
A STUDY OF EMPIRICAL LEARNING
FOR AN INVOLVED PROBLEM

Larry Rendell
Department of Computer Science

University of Il l inois at Urbana-Champaign
1304 W. Springfield Avenue, Urbana, Il l inois 61801

Abs t rac t
In rea l -wor ld domains a concept to be learned may be
unwieldy and the environment may be less than ideal.
One combinat ion of difficulties occurs if the concept is
probabi l ist ic and the learning si tuat ion is dynamic. In
this case, the data may be noisy and biased. These
difficulties arise when learning evaluation functions,
which can be considered as concepts. A representative
problem, the fifteen puzzle, is used to test six different
learning systems: some that fit, count, or par t i t ion
data in instance, space; some that optimize measures
derived f rom data in hypothesis space; and some that
perform combinations of such procedures. These six
systems are described, tested, and analyzed. F r o m
quant i tat ive differences in several experiments, we
extract specific properties. By combining two or three
kinds of techniques, we gauge the extent to which they
complement each other. Combinations of strengths
can overcome difficulties in domains that are simul
taneously probabi l ist ic, dynamic, noisy, and biased.

1 . I n t r oduc t i on
Al though concepts and evaluation functions can be
learned f rom examples using various methods, existing
techniques are often inadequate for harder problems.
If the domain is uncertain or the environment is
dynamic [Langley, 1987], a simple induct ion a lgor i thm
may have dif f icul ty. In many cases we may be forced
to elaborate old methods, combine them, or develop
new ones.

To complicate matters, there are several
approaches to choose f rom. To learn uncertain con
cepts, we might consider a modif icat ion of ID3 [Quin-
lan, 1986] or some stat ist ical technique [Draper &
Smi th , 1981]. Or, because concept learning involves
the parameterizat ion of descriptions, we might base
our method on t rad i t iona l opt imizat ion [Gil l et a l . ,
1981]; one such approach uses genetic algorithms [Hol
land, 1975]. Of course, some methods are known to be
especially suited for part icular situations; e.g., genetic
algori thms can be applied to badly behaved problems
having strong nonlinearit ies. However, many problems
and methods are largely unexplored.

The situations considered in this paper include
probabil ist ic concepts, dynamic environments, and
noisy and biased data. In an attempt to help develop
methods for such cases, we explore a problem that
taxes current systems. The problem involves a
representation of the fifteen puzzle that can be
managed by elaborations of several methods.

The next section defines a general problem of
which the fifteen puzzle is a special case. The analysis
suggests certain methods. Section 3 describes the
methods and discusses their strengths before we evalu
ate and compare them in Section 4. F ina l ly , Section 5
summarizes implications for empir ical learning.

2. The Prob lem
This section analyzes a representation of the fifteen
puzzle, whose solution may be viewed as a special case
of concept learning. In this and other problems, the
data may be biased, which complicates learning.

2 . 1 . G e n e r a l i s e d C o n c e p t s

Our basic problem is learning a concept or
evaluation funct ion f rom examples. By def ini t ion, a
concept is a rule that describes a class of instances. If
we represent an instance as a tuple of at t r ibutes, a con
cept w i l l have an associated instance space whose
dimensionality is the tota l number of at t r ibutes. As
shown in Figure 1(a), an "a l l -or -none" concept is a
b inary-valued funct ion over instance space. This
diagram shows two attr ibutes; in general a concept is a
funct ion over whatever attr ibutes are used to express
i t . If we allow a concept to be probabil istic (Fig. l b) ,
the funct ion becomes graded: it has values between 0
(certain class exclusion) and 1 (certain class member
ship). Here we interpret and learn the graded values as
probabil i t ies. Hence a concept is a binary or proba
bil ist ic function over instance space.

Viewing a concept as a function helps to draw
parallels among learning methods and the representa
tions they use. As one example, consider an evaluation
funct ion H for a state-space problem such as the fifteen
puzzle. If x is k- tuple of attr ibutes (x1 x2 , ... xk)
representing a state, then H(x) could represent the
probability of finding the goal (quickly, opt imal ly ,

Rendell 615

etc.) if the solution path goes through x [Rendell,
1983]. Bu t because H (x) has the fo rm of a probabil is
tic concept, it could also be interpreted as the concept
"good state to develop.''

Typ ica l ly , a concept is expressed as a logic
expression or decision tree involv ing the at t r ibutes
[Mitchel l , 1978; Quin lan, 1986], sometimes w i t h anno
tated probabil i t ies [Breiman et a l . , 1984; Rendell ,
1983], although other expressions are possible. In con
trast, an evaluation funct ion H is often defined as a
linear combination of attr ibutes h1x1 + b2x2 4-
+ bkxk = b . x , where the b i are weights to be learned
[Samuel, 1963], However, these preferred forms are
not mandatory.

To reiterate: When expressed in terms of a t t r i
butes, concepts and evaluation functions are both func
tions over their instance space. Only the details vary .
The terms concept and evaluation function are some
times synonymous.

2 .2 . N o i s y a n d B iased D a t a

The data for empir ical learning are often b inary,
to represent definite knowledge about class member
ship [Mitchel l , 1978]; but data can also be graded, to
indicate probable categorization [Draper & Smi th ,
1981]. For example, we could annotate a value of 0.8
to a patient 's state to express a belief that he has some
disease. Probabi l ist ic data can also be uncertain (e.g.,
0.8 ± 0.1), or even biased (e.g., 0.8 is an overestimate).
Biased data arise if the sampling is not random, which
is undesirable in statistics [Draper & Smi th , 1981], bu t
not always in machine learning [Winston, 1984].

In some problems, not al l the data are available
before some decision must be made that util izes the
results of analyzing the first batch. In such dynamic
learning, how might the results of one run affect the
gathering of future data? A physician might have
compiled some data for diagnosis. If these data sup
port disease A, then the physician's subsequent tests
may be biased toward observations that w i l l confirm i t .
The consequences of such a bias may often be good,
but sometimes detr imental . If the correct diagnosis is
disease B, t ime may be wasted, or worse, the proper
evidence may never be found.

This problem can also arise in domains such as
the fifteen puzzle. Because this puzzle has about 1013

states, most problems cannot be solved breadth-f i rst
(to give unbiased data). In contrast, a good evaluation
funct ion solves many problems, bu t produces biased
data: States assessed favorably tend to predominate.
Data can become increasingly biased as the evaluation
funct ion improves in successive i terat ions. New data
are incommensurable w i t h early data, and if used
direct ly , can give erroneous results [Rendell, 1981].

2 .3 . R e p r e s e n t a t i v e P r o b l e m C h a r a c t e r i s t i c s

The issues explored here involve biased and unc
er ta in data, uncertain concepts, and dynamic learning.
A l l these arise in the fifteen puzzle when an evaluation
funct ion is used for best-f i rst search. In experiments,
several at t r ibutes were defined, al l relative to the goal.
The most impor tan t is the to ta l c i ty -b lock distance of
tiles f rom their goal positions [Doran & Michie, 1966].
The other at t r ibutes are various impediments, such as
the tiles in a row being correct, except out of order
[Rendell, 1981]. This high- level representation
presumes considerable knowledge, and compresses the
101 3 states in to about 104 or 105 descriptions, depend
ing on the exact choice of at t r ibutes.

A l though this compression is great, it is not the
ma in benefit of the representation. The main benefit is
to tame the evaluat ion funct ion H. H maps states into
probabi l i t ies, which estimate the l ikel ihood that a state
w i l l appear on a shortest-solut ion pa th . This probabi l
i t y H varies w i t h the attr ibutes X i monotonically. For
example, the smaller the c i ty -b lock distance, the more
l ikely the state w i l l be useful. A l though attr ibutes
may interact somewhat, the monotonic relationship
allows us to assume a linear combinat ion: H (x) = b iX1

+ b 2 x 2 +— + b k x k = b . x , and we need only learn
the weights b i .

H can also be viewed as a class membership func
t i on , where the class is probabil ist ic (cf. F ig . l b) . H is
comparable to other concepts that begin w i t h favorable
representations. In a favorable representation the
at t r ibutes are matched to the problem so that , over
their instance space, concepts exhibi t few disjuncts or
peaks [Holte & Porter , 1988; Rendell, 1988]. If our
l inear model b . x is appropriate, then H has just one
peak — where each x i has its extreme value.

Associated w i t h H is its weight space, over which
is defined some objective function [Gi l l et a l . , 1981].
Our objective is task performance. Figure 2 shows
tha t a performance funct ion over a weight space
defined by our at tr ibutes tends to be smooth, and may
have a single o p t i m u m . The ordinate shows the aver
age number of nodes developed before a solution was
found, for a large set of arb i t rar i ly diff icult puzzles.
Weight space is hypothesis space, the continuous ana
log of a discrete version space [Mitchel l , 1978]. In ver
sion space, hypotheses are correct or incorrect. In
weight space the hypotheses have degrees of correct-
ness, shown in Figure 2 w i t h the best at the central
posit ion of each graph. Such opt ima are surprisingly
dif f icult to find, even for simpler spaces.

616 Machine Learning

Al though our representation gives typical
membership and objective functions, this problem is
harder than some because it requires dynamic learning.
This produces biased data, which are already uncer
ta in . The data come f rom search trees; each node
becomes a t ra in ing example. An example is positive if
and only if i t appears on a solut ion path. Al though
failures to solve give only negative examples, incom
plete search trees are useful for t ra in ing when com
bined w i t h successful searches. Depending on the
learning method, several searches may compose a sin
gle i te ra t ion. An i terat ion is a set of searches to gather
many data, fol lowed by the computat ion of an
improved evaluation funct ion H to guide new searches.
Because H favors useful states, i terated learning
requires "unbiasing' ' procedures [Rendell, 1983].

3. A Selection of Learn ing Methods
The weights of an evaluation funct ion or the parame
ters of any concept description can be learned in many
different ways. However, there are two basic
approaches. One learns the funct ion over instance
space (Fig. 1); the other works w i t h hypothesis space
(Fig. 2). Methods tha t use instance space directly
include curve fitting and decision tree induct ion.
Methods tha t work in hypothesis space include candi
date e l iminat ion and opt imizat ion techniques. We first
out l ine, then evaluate three instance space methods,
two hypothesis space methods, and one combination
method (see Table I) .

(1) D i r e c t c u r v e f i t t i n g . I f attr ibutes have real,
integer, or b inary scales, we can use statistical regres
sion [Draper & Smi th , 1981], which fits the best hyper-
plane H (x) = b1x1 + b2x2 - + - — +- b k x k by minimiz ing
the least squared-error for different choices of weights
b i. Abst rac t ly , this is l ike searching weight space
(Fig. 2) to minimize the objective funct ion — here the
squared-error. Operat ional ly, however, regression is
algor i thmic — no search is necessary, because the tech
nique inverts matrices to solve min imizat ion equations
direct ly. Hence the method is very fast.

If our class membership values were probabil i t ies,
normal regression techniques [Draper & Smith, 1981]

would apply. However, in our experiments (and in
many machine learning applications) the data are
binary. Fortunately, binary data can be managed by
analogous techniques, one of which is probit analysis
[Finney, 1971].

(2) P r o b a b i l i t y reg ions a n d d isc re te e v a l u a t i o n .
In machine learning the best known empir ical tech
nique may be induction of decision trees or par t i t ion ing
of instance space [Quinlan, 1986]. For graded con
cepts, the instance space is divided into regions of simi
lar probabi l i ty [Breimah et al . , 1984]. If we have
learned a concept, these regions classify instances into
their probable class; if we have learned an evaluation
funct ion, the regions classify instances into their prob
able u t i l i t y [Rendell, 1983].

For our fifteen puzzle problem, one pass of a par
t i t ioning algori thm is insufficient. Because of the
diff iculty of this puzzle, early data must come f rom
easier problems, and later data f rom intel l igent search
(causing sample bias). Hence, the par t i t ion ing algo
r i thm becomes just one operation in a scheme to form
and revise regions and their probabi l i ty estimates [Ren
dell, 1983]. Af ter the in i t ia l par t i t ioning, later passes
use the biased data and three other operations: unbias-
ing, probability updating, and region refinement.
Unbiasing begins by comparing averaged data w i th in
existing regions, which already provide an unbiased
estimate of the probabilities. These unbiased estimates
are now compared w i th the biased data, pairwise for
each region, to extract a relationship. The relationship
allows an operation to be applied to the biased proba
bilities to convert them to unbiased estimates. Now
the new probabi l i ty estimates are averaged w i t h the
old to provide probability updating. The newly
unbiased data are also used for a different operation:
region refinement, which further subdivides the exist
ing par t i t ion.

(3) F i t t i n g p r o b a b i l i t y reg ions f o r s m o o t h e d
e v a l u a t i o n . Al though the regions output by an
induction algorithm allow refined classification, the
discrete nature of this approach may be insufficient.
As we see in Section 4, search performance may be
poor if the discrete probabi l i ty regions do not

discriminate wel l enough. To address this problem, we
could use the probabi l i ty regions as data in s ta t is t ica l
regression to f ind the best smoothed funct ion H (x) =
b1x1 + b2x2 - K . . . 4 - b kx k .

Instead of this complicated process of inducing
regions, then f i t t ing them, why not simply f i t the or ig i -
nal data? The answer is tha t the computat ional
resources required to unbias are too great if we retain
al l the data. In contrast, i f we i terat ively repeat the
operations of data gathering, unbiasing, par t i t ion ing,
then regression, then our pr imary in format ion struc
ture is the compressed regions. Regions are easier to
update.

(4) O p t i m i s a t i o n u s i n g response su r f ace f i t t i n g .
Unl ike the previous three methods which work in
instance space (Fig. 1), opt imizat ion methods search
hypothesis space to minimize (maximize) the objective
funct ion μ. Because the weights in Figure 2 have real
values, and because μ is smooth and appears to have
only one peak, a h i l l - c l imb ing method is suitable [Gi l l
et a l , 1981]. A h i l l - c l imb ing technique selects weight
vectors b by moving in the direction of improv ing
μ(b). One technique suitable for noisy domains is
response surface f i t t ing w i th a d imin ish ing gr id . In
this method we select points b at corners and m id
points of a hypercube in weight space, then gather data
(μ values) to fit a quadratic (a parabola). The
op t imum predicted by the parabola allows us to gather
more refined data, as we gradually hone in on the
op t imum μ by repeatedly shr inking the gr id . Start ing
w i t h a large gr id detects broad tendencies; shr inking
the gr id improves accuracy.

Despite the qual i ty of this method, a serious
problem in our case is tha t most values of μ cannot be
f ound ! This is because most choices of b give such
poor performance tha t typ ica l problems cannot be
solved w i t h i n reasonable t ime. To offset this problem,
in i t i a l runs used easier problems.

(5) O p t i m i z a t i o n u s i n g a gene t i c a l g o r i t h m .
Genetic algori thms are designed to optimize an objec
t ive funct ion μ called the fitness [Holland, 1975].
Given a populat ion, hypotheses b are selected stochast
ically for breeding, w i t h probabil i t ies proport ionate to
μ(b). Hypotheses are usually represented as b i t vec
tors called genotypes. B inary operations such as cross-
over are applied to pairs of genotypes; unary opera
tions such as muta t ion are applied to single genotypes.
The operations produce a new generation of
hypotheses. Because they implement paral lel search,
genetic algori thms can manage badly behaved objec
t ive funct ions.

For this reason, a genetic a lgor i thm seems
unnecessarily powerful for the problem i l lustrated in
Figure 2. Massively paral lel search is not required and
it may be costly. We st i l l have the problem of com
put ing μ for mediocre choices of b, though once again
we can do some prel iminary search.

(6) C o m b i n i n g p a r t i t i o n i n g a n d p a r a l l e l i s m .
Our final method is a combinat ion of par t i t ion ing in
instance space and paral lel search in hypothesis space.

This method uses a modified genetic a lgor i thm to
govern mul t ip le par t i t ion ing [Rendell, 1985]. The
"genotype'' is compressed and variable — it is a set of
probabi l i ty regions (Fig. l b) . Each of these structures
produces a different evaluation funct ion H, which is
then given some puzzles to produce data of two types:
detailed data for updat ing probabil i t ies and refining
regions, and overall data for measuring performance μ.
This allows the selection of ind iv idual regions for k-
sexual crossover.

4. Compara t ive Results
Table I summarizes representative results of many
experiments for each of the six methods described in
the previous section. To assess these methods we use
the number of nodes developed μ. Because other com
putat ion is negligible, μ is a good measure of both the
learning t ime and the qual i ty of the result ing evalua
t ion funct ion. (Another measure, the length of the
solut ion, was found to track μ.) On a VAX 780, 1000
nodes take about 1/2 minute CPU t ime. The average
values of μ shown in the table were obtained by solving
100 puzzles, g iv ing a standard error of about 11 (or
3%). A l though some related work appeared in [Ren-
dell , 1983] and [Rendell, 1985], most of these results
are new. A l l experiments used the same four attr ibutes
of Figure 2.

(1) D i r e c t c u r v e f i t t i n g . To f i t the best hyperplane
H (x) = b1 X1 + b 2 x 2 +...... + b k x k to the binary data
f rom search trees, prob i t analysis [Finney, 1971] was
used. Because the technique is algor i thmic, it is fast.
However, the qual i ty (nodes developed) is 534— 53%
worse than op t ima l , and this is after favorable
interpretat ion of the results. To begin the experiment,
puzzles nine moves f rom the goal were given (greater
dif f iculty requires too much computat ion). The result
ing data gave a non-zero weight only for the c i t y -
block distance x1 because easy puzzles can hardly have
the impediments described by the other at tr ibutes x2 ,
x3 , and x4. To continue the experiment, the result ing
evaluation funct ion was used to solve harder puzzles
and find impediment weights. These weights (b2, b3,
and b4), now approximated the correct ones, but
because of the biasing effect of the c i ty-b lock distance
already in H, the new value of b1 was in error by
1200%. Fur ther experiment gave s imi lar ly biased and
unpredictable values, al though if we take the value of
b1 f rom the first i terat ion and the values of b2 , b3 , and
b4 f rom the second, we obtain the performance shown.

(2) P r o b a b i l i t y r eg ions a n d d i sc re te e v a l u a t i o n .
The second method is to par t i t ion instance space into
regions of simi lar probabi l i ty (of a state's appearing on
a short solution). Because the technique is i terat ive, it
requires not only in i t i a l par t i t ion ing, but also par t i t ion
refinement after data unbiasing (see Section 3). The
improv ing quali ty of the evaluation funct ion over
repeated iterations allows the solution of harder prob
lems, which provide more representative data. This
al ternat ion of sampling and learning allows each pro
cess to speed the other. Bu t the evaluation is discrete:

618 Machine Learning

For task performance the states are classified in to
discrete regions. This lack of smoothing or interpola
t ion causes poor performance: at least four times
opt imal qual i ty. (The number of nodes developed
could not be tested precisely, because resource l imi ts
were often exceeded.)

(8) F i t t i n g p r o b a b i l i t y reg ions f o r s m o o t h e d
e v a l u a t i o n . This is the same as the previous method
except that at the end of each i terat ion the probabi l i ty
regions are used as data to find weights b i for the
linear combinat ion H (x) = b 1x i + b 2x 2 + + b k x k .
Af ter convergence in half a dozen i terat ions, this
smoothed evaluation funct ion gave near-opt imal per
formance of 353 (compare F i g . 2 and see [Rendell,
1983]). A l though H contains the only knowledge used
for solving, the probabi l i ty regions provide the pr imary
in format ion, and are more suitable for dynamic learn
ing. One advantage of this and other instance space
methods is that every state counts. One drawback of
this and most methods is that for fast learning, the
diff iculty of the t ra in ing problems must be just at the
current performance l im i t . This requires some user
experience. Moreover, the combinat ion of approximate
techniques (e.g., unbiasing, and search that relies on
previous learning) over repeated iterations can cause
problems. To some extent the i terat ive learning seems
to be self-correcting, bu t often performance degrades
sl ightly or levels off. One cure is user experience;
another is repeated runs. Experiments have shown
that about ten runs are required for a result w i t h in
10% of opt imal . A similar cr i t ic ism applies to most
methods, so their learning times are mul t ip l ied by ten
in cololmn 5 of Table I ("Effective Cost") .

(4) O p t i m i s a t i o n u s i n g response su r f ace f i t t i ng .
Rather than probabil i t ies over instance space, op t im i
zation methods use summary measures of performance
μ over hypothesis space. Summary measures cost more
to obta in: concept accuracy requires the classification
of many instances; search performance requires the
solution of whole problems. For each problem solved,

only a single value is obtained — the number of states
developed. This contrasts w i th the first three methods,
which identify each count w i th a point in instance
space. This design difference explains the difference in
learning times: h i l l cl imbing in weight space is slower.
In i t ia l ly , most values of the weight vector b are so
poor that problems cannot be solved. To counteract
this problem, a prel iminary round of curve fitting (row
l) was used to obtain approximately correct weights.

(5) O p t i m i z a t i o n us i ng a genet ic a l g o r i t h m .
Approximately correct weights were also given to the
genetic algor i thm (row 5). Genetic algorithms need a
well-chosen representation. If the genotype is too
short, resolution w i l l be lost; if this b i t str ing is too
long, t ime w i l l be wasted. To ensure better perfor
mance, the graphs in Figure 2 and some prel iminary
runs were analyzed to choose a genotype length of six
bits. Another variable is the population size. Several
experiments used populations up to 200. The less than
opt imal performance of 388 (12% worse than opt imal)
for the best individual in a population of 50 is perhaps
not too surprising because genetic algorithms are not
designed for obtaining 100% accuracy when the objec
t ive function μ is unimodal, but rather for approaching
mult ip le opt ima in parallel when the funct ion is badly
behaved. The high cost results f rom so much search
(hundreds of states in each of many problems) for so
l i t t le (a single performance value for each solution).
Another problem is that verif ication of an ind iv idual
weight vector requires a larger sample than dur ing
learning. For each weight vector suspected to be close
to opt imal , many test problems must be solved, which
typical ly costs 10,000 nodes per candidate vector.

(6) C o m b i n i n g p a r t i t i o n i n g a n d p a r a l l e l i s m .
Perhaps surprising is the sixth result. This gives the
best performance (although not significantly better
than row 3 because the standard error is about 11, or
3%, in al l rows). The cost appears higher than for the
extended part i t ioning method, by a factor of six.
Superficially, then, it seems that extended par t i t ion ing

is better when used alone than when combined w i t h a
genetic a lgor i thm. However, this cursory assessment is
misleading. The favorable learning speed of extended
par t i t ion ing in row 3 results f rom considerable user
experience w i t h t ra in ing. In fact the learning speeds
given in rows 2 through 5 are about an order of magni
tude too low (reflected in col. 5). In contrast, the com
bined method of row 8 needs l i t t le user guidance
because it is much less sensitive to t ra in ing problems
and evaluation errors. Even w i t h a smal l populat ion
of 10 or 20, this method is extremely stable. It is re l i
able and easy to use. Fur thermore, this method avoids
the cost of ver i f icat ion, because ind iv idua l weight vec
tors need not be tested. Rather, all the regions f rom
all the ind iv idua l part i t ions can be used as a single
large data set to fit a very accurate evaluation funct ion
([Rendell, 1985] elaborates).

5. D iscuss ion

This study of six empir ical - learning methods suggests
ways to cope w i t h domains tha t are simultaneously
probabi l ist ic, dynamic, noisy, and biased. One recom
mendat ion is to combine types of methods. Even for
our numeric domain, the standard methods of curve
fitting (1) and opt imizat ion (4) were l im i ted because of
biased data (in l) and lost in fo rmat ion (in 4). Fur ther
more, a standard method of instance space par t i t ion ing
or decision tree induct ion, despite its extension for pro
gressive refinement after data "unbiasing" (2), was
inadequate because discrete classification rules were too
unrefined, even though they were probabi l ist ic. Bu t
when par t i t ion ing (2) was combined w i t h curve fitt ing
(1), the learning was fast and the task performance was
op t ima l . Incorporat ing a t h i r d technique improved
learning behavior s t i l l more. L ike method 4, the
genetic a lgor i thm (5) could use only some of the infor
mat ion available in the search domain, and although
this method (5) behaved relat ively poorly when used
alone, it stabil ized method 3 and made it easier to use
(cf. [Quinlan, 1988]).

Because other problems exhibit characteristics
simi lar to the search problem we analyzed, the
phenomena should generalize. Probabi l ist ic evaluation
functions are probabi l ist ic concepts (Section 2.1). In
many rea l -wor ld domains the concept is probabi l ist ic,
the learning si tuat ion is dynamic, and the data are
noisy and even biased (Section 2.2). To reiterate the
phenomena we observed:

• Instance space algori thms find class membership
values H as a funct ion of a t t r ibu te values x;
hypothesis space algori thms optimize overall qual i ty
values μ of entire functions H(x) . Combinat ions of
these two methods exploit both kinds of in forma
t ion .

• Instance space algor i thms are fast; hypothesis space
algor i thms are stable. Combinat ions may have both
advantages and also be easier to use.

The var ied strengths of different techniques may pro
vide a net gain when the methods are combined [Ack-
ley, 1985], U l t imate ly , systems for very general

learning may owe much to a structured combinat ion of
techniques [Buchanan et a l . , 1978].

References

Ackley, D. H. A Connectionist Algorithm for Genetic Search.
Proc. International Conference on Genetic Algo
rithms and their Applications, 1985, 121-135.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J.
Classification and Regression Trees. Belmont, Cali
fornia: Wads-worth, 1984.

Buchanan, B. G., Johnson, C. R., Mitchell, T. M., & Smith,
R. G. Models of Learning Systems. In J. Belzer (Ed.),
Encyclopedia of Computer Science and Technology.
1978.

Doran, J., & Michie, D. Experiments with the Graph-
Traverser Program. Proc. Roy. Soc, 1966, A„ 235-
259.

Draper, N. R., & Smith, H. Applied Regression Analysis.
Wiley, 1981.

Finney, D. J.. Probit Analysis. Cambridge University Press,
1971.

Gil l , P. E., Murray, W., & Wright, M. H. Practical Optimi
zation. New York: Academic Press, 1981.

Holland, J. H. Adaptation in Natural and Artificial Sys
tems. University of Michigan Press, 1975.

Holte, R. C, & Porter, B. W. An Empirical Study of Bias
Appropriateness. Austin, Texas, 1988.

Langley, P. A General Theory of Discrimination Learning. In
David Klahr (Ed.), Production System Models of
Learning and Development. Cambridge, MA: MIT
Press, 1987.

Mitchell, T. M. Version Spaces: An Approach to Concept
Learning. Stanford Ph.D. Thesis, 1978.

Quinlan, J. R. The Effect of Noise on Concept Learning. In
R. S. Michalski (Ed.), Machine Learning: An
Artificial Intelligence Approach. Kaufman, 1986.

Quinlan, J. R. An Empirical Comparison of Genetic and
Decision-Tree Classifiers. Proceedings of the Fifth
International Conference on Machine Learning, Ann
Arbor, Michigan, June 12-14, 1988.

Rendell, L. A. An Adaptive Plan for State-Space Prob
lems. Dept of Computer Science CS-81-13 University
of Waterloo Ph.D. Thesis, 1981.

Rendell, L. A. A New Basis for State-Space Learning Sys
tems and a Successful Implementation. Artificial
Intelligence, 1983, 20„ 369-392.

Rendell, L. A. Genetic Plans and the Probabilistic Learning
System: Synthesis and Results. Proc. International
Conference on Genetic Algorithms and their Appli
cations, 1985, 60-73.

Rendell, L. A. Learning Hard Concepts. Proceedings of the
Third European Working Session on Learning,
1988, 177-200.

Samuel, A. L. Some Studies in Machine Learning Using the
Game of Checkers. In E. A. Feigenbaum (Ed.), Com
puters and Thought. McGraw-Hill, 1963.

Winston, P. H. Artificial Intelligence. Addison Wesley,
1984.

620 Machine Learning

