
Cons t ruc t i ve I n d u c t i o n On Decision Trees

C h r i s t o p h e r J . M a t h e u s * and L a r r y A . Rende l l
Inductive Learning Group, Computer Science Department

University of Illinois at Urbana-Champaign
1304 W. Springfield Avenue, Urbana, Illinois 61801

A b s t r a c t
Selective induct ion techniques perform poorly
when the features are inappropriate for the tar­
get concept. One solution is to have the learn­
ing system construct new features automat i ­
cally; unfortunately feature construction is a
diff icult and poorly understood problem. In
this paper we present a definit ion of feature
construction in concept learning, and offer a
framework for its study based on four aspects:
detection, selection, generalization, and eval­
uat ion. This framework is used in the anal­
ysis of existing learning systems and as the
basis for the design of a new system, CITRE.
CITRE performs feature construction using de­
cision trees and simple domain knowledge as
constructive biases. In i t ia l results on a set of
spatial-dependent problems suggest the impor­
tance of domain knowledge and feature gener­
al ization, i.e., constructive induction.

1 I n t r o d u c t i o n
Good representations are often crucial for solving diff i­
cult problems in A I . Finding suitable problem represen­
tations, however, can be diff icult and t ime consuming.
This is especially true in machine learning: learning can
be relatively easy if the t ra in ing examples are presented
in a suitable fo rm, but when the features used in describ­
ing examples are inappropriate for the target concept,
learning can be diff icult or impossible using selective in­
duction methods. To overcome this problem a learning
system needs to be capable of generating appropriate
features for new situations.

This paper is concerned w i th the automated construc­
t ion of new features to facil i tate concept learning, an
issue closely related to the "problem of new terms" [Di-
etterich et a/., 1982] and constructive induction [Michal-
ski, 1983]. We begin by defining "feature construct ion"
in the context of concept learning f rom examples, and
then proceed to identify four inherent aspects: detection,
selection, generalization, and evaluation. These aspects
comprise an analyt ical framework for studying feature

*This research was funded by a University of Illinois
Cognitive Science/Artificial Intelligence Fellowship and ONR
Grant N00014-88K-0124.

construction which we describe through examples drawn
f rom the existing systems of B A C O N . 1 , B O G A R T , D U C E ,
PLSO, and STAGGER. This framework serves as the ba­
sis for the design of CITRE, a system that performs fea­
ture construction on decision trees using simple domain
knowledge. The results of our in i t ia l experiments demon­
strate C I T R E ' S abil i ty to improve learning through fea­
ture construction in a tic-tac-toe classification problem.
Extensions of C I T R E for this and other problems are also
discussed.

2 T h e P r o b l e m

We state the following definition of feature construction1

in concept learning:

F e a t u r e C o n s t r u c t i o n : the application of a set of
constructive operators {o 1 , 02, . . .on} to a set of existing
features {f1,f2,....fm}) resulting in the construction of
one or more new features {f1 , f2 , .FN} intended for
use in describing the target concept.

This definition emphasizes the notion of a c o n s t r u c ­
t i v e o p e r a t o r , defined as a function mapping a tuple
of existing features into a new feature. A c o n s t r u c ­
t i v e o p e r a n d is a tuple of features to which a con­
structive operator is applied. For convenience, an oper­
ator/operand pair wi l l be referred to as a c o n s t r u c t o r ,
up unt i l the t ime it becomes a new feature. The con­
structor and(big(i),red(i)), for example, consists of the
two place operator and(binary, binary) and the operand
tuple (big(i),red(i)).

Addi t ional implications of this definit ion include: 1)
A feature is a function mapping instances into values.
2) A l l new features are defined in terms of existing fea­
tures, such that no inherently new informat ion is added
through feature construction. 3) The definit ion can be
applied iteratively: after a new feature is created, it may
serve as part of an operand in a subsequent round of con­
struct ion. 4) A separate, selective induct ion algori thm
is assumed to make use of the constructed features in
at tempt ing to describe the target concept.

1 Feature construction is often referred to as "constructive
induction." We, however, reserve the term constructive in­
duction to refer to the prediction of unobserved, disjunctive
regions in instance space (see section 3.3).

Matheus and Rendell 645

3 Four Inherent Aspects
Representative examples of systems that perform fea­
ture construction include F R I N G E [Pagallo, 1989], BA­
CON [Langley et a/., 1987], STAGGER [Schlimmer, 1987],
DUCE [Muggleton, 1987], PLSO [Rendell, 1985] and BOG-
ART [Newman and Uhr, 1965]. These systems employ a
variety of techniques to a wide range of learning prob­
lems, making it diff icult to identi fy exactly when, where,
and how feature construction is performed. Through our
effort to understand feature construction in such systems
we have discovered some common issues and concerns.
In part icular, we have identif ied the following four as­
pects believed to be inherent to the problem of feature
construction:

1. d e t e c t i o n of when construction is required

2. se l ec t i on of constructors

3. g e n e r a l i z a t i o n of selected constructors

4. e v a l u a t i o n of the new features.
These four aspects are not necessarily present in ev­

ery system performing feature construction. Nor do they
necessarily delineate sharply defined phases of the fea­
ture construction process. Instead, they represent four
identifiable issues inherent to the general problem of fea­
ture construction that account for much of the perceived
variabil i ty between systems. As a result, these aspects
have proven useful as a framework for the analysis and
comparison of systems (see [Matheus, 1989]), as well as
in the development of CITRE. We now consider each as­
pect in detai l .

3.1 D e t e c t i n g t h e N e e d

If the original feature set is sufficient for the selective in­
duct ion a lgor i thm to acquire the target concept, feature
construction is unnecessary. Because the constructive
process can be computat ional ly expensive, it is often de­
sirable to determine when feature construction is needed.
There are at least three general approaches to determin­
ing when to perform construction:

• no detection (i.e., always perform construction)

• analysis of the in i t ia l data set

• analysis of a concept description.
Some systems have no detection mechanism because

they continually perform construction. The sole purpose
of BACON.l, for example, is to construct new features. A
system might base detection on an analysis of the in i t ia l
t ra ining set, for example using cluster or factor analysis
(although none of the observed systems ful ly develop this
approach). More typically, systems perform detection by
observing the results of the selective induct ion system,
i.e., the concept description it produces. Feature con­
struct ion may be deemed necessary if the learning sys­
tem fails to produce a description, or if the description
fails to satisfy some measurable qual i ty (e.g., accuracy,
conciseness, comprehensibi l i ty). Using failure to t r ig-

f;er construction is employed, for example, by STAGGER
Schlimmer, 1987], The presence of excessive disjuncts

in a concept description can also be used for detection,
as suggested in [Rendell, 1988]. We return to this last
approach in section 4 to discuss i ts use in CITRE.

3.2 Se lec t i ng C o n s t r u c t o r s

After determining the need for feature construction, a
system must select one or more constructors to use in the
creation of new feature(s). The diff iculty w i th this selec­
t ion process is that the space of potent ial constructors
is generally intractably large. Even in the simple case of
a problem represented by N Boolean features the num­
ber of potential constructors is 22 . For more complex
problems, such as those involving numerical features, the
search space can be inf ini te. The task of selection is to
pick out a small subset of these potent ial constructors
satisfying the representational requirements of the cur­
rent problem. This selection process can be analyzed in
terms of two phases: in i t ia l and runt ime selection.

The first step in reducing the constructor space is
to reduce the set of potential operators to a more
manageable size. This initial selection has been ap­
proached in two ways. Either a small set of simple,
domain-independent operators is chosen (e.g., { A N D ,
OR, N O T }) , or a set of problem- or domain-specific
operators is developed (e.g., "counting the number of
wheels on a box car") . Simple operators have the ad­
vantage of being applicable to a wide range of problems,
but they require mult iple iterations of the constructive
process in order to bui ld up complex new features (e.g.,
STAGGER, PLSO). Problem-specific operators can reduce
the complexity of the constructive process and thereby
decrease construction t ime, but at the expense of be­
ing l imited in application and also requiring effort and
knowledge for their development.

The reduced set of constructive operators obtained
f rom in i t ia l selection represents a system's "candidate"
operator set. In every system we have encountered, the
"candidate" operator set is significantly smaller than the
"potent ia l " set. Even so, this set is st i l l intractably large
in most cases, and further selection is required at runt ime
to choose which operators to apply, and which operands
to apply them to. This runtime selection amounts to
ordering the set of candidate constructors. We have ob­
served four approaches to ordering candidate constructor
sets related to the fol lowing biases:

• algor i thm biases

• t raining set biases

• concept-based biases

• domain-based biases.

A lgor i thm biases occur when the implementat ion of
a feature construction algor i thm arbi t rar i ly selects one
constructor over another. These biases are typical ly un­
desirable, being unjustif ied by the data or the model.
Some systems use informat ion in the t ra in ing set in­
stances to help guide selection. STAGGER takes this ap­
proach by using instances that fai l to agree w i th the con­
cept as the basis for suggesting new features. Likewise,
in B0GART indiv idual instances are used as templates for
new features. Similarly, concept descriptions can be used
to bias constructor selection; this approach can be espe­
cially useful if a concept description is close to the target
concept (we show how this approach can be used on de­
cision trees in section 4). Domain knowledge can also

646 Machine Learning

Figure 1: C o n s t r u c t i v e C o m p i l a t i o n ve rsus C o n s t r u c t i v e I n d u c t i o n . I f a system, upon observing instances
from R l , R2, and R3, constructs the new feature or(Rl, R2, R3) it is performing constructive compilation. If a
system generalizes this feature into or(Rl,R2,R3,R4), thereby predicting the existence of an unobserved region of
instances (the white pieces) in R4, it is performing constructive induction.

serve as a selection bias, either as a set of heuristics for
selecting useful constructors, or as a set of filters for re­
ject ing undesirable candidate features. Our experiments
w i th CITRE suggest that even simple domain knowledge
can be a powerful selection bias (section 4).

3.3 G e n e r a l i z i n g C o n s t r u c t o r s

The set of selected constructors may be highly specific
to a set of instances or a concept depending upon the
selection biases employed. Specific constructors can be
generalized in ways analogous to how descriptions are
generalized in learning concepts, e.g., changing constants
to variables, dropping terms (see [Michalski, 1983]). If
a feature construction algor i thm does not generalize be­
yond its input data, then it is only able to "compile" ob­
served features and feature values into new terms. We re­
fer to this form of feature construction as c o n s t r u c t i v e
c o m p i l a t i o n . If generalization is performed during fea­
ture construction, the features generated may "predict"
regions of positive and negative instances that have not
been observed. We call this form of feature construction
c o n s t r u c t i v e i n d u c t i o n .

Figure 1 depicts a si tuat ion in which observed pairs of
pieces on a checkers board (the dark pieces) have been
mapped into disjunctive regions in an instance space of
two abstract features. A constructive algor i thm that
merges these three regions, Rl, R2, and R3, into a new
feature or(Rl, R2, R3), is performing constructive com-
pilation. If on the other hand, the algor i thm generalizes
this new feature to or(Rl, R2, R3, R4), thereby predict­
ing the unobserved pair of pieces (the white pieces), the
algor i thm is performing constructive induction.

For certain learning algori thms, constructive compila­
t ion alone can significantly improve learning. Consider
a system that describes concepts by selecting one fea­
ture at a t ime (e.g., a decision tree inducer). Problems

can arise when the target concept depends on the cor­
relation of two or more features, because a feature that
splits the data poorly by itself may provide a very good
split when paired w i th another feature. If a constructor
is able to find this pair and compile it into a new fea­
ture, the construction of a more accurate and/or concise
concept becomes possible. This result is observed in our
experiments w i th CITRE (see also [Pagallo, 1989]).

Constructive induct ion is potential ly more powerful
than constructive compilat ion because it can produce
new features w i th far fewer observed instances (an im­
portant quali ty when the training set is sparse). The
problem wi th constructive induct ion is that it requires
strong biases in order to produce valid generalizations.
Strong and appropriate generalization biases are most
readily available in the form of domain knowledge. The
strong bias for the generalization or(Rl, R2, R3, R4)
in Figure 1, for example, might have come from knowl­
edge that in checkers a feature useful at one board lo­
cation can often be translated to other board locations.
As our prel iminary results suggest, the use of relevant
domain knowledge can significantly affect the quali ty of
constructed features (section 4).

3.4 E v a l u a t i n g Fea tu res

If the number of new features grows too large, it may be
necessary to evaluate and discard some. The evaluation
of new features can be approached in at least three ways:

• ignore the problem (keep all features)

• request evaluation f rom the user

• order the features and keep the best ones.

The first approach (e.g., in B A C O N . 1 , PLSO, and BOG-
A R T) is the simplest but most l imi ted in that it is only
appropriate if the number of new features remains rela­
tively small. The second approach (e.g., in D U C E) places

Matheus and Rendell 647

the burden on the user who must be sufficiently knowl­
edgeable to judge the qual i ty of new features. The th i rd
approach (e.g., in STAGGER and CITRe) is autonomous,
but it requires a measurement of feature "qual i ty" (i .e. ,
the credit assignment problem). One solution is to use
the measure employed for selecting features dur ing con­
cept format ion as the measure for new feature evalua­
t ion; we consider this technique further in the next sec­
t ion. Other measures of feature evaluation have been
considered (see [Seshu et a/., 1989]).

4 CITRE
The framework defined by these four aspects was used in
the development of CITRB, a new system for performing
constructive induct ion on decision trees using simple do­
main knowledge.3 CITRE is similar to FRINGE [Pagallo,
1989] in its use of learned decision trees to suggest useful
constructors. Both systems iterate between tree learning
and feature construction: a decision tree is learned, the
tree is used to construct new features, the new features
are used in the creation of a new tree, and the process
is repreated unt i l no new features are created. CITRE
differs in its use of domain knowledge, feature general­
izat ion, and feature evaluation.

As suggested above, the key to tractable and effective
feature construction is the use of strong biases to help
the system converge to an appropriate set of new fea­
tures. CITRE uses three pr imary biases: concept-based
operand selection, domain-knowledge constructor prun­
ing, and an information-theoretic evaluation measure.
These biases, depicted in Figure 2, wi l l now be described
in terms of how CITRE handles each of the four aspects
in the context of a t ic-tac-toe classification problem {i.e.,
classifying boards as winning or losing instances).

D e t e c t i o n : Feature construction is performed any t ime
disjunctive regions are detected in a candidate decision
tree, as evidenced by the presence of more than one pos­
it ively labeled terminal node.

S e l e c t i o n : The in i t ia l selection of operators was based
on two criteria: First , we wanted to minimize the amount
of domain-specific in format ion present in the construc­
tive operators. Second, we wanted to test the hypothesis
that useful, higher-level features can be constructed in­
crementally through the iterative application of simple
constructive operators. We consequently selected the
simple, generic, binary operator and(binary, binary).
The and(~, ~) operator used in conjunction w i th the
negation impl ic i t in decision trees provides complete rep­
resentational capabil i ty for new features.

The pr imi t ive features used in the tic-tac-toe prob­
lem are the contents of the nine board positions: F —
{ p o s l l , pos l2 , pos l3 , pos21, pos22, pos23, pos31, pos32,
pos33}. These are nominal features having values x, o,
or blank. In order to accommodate the binary operand

2 CITRE currently operates in conjunction with COGENT
[Matheus, 1988], a decision tree induction program function-
ally comparable to ID3 [Quinlan, 1986]. Both CITRE and CO­
GENT are implemented in Quintus Prolog running on Sun3
workstations.

slots of the and(_,_) operator these nominal features
are converted into boolean expressions as necessary dur­
ing runt ime selection (e.g., equal(posll,x)). The size
of the class of potent ial operands in this case (9 fea­
tures, 3 values) is thus 27 * 26 = 702. If N new features
are actually created in round one, then round two has
(N + 27) *(N + 26) = N2 + 537V + 702 potent ial new fea­
tures; the number of new features wi l l similarly increase
for all subsequent rounds.

The main bias used by CITRE in selecting the ap­
propriate operand is concept based, and is derived
f rom the idea of "merging disjunctive regions" [Rendell,
1988]. Disjunctive regions in the decision tree are de­
scribed by the branches leading f rom the root to the
positively labeled terminal nodes. CITRE collects the
feature-value pairs (e.g., p o s l l = x) at nodes along these
positive branches and proposes all pairs of these bi­
nary feature-value pairs (e.g., equals(pos 11,x)) as can­
didate operands. In a complete tree of depth D, this
method results in 2D-l candidate operands. In tic-
tac-toe where D is typical ly less than 6, this bias re­
sults in fewer than 35 operands being proposed out of
greater than 700 potent ial operands. This large reduc­
t ion (> 700 to < 35) gives a good indicat ion of how
strong this bias is (as impl ied by the heavy arrows in
Figure 2). For each operand selected a new candidate
feature is constructed by applying the and() operator
(e.g., and(equalf pos 11, x),equal(pos 12, x))).

Domain knowledge can serve as an addit ional bias
to filter out less promising candidate features (see Fig­
ure 2). In CITRE, domain knowledge is l imi ted to simple
facts (ground l i teral clauses) defining permissible rela­
tionships between constructive operands. For the tic-

648 Machine Learning

tac-toe problem we have implemented a small amount of
general knowledge about board games: knowledge about
adjacency of pieces being impor tant (i.e., only consider
new features having adjacent constituent features), and
knowledge about the significance of piece type (i.e., only
consider new features composed of the same type pieces).
When CITRE uses this domain knowledge, the construc-
tor and(equal(posll,x),equal(po$32, o)) would be re­
jected on both grounds.

G e n e r a l i s a t i o n : In the experiments described in this
paper we used the single generalization operator "chang­
ing constants to variables." If a constructor's operand
consists of two features having the same value, a gen­
eralized feature is proposed w i th its values replaced
by a variable. For example, the generalization of
and(equal(poall, x), equal(po$12, x)) becomes and(
equal(po8ll, VARIABLE), equal(posl2, VARIABLE)).
Both the original candidate feature and its generaliza­
t ion are added to the set of features. When a candidate
feature is generalized, the resulting new feature is nomi­
nal, rather than binary, and its domain is (x,o,true). For
a part icular instance, the value of a generalized feature
is false if the logical and() relationship does not hold, or
the variable's value otherwise (i.e., x or o).

E v a l u a t i o n : A l though CITRE may generate hundreds of
constructors while working on a given problem, it only
keeps a max imum of 27 (9 pr imi t ive + 18 constructed)
features at a t ime. Its criterion for evaluation of features
is the same as that used in deciding which feature to se­
lect dur ing tree format ion, i.e., an informat ion theoretic
measure. The "u t i l i t y " of each feature is measured in
terms of the in format ion gained by using the feature to
split the entire t ra in ing set into disjoint subsets. They
are then ordered by ut i l i ty , and those features (excluding
the primit ives) w i t h the lowest uti l i t ies are deleted unt i l
the to ta l feature count is again down to 27. As shown in
Figure 2, this evaluation is the final bias used in pruning
the set of potent ial new features.

Evaluating features by their abi l i ty to effectively split
the current data set works well in CITRE because the
feature w i th the highest ut i l i ty necessarily becomes the
first node in the subsequent decision tree. This greedy
approach can fa i l , however, if a new feature having a
poor u t i l i t y on the entire data set exhibits a relatively
high u t i l i t y sometime after the first split. For this reason,
other forms of "deeper" evaluation are being considered.

4 .1 E x p e r i m e n t a l R e s u l t s

We conducted four series of tests in which we varied the
use of generalization and domain knowledge as shown in
Table 1. A l l four series were run on an identical collec­
t ion of fifteen data sets. Each data set consisted of 100
randomly-generated tic-tac-toe instances, labeled either
as "w in for x" or "w in for o." Each run iterated be­
tween tree construction and feature construction unt i l
no new features could be constructed. A l l decision trees
constructed dur ing a test were analyzed for accuracy on
classifying a test set of 200 randomly chosen boards.

Table 1 summarizes the results for al l four test se­
ries. Columns two and three indicate the use of domain

knowledge and generalization for each test. The col­
umn labeled "F i rs t " lists the accuracies for the original
decision trees averaged over the 15 data sets. Corre­
sponding accuracies for the final decision trees are in the
column labeled "Last." The difference between the these
two columns appears in the "Difference" column. The
± values indicate the 95 percent confidence intervals as
determined by a t-test. Under "New Terms" are the av­
erage number of new features considered per data set
(measured after selection and generalization but before
evaluation), w i th the highest number in any single run
shown in parentheses. In the last column is the average
difference between the number of nodes in the original
trees and the number in the final trees.

On average, feature construction resulted in improved
classification accuracy. For the last three tests - those
making use of domain knowledge and/or generalization -
this result is significant w i th 95 percent confidence, w i th
an average improvement of around six percent. Whereas
there is no significant difference among the accuracy im­
provements of these three tests, the use of generalization
resulted in a greater variance in accuracy. This obser­
vation reflects the fact that although generalization on
average improves performance, it can lead to decreased
performance on individual runs when invalid generaliza­
tions are made.

Another difference between the use of generalization
and domain knowledge is evident in the number of new
features considered. Wi thout domain knowledge an av­
erage of over 360 new features were considered per data
set, w i th a single worst case occurring in the generaliza­
t ion test wi th the production of 941 candidate features.
W i t h the addit ion of the domain knowledge described
above, the average drops below 40, and in the worst case
is sti l l less then 60. This difference translates directly
into a significant improvement in efficiency.

In terms of number of internal decision tree nodes, the
average difference does not change significantly between
tests. Because the number of nodes in the trees remains
constant while the accuracy is improving the difference
can be at tr ibuted to the use of better features when do­
main knowledge or generalization is used.

4.2 E x t e n s i o n s a n d O t h e r A p p l i c a t i o n s

In addit ion to tic-tac-toe, CITRE has been applied to the
problem of learning random boolean functions. Even
on the simple problems thus far tested (e.g., 4 term, 3
features/term DNF functions), accuracy improvements
of greater than ten percent have been observed. De­
tailed experiments in this domain are proving useful in
the analysis of several aspects of CITRE's algor i thm, in­
cluding variations on the concept-bias, enhanced opera­
tor sets, and the effect of various evaluation methods.

Our preliminary work on tic-tac-toe is being extended
in several ways: 1) larger training sets are being used
to demonstrate that generalizations tend to be more
valid when based on larger samples of the instance
space, 2) new operators are being explored (e.g., or(_,_),
and(_,_,_)) 3) addit ional domain knowledge regarding
board games is being used to help focus the feature
construction (e.g., emphasizing corners, straight lines,

Matheus and Rendell 649

etc.), and 4) more powerful generalization rules are be­
ing tested including reflection, t ranslat ion, and rotat ion
generalizes.

We intend to apply the results obtained f rom the tic-
tac-toe problem to more diff icult board game problems
such as knight- fork and chess endgames. Towards this
end, domain knowledge and generalization rules are be­
ing developed specifically for the spatial properties of
board games. Our u l t imate goal is to develop a more
general approach appropriate for the larger class of spa­
t ia l problems that includes, for example, L E D classifica­
t ion, the blocks wor ld , protein folding, etc.

5 Conc lus ion

The four aspects of feature construction presented here
have proven useful as a framework for analyzing existing
systems and guiding the development of new construc­
tive techniques. In part icular, this framework guided
the design of CITRE, a new system that performs fea­
ture construction on decision trees using l imi ted domain
knowledge and simple generalization. Results on a board
game classification problem suggest the appropriateness
of C I T R E ' S three strong biases: concept-based selection,
domain-knowledge pruning, and an informat ion theo­
retic evaluation measure. More specifically, our results
suggest the potent ial importance of domain knowledge
and generalization for effective feature construction -
two areas to which current feature construction systems
have paid l i t t le at tent ion (see [Matheus, 1989]).

A c k n o w l e d g m e n t

We would like to thank Gunnar Bl ix , Gregg Gunsch,
Car l Kadie, Doug Medin, and David Wi lk ins for their
helpful discussion and comments on the issues developed
in this paper.

References

[Dietterich et al, 1982] Thomas G. Dietterich, Bob
London, Kenneth Clarkson, and R. Geoff Dromey.
Learning and inductive inference. Technical Re­
port STAN-CS-82-913, Computer Science Depart­
ment, Stanford University, 1982. (Also in Ch. X I V
of The Handbook of Ar t i f ic ia l Intelligence, Cohen &
Feigenbaum (Ed.) Morgan Kaufmann, 1982).

[Langley et aL, 1987] Pat Langley, Herbert A. Simon,
Gary L. Bradshaw, and Jan M. Zytkow. Scientific Dis-
covery: Computational Explorations of the Creative
Process. M I T Press, Cambridge, 1987.

[Matheus, 1988] Christopher J. Matheus. C O G E N T : A
system for the automatic generation of code f rom ex­
amples. Unpublished manuscript, 1988.

[Matheus, 1989] Christopher J. Matheus. A constructive
induct ion framework. In Proceedings of the Interna-
tional Workshop on Machine Learning, I thaca, New
York, 1989.

[Michalski, 1983] Ryszard S. Michalski. A theory and
methodology of inductive learning. Artificial Intelli­
gence, 20(2):111-161, 1983. (Reprinted in Machine
Learning: An Ar t i f ic ia l Intelligence Approach, Tioga
Press, 1983).

[Muggleton, 1987] Steve Muggleton. D U C E , an oracle
based approach to constructive induct ion. In Proceed­
ings of the International Joint Conference on Artifi­
cial Intelligence, pages 287-292, 1987.

[Newman and Uhr, 1965] C. Newman and Leonard Uhr.
B O G A R T : A discovery and induct ion program for
games. In Proceedings of the Twentieth National Con­
ference of the ACM, pages 176-185, New York, 1965.
Lewis Winner.

[Pagallo, 1989] Giul ia Pagallo. Learning D N F by deci­
sion trees. In Proceedings of the International Joint
Conference on Artificial Intelligence, Detroi t , M I , Au­
gust 1989. Morgan Kaufmann Publishers, Inc.

[Quinlan, 1986] J. Ross Quinlan. Induct ion of decision
trees. Machine Learning, 1(1), 1986.

[Rendell, 1985] Larry A. Rendell. Substantial construc­
tive induct ion using layered informat ion compression:
Tractable feature format ion in search. In Proceedings
of the International Joint Conference on Artificial In­
telligence, pages 650-658, August 1985.

[Rendell, 1988] Larry A. Rendell. Learning hard con­
cepts. In Proceedings of the Third European Working
Session on Learning, pages 177-200, 1988.

[Schlimmer, 1987] Jeffery C. Schlimmer. Incremental
adjustment of representations in learning. In Pro­
ceedings of the International Workshop on Machine
Learning, pages 79-90, Irvine, CA, June 1987. Mor­
gan Kaufmann Publishers, Inc.

[Seshu et al., 1989] Ra j Seshu, Larry A. Rendell, and
Dave Tcheng. Managing constructive induct ion using
opt imizat ion and test incorporat ion. In Proceedings of
the International Conference on Artificial Intelligence
Applications, pages 191-197, M iami , F L , March 1989.

650 Machine Learning

