaw. Rediscovering chemistry w i th the B A C O N
system. In Machine Learning. Morgan Kaufmann,
1983.

[Langley, 1987] P. Langley. A general theory of dis­
cr iminat ion learning. In Production System Models
of Learning and Development. M I T Press, 1987.

[Mendel, 1865] G. Mendel. Experiments in plant-
hybr id izat ion (t ranslat ion). In J.A. Peters, editor,
Classic Papers in Genetics. Prent ice-Hal l , 1967.

[Mitchel l et al., 1983] T . M . Mi tchel l , P.E. UtgofT and
R..B. Banerj i . Learning by experimentat ion: Acquir­
ing and refining problem-solving heuristics. In Ma­
chine Learning. Morgan Kaufmann, 1983.

[Newell, 1987] A. Newell. Unified theories of cognit ion,
W i l l i am James Lecture. Harvard University, (avail­
able on video cassette f rom Harvard) , 1987.

[Quinlan, 1987] J.R. Quin lan. Generating production
rules f rom decision trees. In Proceedings of 10th IJ-
C A I , 1987.

[Shen, 1989a] W . M . Shen. Funct ional transformation in
Al discovery systems. A r t i f i c ia l Intell igence, (to ap-
pear) 1989.

[Shen, 1989b] W . M . Shen. Learning f rom Environment
Based on Actions and Percepts. PhD thesis, Carnegie
Mellon University, 1989.

[Siegler, 1983] R.S. Siegler. H ow knowledge influence
learning. American Scientist, 71 , 1983.

[Utgoff, 1986] P.E. UtgofL Machine Learning of Induc­
tive Bias. Kluwer Academic, 1986.

[Vere, 1980] S.A. Vere. Mul t i level counterfactuals for
generalizations of relational concepts and productions.
Ar t i f i c ia l Intell igence, 14, 1980.

680 Machine Learning

