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Abs t rac t 
In rea l -wor ld domains a concept to be learned may be 
unwieldy and the environment may be less than ideal. 
One combinat ion of difficulties occurs if the concept is 
probabi l ist ic and the learning si tuat ion is dynamic. In 
this case, the data may be noisy and biased. These 
difficulties arise when learning evaluation functions, 
which can be considered as concepts. A representative 
problem, the fifteen puzzle, is used to test six different 
learning systems: some that fit, count, or par t i t ion 
data in instance, space; some that optimize measures 
derived f rom data in hypothesis space; and some that 
perform combinations of such procedures. These six 
systems are described, tested, and analyzed. F r o m 
quant i tat ive differences in several experiments, we 
extract specific properties. By combining two or three 
kinds of techniques, we gauge the extent to which they 
complement each other. Combinations of strengths 
can overcome difficulties in domains that are simul­
taneously probabi l ist ic, dynamic, noisy, and biased. 

1 . I n t r oduc t i on 
Al though concepts and evaluation functions can be 
learned f rom examples using various methods, existing 
techniques are often inadequate for harder problems. 
If the domain is uncertain or the environment is 
dynamic [Langley, 1987], a simple induct ion a lgor i thm 
may have dif f icul ty. In many cases we may be forced 
to elaborate old methods, combine them, or develop 
new ones. 

To complicate matters, there are several 
approaches to choose f rom. To learn uncertain con­
cepts, we might consider a modif icat ion of ID3 [Quin-
lan, 1986] or some stat ist ical technique [Draper & 
Smi th , 1981]. Or, because concept learning involves 
the parameterizat ion of descriptions, we might base 
our method on t rad i t iona l opt imizat ion [Gil l et a l . , 
1981]; one such approach uses genetic algorithms [Hol­
land, 1975]. Of course, some methods are known to be 
especially suited for part icular situations; e.g., genetic 
algori thms can be applied to badly behaved problems 
having strong nonlinearit ies. However, many problems 
and methods are largely unexplored. 

The situations considered in this paper include 
probabil ist ic concepts, dynamic environments, and 
noisy and biased data. In an attempt to help develop 
methods for such cases, we explore a problem that 
taxes current systems. The problem involves a 
representation of the fifteen puzzle that can be 
managed by elaborations of several methods. 

The next section defines a general problem of 
which the fifteen puzzle is a special case. The analysis 
suggests certain methods. Section 3 describes the 
methods and discusses their strengths before we evalu­
ate and compare them in Section 4. F ina l ly , Section 5 
summarizes implications for empir ical learning. 

2. The Prob lem 
This section analyzes a representation of the fifteen 
puzzle, whose solution may be viewed as a special case 
of concept learning. In this and other problems, the 
data may be biased, which complicates learning. 

2 . 1 . G e n e r a l i s e d C o n c e p t s 

Our basic problem is learning a concept or 
evaluation funct ion f rom examples. By def ini t ion, a 
concept is a rule that describes a class of instances. If 
we represent an instance as a tuple of at t r ibutes, a con­
cept w i l l have an associated instance space whose 
dimensionality is the tota l number of at t r ibutes. As 
shown in Figure 1(a), an "a l l -or -none" concept is a 
b inary-valued funct ion over instance space. This 
diagram shows two attr ibutes; in general a concept is a 
funct ion over whatever attr ibutes are used to express 
i t . If we allow a concept to be probabil istic (Fig. l b ) , 
the funct ion becomes graded: it has values between 0 
(certain class exclusion) and 1 (certain class member­
ship). Here we interpret and learn the graded values as 
probabil i t ies. Hence a concept is a binary or proba­
bil ist ic function over instance space. 

Viewing a concept as a function helps to draw 
parallels among learning methods and the representa­
tions they use. As one example, consider an evaluation 
funct ion H for a state-space problem such as the fifteen 
puzzle. If x is k- tuple of attr ibutes (x1 x2 , ... xk) 
representing a state, then H(x ) could represent the 
probability of finding the goal (quickly, opt imal ly , 
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etc.) if the solution path goes through x [Rendell, 
1983]. Bu t because H (x ) has the fo rm of a probabil is­
tic concept, it could also be interpreted as the concept 
"good state to develop.'' 

Typ ica l ly , a concept is expressed as a logic 
expression or decision tree involv ing the at t r ibutes 
[Mitchel l , 1978; Quin lan, 1986], sometimes w i t h anno­
tated probabil i t ies [Breiman et a l . , 1984; Rendell , 
1983], although other expressions are possible. In con­
trast, an evaluation funct ion H is often defined as a 
linear combination of attr ibutes h1x1 + b2x2 4- . . . . 
+ bkxk = b . x , where the b i are weights to be learned 
[Samuel, 1963], However, these preferred forms are 
not mandatory. 

To reiterate: When expressed in terms of a t t r i ­
butes, concepts and evaluation functions are both func­
tions over their instance space. Only the details vary . 
The terms concept and evaluation function are some­
times synonymous. 

2 .2 . N o i s y a n d B iased D a t a 

The data for empir ical learning are often b inary, 
to represent definite knowledge about class member­
ship [Mitchel l , 1978]; but data can also be graded, to 
indicate probable categorization [Draper & Smi th , 
1981]. For example, we could annotate a value of 0.8 
to a patient 's state to express a belief that he has some 
disease. Probabi l ist ic data can also be uncertain (e.g., 
0.8 ± 0.1), or even biased (e.g., 0.8 is an overestimate). 
Biased data arise if the sampling is not random, which 
is undesirable in statistics [Draper & Smi th , 1981], bu t 
not always in machine learning [Winston, 1984]. 

In some problems, not al l the data are available 
before some decision must be made that util izes the 
results of analyzing the first batch. In such dynamic 
learning, how might the results of one run affect the 
gathering of future data? A physician might have 
compiled some data for diagnosis. If these data sup­
port disease A, then the physician's subsequent tests 
may be biased toward observations that w i l l confirm i t . 
The consequences of such a bias may often be good, 
but sometimes detr imental . If the correct diagnosis is 
disease B, t ime may be wasted, or worse, the proper 
evidence may never be found. 

This problem can also arise in domains such as 
the fifteen puzzle. Because this puzzle has about 1013 

states, most problems cannot be solved breadth-f i rst 
(to give unbiased data). In contrast, a good evaluation 
funct ion solves many problems, bu t produces biased 
data: States assessed favorably tend to predominate. 
Data can become increasingly biased as the evaluation 
funct ion improves in successive i terat ions. New data 
are incommensurable w i t h early data, and if used 
direct ly , can give erroneous results [Rendell, 1981]. 

2 .3 . R e p r e s e n t a t i v e P r o b l e m C h a r a c t e r i s t i c s 

The issues explored here involve biased and unc­
er ta in data, uncertain concepts, and dynamic learning. 
A l l these arise in the fifteen puzzle when an evaluation 
funct ion is used for best-f i rst search. In experiments, 
several at t r ibutes were defined, al l relative to the goal. 
The most impor tan t is the to ta l c i ty -b lock distance of 
tiles f rom their goal positions [Doran & Michie, 1966]. 
The other at t r ibutes are various impediments, such as 
the tiles in a row being correct, except out of order 
[Rendell, 1981]. This high- level representation 
presumes considerable knowledge, and compresses the 
101 3 states in to about 104 or 105 descriptions, depend­
ing on the exact choice of at t r ibutes. 

A l though this compression is great, it is not the 
ma in benefit of the representation. The main benefit is 
to tame the evaluat ion funct ion H. H maps states into 
probabi l i t ies, which estimate the l ikel ihood that a state 
w i l l appear on a shortest-solut ion pa th . This probabi l ­
i t y H varies w i t h the attr ibutes X i monotonically. For 
example, the smaller the c i ty -b lock distance, the more 
l ikely the state w i l l be useful. A l though attr ibutes 
may interact somewhat, the monotonic relationship 
allows us to assume a linear combinat ion: H (x ) = b iX1 

+ b 2 x 2 +— + b k x k = b . x , and we need only learn 
the weights b i . 

H can also be viewed as a class membership func­
t i on , where the class is probabil ist ic (cf. F ig . l b ) . H is 
comparable to other concepts that begin w i t h favorable 
representations. In a favorable representation the 
at t r ibutes are matched to the problem so that , over 
their instance space, concepts exhibi t few disjuncts or 
peaks [Holte & Porter , 1988; Rendell, 1988]. If our 
l inear model b . x is appropriate, then H has just one 
peak — where each x i has its extreme value. 

Associated w i t h H is its weight space, over which 
is defined some objective function [Gi l l et a l . , 1981]. 
Our objective is task performance. Figure 2 shows 
tha t a performance funct ion over a weight space 
defined by our at tr ibutes tends to be smooth, and may 
have a single o p t i m u m . The ordinate shows the aver­
age number of nodes developed before a solution was 
found, for a large set of arb i t rar i ly diff icult puzzles. 
Weight space is hypothesis space, the continuous ana­
log of a discrete version space [Mitchel l , 1978]. In ver­
sion space, hypotheses are correct or incorrect. In 
weight space the hypotheses have degrees of correct-
ness, shown in Figure 2 w i t h the best at the central 
posit ion of each graph. Such opt ima are surprisingly 
dif f icult to find, even for simpler spaces. 
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Al though our representation gives typical 
membership and objective functions, this problem is 
harder than some because it requires dynamic learning. 
This produces biased data, which are already uncer­
ta in . The data come f rom search trees; each node 
becomes a t ra in ing example. An example is positive if 
and only if i t appears on a solut ion path. Al though 
failures to solve give only negative examples, incom­
plete search trees are useful for t ra in ing when com­
bined w i t h successful searches. Depending on the 
learning method, several searches may compose a sin­
gle i te ra t ion. An i terat ion is a set of searches to gather 
many data, fol lowed by the computat ion of an 
improved evaluation funct ion H to guide new searches. 
Because H favors useful states, i terated learning 
requires "unbiasing' ' procedures [Rendell, 1983]. 

3. A Selection of Learn ing Methods 
The weights of an evaluation funct ion or the parame­
ters of any concept description can be learned in many 
different ways. However, there are two basic 
approaches. One learns the funct ion over instance 
space (Fig. 1); the other works w i t h hypothesis space 
(Fig. 2). Methods tha t use instance space directly 
include curve fitting and decision tree induct ion. 
Methods tha t work in hypothesis space include candi­
date e l iminat ion and opt imizat ion techniques. We first 
out l ine, then evaluate three instance space methods, 
two hypothesis space methods, and one combination 
method (see Table I ) . 

(1) D i r e c t c u r v e f i t t i n g . I f attr ibutes have real, 
integer, or b inary scales, we can use statistical regres­
sion [Draper & Smi th , 1981], which fits the best hyper-
plane H ( x ) = b1x1 + b2x2 - + - — +- b k x k by minimiz ing 
the least squared-error for different choices of weights 
b i. Abst rac t ly , this is l ike searching weight space 
(Fig. 2) to minimize the objective funct ion — here the 
squared-error. Operat ional ly, however, regression is 
algor i thmic — no search is necessary, because the tech­
nique inverts matrices to solve min imizat ion equations 
direct ly. Hence the method is very fast. 

If our class membership values were probabil i t ies, 
normal regression techniques [Draper & Smith, 1981] 

would apply. However, in our experiments (and in 
many machine learning applications) the data are 
binary. Fortunately, binary data can be managed by 
analogous techniques, one of which is probit analysis 
[Finney, 1971]. 

(2) P r o b a b i l i t y reg ions a n d d isc re te e v a l u a t i o n . 
In machine learning the best known empir ical tech­
nique may be induction of decision trees or par t i t ion ing 
of instance space [Quinlan, 1986]. For graded con­
cepts, the instance space is divided into regions of simi­
lar probabi l i ty [Breimah et al . , 1984]. If we have 
learned a concept, these regions classify instances into 
their probable class; if we have learned an evaluation 
funct ion, the regions classify instances into their prob­
able u t i l i t y [Rendell, 1983]. 

For our fifteen puzzle problem, one pass of a par­
t i t ioning algori thm is insufficient. Because of the 
diff iculty of this puzzle, early data must come f rom 
easier problems, and later data f rom intel l igent search 
(causing sample bias). Hence, the par t i t ion ing algo­
r i thm becomes just one operation in a scheme to form 
and revise regions and their probabi l i ty estimates [Ren­
dell, 1983]. Af ter the in i t ia l par t i t ioning, later passes 
use the biased data and three other operations: unbias-
ing, probability updating, and region refinement. 
Unbiasing begins by comparing averaged data w i th in 
existing regions, which already provide an unbiased 
estimate of the probabilities. These unbiased estimates 
are now compared w i th the biased data, pairwise for 
each region, to extract a relationship. The relationship 
allows an operation to be applied to the biased proba­
bilities to convert them to unbiased estimates. Now 
the new probabi l i ty estimates are averaged w i t h the 
old to provide probability updating. The newly 
unbiased data are also used for a different operation: 
region refinement, which further subdivides the exist­
ing par t i t ion. 

(3) F i t t i n g p r o b a b i l i t y reg ions f o r s m o o t h e d 
e v a l u a t i o n . Al though the regions output by an 
induction algorithm allow refined classification, the 
discrete nature of this approach may be insufficient. 
As we see in Section 4, search performance may be 
poor if the discrete probabi l i ty regions do not 



discriminate wel l enough. To address this problem, we 
could use the probabi l i ty regions as data in s ta t is t ica l 
regression to f ind the best smoothed funct ion H ( x ) = 
b1x1 + b2x2 - K . . . 4 - b kx k . 

Instead of this complicated process of inducing 
regions, then f i t t ing them, why not simply f i t the or ig i -
nal data? The answer is tha t the computat ional 
resources required to unbias are too great if we retain 
al l the data. In contrast, i f we i terat ively repeat the 
operations of data gathering, unbiasing, par t i t ion ing, 
then regression, then our pr imary in format ion struc­
ture is the compressed regions. Regions are easier to 
update. 

(4) O p t i m i s a t i o n u s i n g response su r f ace f i t t i n g . 
Unl ike the previous three methods which work in 
instance space (Fig. 1), opt imizat ion methods search 
hypothesis space to minimize (maximize) the objective 
funct ion μ. Because the weights in Figure 2 have real 
values, and because μ is smooth and appears to have 
only one peak, a h i l l - c l imb ing method is suitable [Gi l l 
et a l , 1981]. A h i l l - c l imb ing technique selects weight 
vectors b by moving in the direction of improv ing 
μ(b). One technique suitable for noisy domains is 
response surface f i t t ing w i th a d imin ish ing gr id . In 
this method we select points b at corners and m id ­
points of a hypercube in weight space, then gather data 
(μ values) to fit a quadratic (a parabola). The 
op t imum predicted by the parabola allows us to gather 
more refined data, as we gradually hone in on the 
op t imum μ by repeatedly shr inking the gr id . Start ing 
w i t h a large gr id detects broad tendencies; shr inking 
the gr id improves accuracy. 

Despite the qual i ty of this method, a serious 
problem in our case is tha t most values of μ cannot be 
f ound ! This is because most choices of b give such 
poor performance tha t typ ica l problems cannot be 
solved w i t h i n reasonable t ime. To offset this problem, 
in i t i a l runs used easier problems. 

(5) O p t i m i z a t i o n u s i n g a gene t i c a l g o r i t h m . 
Genetic algori thms are designed to optimize an objec­
t ive funct ion μ called the fitness [Holland, 1975]. 
Given a populat ion, hypotheses b are selected stochast­
ically for breeding, w i t h probabil i t ies proport ionate to 
μ(b). Hypotheses are usually represented as b i t vec­
tors called genotypes. B inary operations such as cross-
over are applied to pairs of genotypes; unary opera­
tions such as muta t ion are applied to single genotypes. 
The operations produce a new generation of 
hypotheses. Because they implement paral lel search, 
genetic algori thms can manage badly behaved objec­
t ive funct ions. 

For this reason, a genetic a lgor i thm seems 
unnecessarily powerful for the problem i l lustrated in 
Figure 2. Massively paral lel search is not required and 
it may be costly. We st i l l have the problem of com­
put ing μ for mediocre choices of b, though once again 
we can do some prel iminary search. 

(6) C o m b i n i n g p a r t i t i o n i n g a n d p a r a l l e l i s m . 
Our final method is a combinat ion of par t i t ion ing in 
instance space and paral lel search in hypothesis space. 

This method uses a modified genetic a lgor i thm to 
govern mul t ip le par t i t ion ing [Rendell, 1985]. The 
"genotype'' is compressed and variable — it is a set of 
probabi l i ty regions (Fig. l b ) . Each of these structures 
produces a different evaluation funct ion H, which is 
then given some puzzles to produce data of two types: 
detailed data for updat ing probabil i t ies and refining 
regions, and overall data for measuring performance μ. 
This allows the selection of ind iv idual regions for k-
sexual crossover. 

4. Compara t ive Results 
Table I summarizes representative results of many 
experiments for each of the six methods described in 
the previous section. To assess these methods we use 
the number of nodes developed μ. Because other com­
putat ion is negligible, μ is a good measure of both the 
learning t ime and the qual i ty of the result ing evalua­
t ion funct ion. (Another measure, the length of the 
solut ion, was found to track μ.) On a VAX 780, 1000 
nodes take about 1/2 minute CPU t ime. The average 
values of μ shown in the table were obtained by solving 
100 puzzles, g iv ing a standard error of about 11 (or 
3%). A l though some related work appeared in [Ren-
dell , 1983] and [Rendell, 1985], most of these results 
are new. A l l experiments used the same four attr ibutes 
of Figure 2. 

(1) D i r e c t c u r v e f i t t i n g . To f i t the best hyperplane 
H ( x ) = b1 X1 + b 2 x 2 +...... + b k x k to the binary data 
f rom search trees, prob i t analysis [Finney, 1971] was 
used. Because the technique is algor i thmic, it is fast. 
However, the qual i ty (nodes developed) is 534— 53% 
worse than op t ima l , and this is after favorable 
interpretat ion of the results. To begin the experiment, 
puzzles nine moves f rom the goal were given (greater 
dif f iculty requires too much computat ion). The result­
ing data gave a non-zero weight only for the c i t y -
block distance x1 because easy puzzles can hardly have 
the impediments described by the other at tr ibutes x2 , 
x3 , and x4. To continue the experiment, the result ing 
evaluation funct ion was used to solve harder puzzles 
and find impediment weights. These weights ( b2, b3, 
and b4), now approximated the correct ones, but 
because of the biasing effect of the c i ty-b lock distance 
already in H, the new value of b1 was in error by 
1200%. Fur ther experiment gave s imi lar ly biased and 
unpredictable values, al though if we take the value of 
b1 f rom the first i terat ion and the values of b2 , b3 , and 
b4 f rom the second, we obtain the performance shown. 

(2) P r o b a b i l i t y r eg ions a n d d i sc re te e v a l u a t i o n . 
The second method is to par t i t ion instance space into 
regions of simi lar probabi l i ty (of a state's appearing on 
a short solution). Because the technique is i terat ive, it 
requires not only in i t i a l par t i t ion ing, but also par t i t ion 
refinement after data unbiasing (see Section 3). The 
improv ing quali ty of the evaluation funct ion over 
repeated iterations allows the solution of harder prob­
lems, which provide more representative data. This 
al ternat ion of sampling and learning allows each pro­
cess to speed the other. Bu t the evaluation is discrete: 

618 Machine Learning 



For task performance the states are classified in to 
discrete regions. This lack of smoothing or interpola­
t ion causes poor performance: at least four times 
opt imal qual i ty. (The number of nodes developed 
could not be tested precisely, because resource l imi ts 
were often exceeded.) 

(8) F i t t i n g p r o b a b i l i t y reg ions f o r s m o o t h e d 
e v a l u a t i o n . This is the same as the previous method 
except that at the end of each i terat ion the probabi l i ty 
regions are used as data to find weights b i for the 
linear combinat ion H ( x ) = b 1x i + b 2x 2 + + b k x k . 
Af ter convergence in half a dozen i terat ions, this 
smoothed evaluation funct ion gave near-opt imal per­
formance of 353 (compare F i g . 2 and see [Rendell, 
1983]). A l though H contains the only knowledge used 
for solving, the probabi l i ty regions provide the pr imary 
in format ion, and are more suitable for dynamic learn­
ing. One advantage of this and other instance space 
methods is that every state counts. One drawback of 
this and most methods is that for fast learning, the 
diff iculty of the t ra in ing problems must be just at the 
current performance l im i t . This requires some user 
experience. Moreover, the combinat ion of approximate 
techniques (e.g., unbiasing, and search that relies on 
previous learning) over repeated iterations can cause 
problems. To some extent the i terat ive learning seems 
to be self-correcting, bu t often performance degrades 
sl ightly or levels off. One cure is user experience; 
another is repeated runs. Experiments have shown 
that about ten runs are required for a result w i t h in 
10% of opt imal . A similar cr i t ic ism applies to most 
methods, so their learning times are mul t ip l ied by ten 
in cololmn 5 of Table I ("Effective Cost" ) . 

(4) O p t i m i s a t i o n u s i n g response su r f ace f i t t i ng . 
Rather than probabil i t ies over instance space, op t im i ­
zation methods use summary measures of performance 
μ over hypothesis space. Summary measures cost more 
to obta in: concept accuracy requires the classification 
of many instances; search performance requires the 
solution of whole problems. For each problem solved, 

only a single value is obtained — the number of states 
developed. This contrasts w i th the first three methods, 
which identify each count w i th a point in instance 
space. This design difference explains the difference in 
learning times: h i l l cl imbing in weight space is slower. 
In i t ia l ly , most values of the weight vector b are so 
poor that problems cannot be solved. To counteract 
this problem, a prel iminary round of curve fitting (row 
l) was used to obtain approximately correct weights. 

(5) O p t i m i z a t i o n us i ng a genet ic a l g o r i t h m . 
Approximately correct weights were also given to the 
genetic algor i thm (row 5). Genetic algorithms need a 
well-chosen representation. If the genotype is too 
short, resolution w i l l be lost; if this b i t str ing is too 
long, t ime w i l l be wasted. To ensure better perfor­
mance, the graphs in Figure 2 and some prel iminary 
runs were analyzed to choose a genotype length of six 
bits. Another variable is the population size. Several 
experiments used populations up to 200. The less than 
opt imal performance of 388 (12% worse than opt imal) 
for the best individual in a population of 50 is perhaps 
not too surprising because genetic algorithms are not 
designed for obtaining 100% accuracy when the objec­
t ive function μ is unimodal, but rather for approaching 
mult ip le opt ima in parallel when the funct ion is badly 
behaved. The high cost results f rom so much search 
(hundreds of states in each of many problems) for so 
l i t t le (a single performance value for each solution). 
Another problem is that verif ication of an ind iv idual 
weight vector requires a larger sample than dur ing 
learning. For each weight vector suspected to be close 
to opt imal , many test problems must be solved, which 
typical ly costs 10,000 nodes per candidate vector. 

(6) C o m b i n i n g p a r t i t i o n i n g a n d p a r a l l e l i s m . 
Perhaps surprising is the sixth result. This gives the 
best performance (although not significantly better 
than row 3 because the standard error is about 11, or 
3%, in al l rows). The cost appears higher than for the 
extended part i t ioning method, by a factor of six. 
Superficially, then, it seems that extended par t i t ion ing 



is better when used alone than when combined w i t h a 
genetic a lgor i thm. However, this cursory assessment is 
misleading. The favorable learning speed of extended 
par t i t ion ing in row 3 results f rom considerable user 
experience w i t h t ra in ing. In fact the learning speeds 
given in rows 2 through 5 are about an order of magni­
tude too low (reflected in col. 5). In contrast, the com­
bined method of row 8 needs l i t t le user guidance 
because it is much less sensitive to t ra in ing problems 
and evaluation errors. Even w i t h a smal l populat ion 
of 10 or 20, this method is extremely stable. It is re l i ­
able and easy to use. Fur thermore, this method avoids 
the cost of ver i f icat ion, because ind iv idua l weight vec­
tors need not be tested. Rather, all the regions f rom 
all the ind iv idua l part i t ions can be used as a single 
large data set to fit a very accurate evaluation funct ion 
([Rendell, 1985] elaborates). 

5. D iscuss ion 

This study of six empir ical - learning methods suggests 
ways to cope w i t h domains tha t are simultaneously 
probabi l ist ic, dynamic, noisy, and biased. One recom­
mendat ion is to combine types of methods. Even for 
our numeric domain, the standard methods of curve 
fitting (1) and opt imizat ion (4) were l im i ted because of 
biased data ( in l ) and lost in fo rmat ion (in 4). Fur ther­
more, a standard method of instance space par t i t ion ing 
or decision tree induct ion, despite its extension for pro­
gressive refinement after data "unbiasing" (2), was 
inadequate because discrete classification rules were too 
unrefined, even though they were probabi l ist ic. Bu t 
when par t i t ion ing (2) was combined w i t h curve fitt ing 
(1), the learning was fast and the task performance was 
op t ima l . Incorporat ing a t h i r d technique improved 
learning behavior s t i l l more. L ike method 4, the 
genetic a lgor i thm (5) could use only some of the infor­
mat ion available in the search domain, and although 
this method (5) behaved relat ively poorly when used 
alone, it stabil ized method 3 and made it easier to use 
(cf. [Quinlan, 1988]). 

Because other problems exhibit characteristics 
simi lar to the search problem we analyzed, the 
phenomena should generalize. Probabi l ist ic evaluation 
functions are probabi l ist ic concepts (Section 2.1). In 
many rea l -wor ld domains the concept is probabi l ist ic, 
the learning si tuat ion is dynamic, and the data are 
noisy and even biased (Section 2.2). To reiterate the 
phenomena we observed: 

• Instance space algori thms find class membership 
values H as a funct ion of a t t r ibu te values x; 
hypothesis space algori thms optimize overall qual i ty 
values μ of entire functions H(x ) . Combinat ions of 
these two methods exploit both kinds of in forma­
t ion . 

• Instance space algor i thms are fast; hypothesis space 
algor i thms are stable. Combinat ions may have both 
advantages and also be easier to use. 

The var ied strengths of different techniques may pro­
vide a net gain when the methods are combined [Ack-
ley, 1985], U l t imate ly , systems for very general 

learning may owe much to a structured combinat ion of 
techniques [Buchanan et a l . , 1978]. 
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