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A b s t r a c t 
Selective induct ion techniques perform poorly 
when the features are inappropriate for the tar­
get concept. One solution is to have the learn­
ing system construct new features automat i ­
cally; unfortunately feature construction is a 
diff icult and poorly understood problem. In 
this paper we present a definit ion of feature 
construction in concept learning, and offer a 
framework for its study based on four aspects: 
detection, selection, generalization, and eval­
uat ion. This framework is used in the anal­
ysis of existing learning systems and as the 
basis for the design of a new system, CITRE. 
CITRE performs feature construction using de­
cision trees and simple domain knowledge as 
constructive biases. In i t ia l results on a set of 
spatial-dependent problems suggest the impor­
tance of domain knowledge and feature gener­
al ization, i.e., constructive induction. 

1 I n t r o d u c t i o n 
Good representations are often crucial for solving diff i­
cult problems in A I . Finding suitable problem represen­
tations, however, can be diff icult and t ime consuming. 
This is especially true in machine learning: learning can 
be relatively easy if the t ra in ing examples are presented 
in a suitable fo rm, but when the features used in describ­
ing examples are inappropriate for the target concept, 
learning can be diff icult or impossible using selective in­
duction methods. To overcome this problem a learning 
system needs to be capable of generating appropriate 
features for new situations. 

This paper is concerned w i th the automated construc­
t ion of new features to facil i tate concept learning, an 
issue closely related to the "problem of new terms" [Di-
etterich et a/., 1982] and constructive induction [Michal-
ski, 1983]. We begin by defining "feature construct ion" 
in the context of concept learning f rom examples, and 
then proceed to identify four inherent aspects: detection, 
selection, generalization, and evaluation. These aspects 
comprise an analyt ical framework for studying feature 
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construction which we describe through examples drawn 
f rom the existing systems of B A C O N . 1 , B O G A R T , D U C E , 
PLSO, and STAGGER. This framework serves as the ba­
sis for the design of CITRE, a system that performs fea­
ture construction on decision trees using simple domain 
knowledge. The results of our in i t ia l experiments demon­
strate C I T R E ' S abil i ty to improve learning through fea­
ture construction in a tic-tac-toe classification problem. 
Extensions of C I T R E for this and other problems are also 
discussed. 

2 T h e P r o b l e m 

We state the following definition of feature construction1 

in concept learning: 

F e a t u r e C o n s t r u c t i o n : the application of a set of 
constructive operators {o 1 , 02, . . .on} to a set of existing 
features {f1,f2,....fm}) resulting in the construction of 
one or more new features {f1 , f2 , .FN} intended for 
use in describing the target concept. 

This definition emphasizes the notion of a c o n s t r u c ­
t i v e o p e r a t o r , defined as a function mapping a tuple 
of existing features into a new feature. A c o n s t r u c ­
t i v e o p e r a n d is a tuple of features to which a con­
structive operator is applied. For convenience, an oper­
ator/operand pair wi l l be referred to as a c o n s t r u c t o r , 
up unt i l the t ime it becomes a new feature. The con­
structor and(big(i),red(i)), for example, consists of the 
two place operator and(binary, binary) and the operand 
tuple (big(i),red(i)). 

Addi t ional implications of this definit ion include: 1) 
A feature is a function mapping instances into values. 
2) A l l new features are defined in terms of existing fea­
tures, such that no inherently new informat ion is added 
through feature construction. 3) The definit ion can be 
applied iteratively: after a new feature is created, it may 
serve as part of an operand in a subsequent round of con­
struct ion. 4) A separate, selective induct ion algori thm 
is assumed to make use of the constructed features in 
at tempt ing to describe the target concept. 

1 Feature construction is often referred to as "constructive 
induction." We, however, reserve the term constructive in­
duction to refer to the prediction of unobserved, disjunctive 
regions in instance space (see section 3.3). 
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3 Four Inherent Aspects 
Representative examples of systems that perform fea­
ture construction include F R I N G E [Pagallo, 1989], BA­
CON [Langley et a/., 1987], STAGGER [Schlimmer, 1987], 
DUCE [Muggleton, 1987], PLSO [Rendell, 1985] and BOG-
ART [Newman and Uhr, 1965]. These systems employ a 
variety of techniques to a wide range of learning prob­
lems, making it diff icult to identi fy exactly when, where, 
and how feature construction is performed. Through our 
effort to understand feature construction in such systems 
we have discovered some common issues and concerns. 
In part icular, we have identif ied the following four as­
pects believed to be inherent to the problem of feature 
construction: 

1. d e t e c t i o n of when construction is required 

2. se l ec t i on of constructors 

3. g e n e r a l i z a t i o n of selected constructors 

4. e v a l u a t i o n of the new features. 
These four aspects are not necessarily present in ev­

ery system performing feature construction. Nor do they 
necessarily delineate sharply defined phases of the fea­
ture construction process. Instead, they represent four 
identifiable issues inherent to the general problem of fea­
ture construction that account for much of the perceived 
variabil i ty between systems. As a result, these aspects 
have proven useful as a framework for the analysis and 
comparison of systems (see [Matheus, 1989]), as well as 
in the development of CITRE. We now consider each as­
pect in detai l . 

3.1 D e t e c t i n g t h e N e e d 

If the original feature set is sufficient for the selective in­
duct ion a lgor i thm to acquire the target concept, feature 
construction is unnecessary. Because the constructive 
process can be computat ional ly expensive, it is often de­
sirable to determine when feature construction is needed. 
There are at least three general approaches to determin­
ing when to perform construction: 

• no detection (i.e., always perform construction) 

• analysis of the in i t ia l data set 

• analysis of a concept description. 
Some systems have no detection mechanism because 

they continually perform construction. The sole purpose 
of BACON.l, for example, is to construct new features. A 
system might base detection on an analysis of the in i t ia l 
t ra ining set, for example using cluster or factor analysis 
(although none of the observed systems ful ly develop this 
approach). More typically, systems perform detection by 
observing the results of the selective induct ion system, 
i.e., the concept description it produces. Feature con­
struct ion may be deemed necessary if the learning sys­
tem fails to produce a description, or if the description 
fails to satisfy some measurable qual i ty (e.g., accuracy, 
conciseness, comprehensibi l i ty). Using failure to t r ig-

f;er construction is employed, for example, by STAGGER 
Schlimmer, 1987], The presence of excessive disjuncts 

in a concept description can also be used for detection, 
as suggested in [Rendell, 1988]. We return to this last 
approach in section 4 to discuss i ts use in CITRE. 

3.2 Se lec t i ng C o n s t r u c t o r s 

After determining the need for feature construction, a 
system must select one or more constructors to use in the 
creation of new feature(s). The diff iculty w i th this selec­
t ion process is that the space of potent ial constructors 
is generally intractably large. Even in the simple case of 
a problem represented by N Boolean features the num­
ber of potential constructors is 22 . For more complex 
problems, such as those involving numerical features, the 
search space can be inf ini te. The task of selection is to 
pick out a small subset of these potent ial constructors 
satisfying the representational requirements of the cur­
rent problem. This selection process can be analyzed in 
terms of two phases: in i t ia l and runt ime selection. 

The first step in reducing the constructor space is 
to reduce the set of potential operators to a more 
manageable size. This initial selection has been ap­
proached in two ways. Either a small set of simple, 
domain-independent operators is chosen (e.g., { A N D , 
OR, N O T } ) , or a set of problem- or domain-specific 
operators is developed (e.g., "counting the number of 
wheels on a box car") . Simple operators have the ad­
vantage of being applicable to a wide range of problems, 
but they require mult iple iterations of the constructive 
process in order to bui ld up complex new features (e.g., 
STAGGER, PLSO). Problem-specific operators can reduce 
the complexity of the constructive process and thereby 
decrease construction t ime, but at the expense of be­
ing l imited in application and also requiring effort and 
knowledge for their development. 

The reduced set of constructive operators obtained 
f rom in i t ia l selection represents a system's "candidate" 
operator set. In every system we have encountered, the 
"candidate" operator set is significantly smaller than the 
"potent ia l " set. Even so, this set is st i l l intractably large 
in most cases, and further selection is required at runt ime 
to choose which operators to apply, and which operands 
to apply them to. This runtime selection amounts to 
ordering the set of candidate constructors. We have ob­
served four approaches to ordering candidate constructor 
sets related to the fol lowing biases: 

• algor i thm biases 

• t raining set biases 

• concept-based biases 

• domain-based biases. 

A lgor i thm biases occur when the implementat ion of 
a feature construction algor i thm arbi t rar i ly selects one 
constructor over another. These biases are typical ly un­
desirable, being unjustif ied by the data or the model. 
Some systems use informat ion in the t ra in ing set in­
stances to help guide selection. STAGGER takes this ap­
proach by using instances that fai l to agree w i th the con­
cept as the basis for suggesting new features. Likewise, 
in B0GART indiv idual instances are used as templates for 
new features. Similarly, concept descriptions can be used 
to bias constructor selection; this approach can be espe­
cially useful if a concept description is close to the target 
concept (we show how this approach can be used on de­
cision trees in section 4). Domain knowledge can also 
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Figure 1: C o n s t r u c t i v e C o m p i l a t i o n ve rsus C o n s t r u c t i v e I n d u c t i o n . I f a system, upon observing instances 
from R l , R2, and R3, constructs the new feature or(Rl, R2, R3) it is performing constructive compilation. If a 
system generalizes this feature into or(Rl,R2,R3,R4), thereby predicting the existence of an unobserved region of 
instances (the white pieces) in R4, it is performing constructive induction. 

serve as a selection bias, either as a set of heuristics for 
selecting useful constructors, or as a set of filters for re­
ject ing undesirable candidate features. Our experiments 
w i th CITRE suggest that even simple domain knowledge 
can be a powerful selection bias (section 4). 

3.3 G e n e r a l i z i n g C o n s t r u c t o r s 

The set of selected constructors may be highly specific 
to a set of instances or a concept depending upon the 
selection biases employed. Specific constructors can be 
generalized in ways analogous to how descriptions are 
generalized in learning concepts, e.g., changing constants 
to variables, dropping terms (see [Michalski, 1983]). If 
a feature construction algor i thm does not generalize be­
yond its input data, then it is only able to "compile" ob­
served features and feature values into new terms. We re­
fer to this form of feature construction as c o n s t r u c t i v e 
c o m p i l a t i o n . If generalization is performed during fea­
ture construction, the features generated may "predict" 
regions of positive and negative instances that have not 
been observed. We call this form of feature construction 
c o n s t r u c t i v e i n d u c t i o n . 

Figure 1 depicts a si tuat ion in which observed pairs of 
pieces on a checkers board (the dark pieces) have been 
mapped into disjunctive regions in an instance space of 
two abstract features. A constructive algor i thm that 
merges these three regions, Rl, R2, and R3, into a new 
feature or(Rl, R2, R3), is performing constructive com-
pilation. If on the other hand, the algor i thm generalizes 
this new feature to or(Rl, R2, R3, R4), thereby predict­
ing the unobserved pair of pieces (the white pieces), the 
algor i thm is performing constructive induction. 

For certain learning algori thms, constructive compila­
t ion alone can significantly improve learning. Consider 
a system that describes concepts by selecting one fea­
ture at a t ime (e.g., a decision tree inducer). Problems 

can arise when the target concept depends on the cor­
relation of two or more features, because a feature that 
splits the data poorly by itself may provide a very good 
split when paired w i th another feature. If a constructor 
is able to find this pair and compile it into a new fea­
ture, the construction of a more accurate and/or concise 
concept becomes possible. This result is observed in our 
experiments w i th CITRE (see also [Pagallo, 1989]). 

Constructive induct ion is potential ly more powerful 
than constructive compilat ion because it can produce 
new features w i th far fewer observed instances (an im­
portant quali ty when the training set is sparse). The 
problem wi th constructive induct ion is that it requires 
strong biases in order to produce valid generalizations. 
Strong and appropriate generalization biases are most 
readily available in the form of domain knowledge. The 
strong bias for the generalization or(Rl, R2, R3, R4) 
in Figure 1, for example, might have come from knowl­
edge that in checkers a feature useful at one board lo­
cation can often be translated to other board locations. 
As our prel iminary results suggest, the use of relevant 
domain knowledge can significantly affect the quali ty of 
constructed features (section 4). 

3.4 E v a l u a t i n g Fea tu res 

If the number of new features grows too large, it may be 
necessary to evaluate and discard some. The evaluation 
of new features can be approached in at least three ways: 

• ignore the problem (keep all features) 

• request evaluation f rom the user 

• order the features and keep the best ones. 

The first approach (e.g., in B A C O N . 1 , PLSO, and BOG-
A R T ) is the simplest but most l imi ted in that it is only 
appropriate if the number of new features remains rela­
tively small. The second approach (e.g., in D U C E ) places 
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the burden on the user who must be sufficiently knowl­
edgeable to judge the qual i ty of new features. The th i rd 
approach (e.g., in STAGGER and CITRe) is autonomous, 
but it requires a measurement of feature "qual i ty" ( i .e. , 
the credit assignment problem). One solution is to use 
the measure employed for selecting features dur ing con­
cept format ion as the measure for new feature evalua­
t ion; we consider this technique further in the next sec­
t ion. Other measures of feature evaluation have been 
considered (see [Seshu et a/., 1989]). 

4 CITRE 
The framework defined by these four aspects was used in 
the development of CITRB, a new system for performing 
constructive induct ion on decision trees using simple do­
main knowledge.3 CITRE is similar to FRINGE [Pagallo, 
1989] in its use of learned decision trees to suggest useful 
constructors. Both systems iterate between tree learning 
and feature construction: a decision tree is learned, the 
tree is used to construct new features, the new features 
are used in the creation of a new tree, and the process 
is repreated unt i l no new features are created. CITRE 
differs in its use of domain knowledge, feature general­
izat ion, and feature evaluation. 

As suggested above, the key to tractable and effective 
feature construction is the use of strong biases to help 
the system converge to an appropriate set of new fea­
tures. CITRE uses three pr imary biases: concept-based 
operand selection, domain-knowledge constructor prun­
ing, and an information-theoretic evaluation measure. 
These biases, depicted in Figure 2, wi l l now be described 
in terms of how CITRE handles each of the four aspects 
in the context of a t ic-tac-toe classification problem {i.e., 
classifying boards as winning or losing instances). 

D e t e c t i o n : Feature construction is performed any t ime 
disjunctive regions are detected in a candidate decision 
tree, as evidenced by the presence of more than one pos­
it ively labeled terminal node. 

S e l e c t i o n : The in i t ia l selection of operators was based 
on two criteria: First , we wanted to minimize the amount 
of domain-specific in format ion present in the construc­
tive operators. Second, we wanted to test the hypothesis 
that useful, higher-level features can be constructed in­
crementally through the iterative application of simple 
constructive operators. We consequently selected the 
simple, generic, binary operator and(binary, binary). 
The and(~, ~) operator used in conjunction w i th the 
negation impl ic i t in decision trees provides complete rep­
resentational capabil i ty for new features. 

The pr imi t ive features used in the tic-tac-toe prob­
lem are the contents of the nine board positions: F — 
{ p o s l l , pos l2 , pos l3 , pos21, pos22, pos23, pos31, pos32, 
pos33}. These are nominal features having values x, o, 
or blank. In order to accommodate the binary operand 

2 CITRE currently operates in conjunction with COGENT 
[Matheus, 1988], a decision tree induction program function-
ally comparable to ID3 [Quinlan, 1986]. Both CITRE and CO­
GENT are implemented in Quintus Prolog running on Sun3 
workstations. 

slots of the and(_,_) operator these nominal features 
are converted into boolean expressions as necessary dur­
ing runt ime selection (e.g., equal(posll,x)). The size 
of the class of potent ial operands in this case (9 fea­
tures, 3 values) is thus 27 * 26 = 702. If N new features 
are actually created in round one, then round two has 
(N + 27) *(N + 26) = N2 + 537V + 702 potent ial new fea­
tures; the number of new features wi l l similarly increase 
for all subsequent rounds. 

The main bias used by CITRE in selecting the ap­
propriate operand is concept based, and is derived 
f rom the idea of "merging disjunctive regions" [Rendell, 
1988]. Disjunctive regions in the decision tree are de­
scribed by the branches leading f rom the root to the 
positively labeled terminal nodes. CITRE collects the 
feature-value pairs (e.g., p o s l l = x ) at nodes along these 
positive branches and proposes all pairs of these bi­
nary feature-value pairs (e.g., equals(pos 11,x)) as can­
didate operands. In a complete tree of depth D, this 
method results in 2D-l candidate operands. In tic-
tac-toe where D is typical ly less than 6, this bias re­
sults in fewer than 35 operands being proposed out of 
greater than 700 potent ial operands. This large reduc­
t ion (> 700 to < 35) gives a good indicat ion of how 
strong this bias is (as impl ied by the heavy arrows in 
Figure 2). For each operand selected a new candidate 
feature is constructed by applying the and() operator 
(e.g., and( equalf pos 11, x),equal(pos 12, x))). 

Domain knowledge can serve as an addit ional bias 
to filter out less promising candidate features (see Fig­
ure 2). In CITRE, domain knowledge is l imi ted to simple 
facts (ground l i teral clauses) defining permissible rela­
tionships between constructive operands. For the tic-
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tac-toe problem we have implemented a small amount of 
general knowledge about board games: knowledge about 
adjacency of pieces being impor tant (i.e., only consider 
new features having adjacent constituent features), and 
knowledge about the significance of piece type (i.e., only 
consider new features composed of the same type pieces). 
When CITRE uses this domain knowledge, the construc-
tor and( equal(posll,x ),equal(po$32, o )) would be re­
jected on both grounds. 

G e n e r a l i s a t i o n : In the experiments described in this 
paper we used the single generalization operator "chang­
ing constants to variables." If a constructor's operand 
consists of two features having the same value, a gen­
eralized feature is proposed w i th its values replaced 
by a variable. For example, the generalization of 
and( equal(poall, x), equal(po$12, x) ) becomes and( 
equal(po8ll, VARIABLE), equal(posl2, VARIABLE)). 
Both the original candidate feature and its generaliza­
t ion are added to the set of features. When a candidate 
feature is generalized, the resulting new feature is nomi­
nal, rather than binary, and its domain is (x,o,true). For 
a part icular instance, the value of a generalized feature 
is false if the logical and() relationship does not hold, or 
the variable's value otherwise (i.e., x or o). 

E v a l u a t i o n : A l though CITRE may generate hundreds of 
constructors while working on a given problem, it only 
keeps a max imum of 27 (9 pr imi t ive + 18 constructed) 
features at a t ime. Its criterion for evaluation of features 
is the same as that used in deciding which feature to se­
lect dur ing tree format ion, i.e., an informat ion theoretic 
measure. The "u t i l i t y " of each feature is measured in 
terms of the in format ion gained by using the feature to 
split the entire t ra in ing set into disjoint subsets. They 
are then ordered by ut i l i ty , and those features (excluding 
the primit ives) w i t h the lowest uti l i t ies are deleted unt i l 
the to ta l feature count is again down to 27. As shown in 
Figure 2, this evaluation is the final bias used in pruning 
the set of potent ial new features. 

Evaluating features by their abi l i ty to effectively split 
the current data set works well in CITRE because the 
feature w i th the highest ut i l i ty necessarily becomes the 
first node in the subsequent decision tree. This greedy 
approach can fa i l , however, if a new feature having a 
poor u t i l i t y on the entire data set exhibits a relatively 
high u t i l i t y sometime after the first split. For this reason, 
other forms of "deeper" evaluation are being considered. 

4 .1 E x p e r i m e n t a l R e s u l t s 

We conducted four series of tests in which we varied the 
use of generalization and domain knowledge as shown in 
Table 1. A l l four series were run on an identical collec­
t ion of fifteen data sets. Each data set consisted of 100 
randomly-generated tic-tac-toe instances, labeled either 
as "w in for x" or "w in for o." Each run iterated be­
tween tree construction and feature construction unt i l 
no new features could be constructed. A l l decision trees 
constructed dur ing a test were analyzed for accuracy on 
classifying a test set of 200 randomly chosen boards. 

Table 1 summarizes the results for al l four test se­
ries. Columns two and three indicate the use of domain 

knowledge and generalization for each test. The col­
umn labeled "F i rs t " lists the accuracies for the original 
decision trees averaged over the 15 data sets. Corre­
sponding accuracies for the final decision trees are in the 
column labeled "Last." The difference between the these 
two columns appears in the "Difference" column. The 
± values indicate the 95 percent confidence intervals as 
determined by a t-test. Under "New Terms" are the av­
erage number of new features considered per data set 
(measured after selection and generalization but before 
evaluation), w i th the highest number in any single run 
shown in parentheses. In the last column is the average 
difference between the number of nodes in the original 
trees and the number in the final trees. 

On average, feature construction resulted in improved 
classification accuracy. For the last three tests - those 
making use of domain knowledge and/or generalization -
this result is significant w i th 95 percent confidence, w i th 
an average improvement of around six percent. Whereas 
there is no significant difference among the accuracy im­
provements of these three tests, the use of generalization 
resulted in a greater variance in accuracy. This obser­
vation reflects the fact that although generalization on 
average improves performance, it can lead to decreased 
performance on individual runs when invalid generaliza­
tions are made. 

Another difference between the use of generalization 
and domain knowledge is evident in the number of new 
features considered. Wi thout domain knowledge an av­
erage of over 360 new features were considered per data 
set, w i th a single worst case occurring in the generaliza­
t ion test wi th the production of 941 candidate features. 
W i t h the addit ion of the domain knowledge described 
above, the average drops below 40, and in the worst case 
is sti l l less then 60. This difference translates directly 
into a significant improvement in efficiency. 

In terms of number of internal decision tree nodes, the 
average difference does not change significantly between 
tests. Because the number of nodes in the trees remains 
constant while the accuracy is improving the difference 
can be at tr ibuted to the use of better features when do­
main knowledge or generalization is used. 

4.2 E x t e n s i o n s a n d O t h e r A p p l i c a t i o n s 

In addit ion to tic-tac-toe, CITRE has been applied to the 
problem of learning random boolean functions. Even 
on the simple problems thus far tested (e.g., 4 term, 3 
features/term DNF functions), accuracy improvements 
of greater than ten percent have been observed. De­
tailed experiments in this domain are proving useful in 
the analysis of several aspects of CITRE's algor i thm, in­
cluding variations on the concept-bias, enhanced opera­
tor sets, and the effect of various evaluation methods. 

Our preliminary work on tic-tac-toe is being extended 
in several ways: 1) larger training sets are being used 
to demonstrate that generalizations tend to be more 
valid when based on larger samples of the instance 
space, 2) new operators are being explored (e.g., or(_,_), 
and(_,_,_)) 3) addit ional domain knowledge regarding 
board games is being used to help focus the feature 
construction (e.g., emphasizing corners, straight lines, 
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etc.), and 4) more powerful generalization rules are be­
ing tested including reflection, t ranslat ion, and rotat ion 
generalizes. 

We intend to apply the results obtained f rom the tic-
tac-toe problem to more diff icult board game problems 
such as knight- fork and chess endgames. Towards this 
end, domain knowledge and generalization rules are be­
ing developed specifically for the spatial properties of 
board games. Our u l t imate goal is to develop a more 
general approach appropriate for the larger class of spa­
t ia l problems that includes, for example, L E D classifica­
t ion, the blocks wor ld , protein folding, etc. 

5 Conc lus ion 

The four aspects of feature construction presented here 
have proven useful as a framework for analyzing existing 
systems and guiding the development of new construc­
tive techniques. In part icular, this framework guided 
the design of CITRE, a new system that performs fea­
ture construction on decision trees using l imi ted domain 
knowledge and simple generalization. Results on a board 
game classification problem suggest the appropriateness 
of C I T R E ' S three strong biases: concept-based selection, 
domain-knowledge pruning, and an informat ion theo­
retic evaluation measure. More specifically, our results 
suggest the potent ial importance of domain knowledge 
and generalization for effective feature construction -
two areas to which current feature construction systems 
have paid l i t t le at tent ion (see [Matheus, 1989]). 
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