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ABSTRACT 

A macro-operator is an integrated operator consisting 
of plural primitive operators and enables a problem 
solver to solve more efficiently. However, if a learning 
system generates and saves all macro-operators ex­
tracted from worked examples, they will increase 
explosively and eventually its problem solving will be 
less efficient than even a non-learning system. Thus, it 
is very important for macro-operator learning to select 
only the effective macro-operators. To cope with this 
problem, we propose a new method to select macro-
operators by Perfect Causality, a new heuristic, and 
generalization of them with EBG. Both in classical 
robot planning and solving algebraic equations, we 
made the experiments using a selective macro-learning 
system with Perfect Causality, a non-selectively macro-
learning system and a non-learning system. The experi­
mental results verify much higher efficiency of the 
selective learning system than the other two systems 
over a lot of various problems. Finally, we discuss 
Perfect Causality as an operationality criterion in EBL 
perspective. 

1. Introduction 

In general, a problem solver cannot solve problems 
ef f ic ient ly , and various methods for solving more eff iciently 
have been proposed. One of the signif icant methods is a 
macro-operator learning. A macro-operator is an integrated 
operator consisting of plural pr imi t ive operators. Since the 
macro-operators can reduce a search space, a problem-solver 
can solve more ef f ic ient ly w i th them. MACROPS in STRIPS 
[Fikes et al., 1971,1972] are the first learned macro-operators and 
the experiments were made in a classical robot planning. 
However, STRIPS saves all of many macro-operators gener­
ated f rom worked examples, the processes of solving in past. 
The saved macro-operators hence explosively increase and the 

cost of searching for applicable ones w i l l eventually make the 
problem solver less efficient than a non-learning one [Minton, 
1985]. Since most candidates for macro-operators are actually 
useless, it is very important for the macro-operator learning to 
select only effective macro-operators from them. Some 
methods to select macro-operators have been proposed (Minton, 
1985][Iba, 1985). We propose a new method w i th Perfect 
Causality ; a new heuristic to select only useful macro-
operators. We buil t the frame work system; P iL2 which 
selectively extracts macro-operators w i th Perfect Causality and 
generalizes them wi th EBG method [Mitchell et al., 1986]. Both in 
a classical robot planning and a solving various equations, we 
made the experiments using the P iL2, a non-selectively macro-
learning system and a non-learning system. As a result, we 
found PiL2 could keep the more eff iciency than other two 
systems over a lot of various problems both in two domains. 

In this paper, we first explain PiL2 system. Next, we show 
the definit ion of Perfect Causality, the algori thm for extracting 
macro-operators and the generalization of them w i th EBG. 
Final ly, the experimental results are shown. 

2. PiL2 ; a frame work for the selectively 
macro-operator learning 

Yamada and Tsuji 603 



modules; a problem solver and a learner. The PiL2's problem 
solver is STRIPS |Fikes et al., 1971]. The problem state is 
represented by a set of well formed formulas(wffs) in the 
predicate calculus and rules, and operators can transform a 
problem state. Given an initial state, a goal state and operators 
as input, the STRIPS generates an operator sequence, which 
can transform the initial state into the goal state. To distinguish 
from macro-operators, we call the operators given as input the 
basic operators. Fig.2 shows the basic operators, which consist 
of cond-lists, delete-lists, add-lists and a main- effect-lists 
[Fikes et al., 1971,1972). When all wffs in the cond-list are 
satisfied, the wffs in the delete-list wi l l be eliminated from the 
current problem state and those in the add-list wi l l be added. A 
main-effect-list is used for the efficient searching for relevant 
operators [Fikes et al., 1971,1972], which have the different wffs 
between the current and goal states in their add-lists. 

The PiL2's knowledge base consists of basic operators 
and macro-operators. The problem solver first searches for the 
relevant macro-operators and only when no relevant macro-
operator is found, it searches relevant basic operators. The 
STRIPS uses the depth-first search and selects only one 
expanding node by the same heuristic to Fikes' one [Fikes et al., 
1971], which evaluates the difference satisfied after the 
expansion. As a result, the STRIPS generates the operator 
sequence which can transform an initial problem state into a 
goal state. We call it a worked example for a learner. From a 
worked example, the learner extracts sub-sequences for 
macro-operators, generalizes, integrates and saves them. 

Therefore, if macro-operators are generated from all sub­
sequences, their amount wi l l increases explosively and the cost 
for searching applicable macro-operators makes the problem 
solving inefficient. S.Minton has reported that STRIPS which 
learns MACROPS non-selectively becomes less efficient than 

604 Machine Learning 



non-learning STRIPS even in a small number of problems 
[Minton, 1985]. Since the sub-operator sequences include many 
useless ones, selecting only the effective ones enables a 
learning system to keep eff ic iency. We propose a method to 
select only useful macro-operators w i th Perfect Causality, a 
new heuristic. We assume that the macro-operators are gen­
erated f rom only the sub-sequences which satisfy Perfect 
Causality. The def in i t ion of Perfect Causality is as fo l lows. 

Let a worked example be OPS=[OP1.. .0Pn] and an init ial 
problem state be IS. If an arbitrary operator:OPm ( m ≠ i ) in 
PCOPS=[OPi. . .OPj] ( l < i < j < n ) satisfies the fo l lowing two 
precondit ions, then PCOPS satisfies Perfect Causality. 

1) OPm is not applicable to IS. 
2) Af ter [OP i . . .OPm- l ] were applied to IS, OPm is applicable 

to the problem state. 
These precondit ions mean that the applications of [OPi 

. . .OPm-1] guarantee the application of OPm which cannot be 
applied to an in i t ia l problem state. From every sub-operator 
sequence: [OPk. . .OPn]( l<k<n) , the longest operator sequences 
wh ich includes OPk and satisfies Perfect Causality are ex­
tracted for macro-operators. The algori thm for extracting 
macro-operators w i th Perfect Causality is shown in Fig.3. 

We explain how the algori thm concretely extracts the 
operator sequences f rom the worked example in Fig.4, which is 
cited f rom Fikes' paper [Fikes et al., 1972). The applied basic 
operators in Fig.4 are shown in Fig.2. Let OPS be [OPl ,OP2, 
OP3.0P4] . First, [OP l ,OP3] is substituted for IOP. Because all 
wf fs in the cond-lists of OPI and OP3 are satisfied in IS. Next, 
O P I is applied to IS without checking its cond-list. Then f l 7 is 
added and RESULT=[ fO~f17 ] , M O P = [ O P l ] are determined. 
Since next OP2 is not included in IOP and its cond-list, 
[ f l , f 8 , f l l , f l 2 , f l 7 ] , is satisfied in RESULT , OP2 is applied and 
R E S U L T is updated. Then MOP is also updated to [OPl ,OP2] . 
OP3 is included in IOP and OP4 is not applicable to RESULT. 
Thus, this cycle w i th i = l is f inished and MOP = lOP l ,OP2 ] (≠ 
[ O P I ] ) is extracted for a macro-operator. 

Then the next cycle w i th i=2 begins. MOP=[OP2] is 
determined and OP2 is applied to IS without checking its 

cond-list. Since f l 7 in the delete-list is not included in IS, f l 7 
is not removed. The f l 8 and f l 9 are added to IS and R E S U L T 
is updated to t f l ~ f l 6 , f l 8 , f l 9 ] . Next, OP3 included in IOP is 
skipped and the applicabil i ty of OP4 is investigated. The f20 in 
the cond-list of OP4 is not in the problem state because of 
non-application of OP3. Thus, OP4 is not applied and this 
cycle finishes as MOP=[OP2] . This MOP=[OP2] cannot satis­
fy the precondition: MOP≠[OP i ] , thus this cycle dose not yield 
any macro-operator. 

Final ly, the output: MOP=[[OPl:gotob,OP2:pushb] , [OP3 
:gotod,OP4:gothrudr]] is obtained. As seeing f rom this result, 
Perfect Causality can extract the operator sequences which are 
executive independently. Fig.5 shows all suboperator sequen­
ces from the worked example in Fig.4. The M 3 , M 6 are not 
executive in any problem state and M 4 , M 9 are nonsense. 
Therefore, most these candidates are useless and only useful 
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M 1 , M 2 are extracted w i t h Perfect Causality. Futhermore, this 
algori thm can extract even discontinuous operator sequences 
for macro-operators and is available to the worked examples 
including macro-operators. 

4. Generalizing macro-operators with EBG and 
integrating them 

The extracted operator sequences are instances, therefore 
P iL2 generalizes them w i th E B G method [Mitchell et al., 1986]. 
The extracted operator sequence corresponds to an explanation 
tree in E B G . Fig.6(a) shows the explanation tree constructed 
w i th the operator sequence, [gotod, gothrudr) obtained in a last 
section. In Fig.6(a), the black circles stand for the basic 
operators and the nodes over, r ight and under them indicate 
wf fs in a add-l ist, a delete-list and a cond-l ist, respectively. 

In general, E B G method needs four inputs: Goal Concept, 
Tra in ing Example, Domain Theory and Operationality Cri te­
r ion. The underl ined leaf nodes in Fig.6(a) arc training 
examples for learning the precondit ion of the macro-operator 
and the two operators correspond to the domain theory. A goal 
concept is the precondit ion of the macro-operator. However, 
what corresponds to an operationality criterion? This problem 
is discussed in section 8. The generalized explanation tree wi th 
EBG method |Mitchell et al., 1986] is shown in Fig.6(b), where 
the upper-case letters indicate variables. 

Next, we explain how to integrate the explanation tree 
into a macro-operator. Fig.7 shows an operator sequence 
consisting of two operators, OPl,OP2. The Cn,Dn,An and 
MEn indicate a cond-list, a delete-list, a add-list and a main-
effect-list, respectively. Every list is a set of wffs. Therefore, a 
macro-operator is generated by the recursive applications of 
the set operations in the following. 

) 
The MC,MD,MA and MME indicate a cons-list, a delete-

list, a add-list and a main-effect-list of the generated macro-
operator, respectively. Fig.8 shows the macro-operator gener­
ated from Fig.6(b). In PiL2, all operators including macro-
operators are represented in the same structure. 

5. The experiment in a classical robot planning 

In a domain of a classical robot planning, we made the 
experiment using the three systems ; (a) a non-learning system, 
STRIPS,(b)a non-selective macro-learning system, M-STRIPS, 
(c) a selective macro-learning system, PiL2. The STRIPS is the 
problem solver of PiL2 and the M-STRIPS generates macro-
operators from all sub-operator sequences of worked examples. 
Note that these three systems use the same problem solver and 
the only difference between M-STRIPS and PiL2 is in the 
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numbers of the macro-operators saved. 
We gave each of them 7 basic operators and 50 problems 

as input. The basic operators include ones in Fig.2 and are the 
same to ones in [Fikes et al., 1972]. We did not select the 
operators and the problems for P iL2 's good performance. Fig.9 
shows samples of given problems and the number of steps for 
solv ing the most d i f f icu l t problem is 28. The experimental 
results for f ive problems sampled from a series of 50 are 
shown in T a b l e l . The cpu t ime does not include the t ime taken 
to generate macro-operators, only the t ime necessary to f ind a 
solut ion. Typ ica l ly , the learning t ime is considerably less than 
the search t ime. As seeing f rom this table, M-STR1PS has the 
result only for P10, because a stack-overf low occurred when 
M-STRIPS was generating the macro-operators after P I3 was 
solved and we could not continue the experiment. M-STR1PS 
generated 202 macro-operators on P1-P12 and it took 200sec 
cpu t ime to search all of them. Therefore, If M-STRIPS could 
continue to solve the problems after P I 3 , the cpu t ime would 
be more than 200sec and this t ime is much longer than PiL2 's 
one. 

For P10, the eff ic iency of M-STRIPS is already worst. 
Though the branches evaluated of M-STRIPS are less than 
STRIPS's ones, M-STRIPS spends longer cpu t ime than 
STRIPS. Because the t ime for searching the relevant macro-
operators is, in general, longer than that of basic operators. 
Note that M-STRIPS has already generated 70 macro-opera­
tors. Compar ing w i th other two systems, PiL2's branches 
evaluated, generated macro-operators and cpu t ime are very 
smal l . Therefore, P iL2 is most eff icient. 

For P20-P50, Tab le l shows the results for only STRIPS 
and PiL2. Note that P iL2 has only f ive macro-operators even 
for P50. These f ive operators are shown in Fig. 10. If P iL2 
learned non-selectively, the number of macro-operators would 
be more than 1000. We can f ind that Perfect Causality 
extremely prevented P iL2 from generating a lot of redundant 

macro-operators. For P20-P50, PiL2 is constantly more e f f i ­
cient than STRIPS. 

Table2 shows the averages of cpu t ime. As is evident 
from it, PiL2 could solve far more eff ic ient ly than STRIPS and 
M-STRIPS both over PI~P13 and P1-P50. This means that 
P iL2 can learn only useful macro-operators over many various 
problems in a classical robot planning. 

6. The experiment in solving various equations 

Furthermore, we made the experiment in another domain, 
solving algebraic equations. In this experiment, we used P iL 
system instead of PiL2. The difference between P iL and PiL2 
is only in their problem solvers. The P iL 's problem solver uses 
the forward breadth-first search without any heuristic and its 
problem states are represented in list structures. In P iL , as wel l 
as PiL2, the macro-operators are selectively learned wi th 
Perfect Causality and generalized by an EBG method. 

Fig. 11 shows a part of basic operators given to P iL . In this 
f igure, A ,B ,C indicate arbitrary formulas. Rn, A L , NA and 
NRn stand for an arbitrary real number, a variable, an arbitrary 
formula but zero and an arbitrary real number but zero, 
respectively. The rlOOO is a operator for checking the solution 
state, 1*AL=R. When this operator is appl ied, a problem 
solving finishes. We gave a set of training problems consisting 
of 85 equations of the first degree, 211 equations of the second 
degree, 35 fractional equations, 78 logari thmic equations and 
78 exponential equations. Only when P iL could not solve them 
by itself, we gave the worked examples and P iL learned 
macro-operators from them. 

As a result, 13 macro-operators were generated for the 
equations of the first degree, 62 ones for the equations of the 
second degree, 58 ones for the fractional equations, 56 ones for 
the logarithmic equations and 57 ones for the exponential 
equations. A l l the macro-operators for the equations of the first 
degree are shown in Fig. 12. The number in the bracket 
indicates the number of basic operators in each macro-
operator. The macro-operators marked wi th (DS) can directly 
solve the problems. Although P iL could not solve any given 
problem before learning, it was able to solve all of them after 
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learning. Solv ing the most d i f f icu l t problem needs more than 
20 applications of basic operators. I f P iL generated all macro-
operators, they wou ld increase explosively. Therefore, it is 
evident that even in solv ing various equations, our selective 
macro-operator learner can solve many problems more e f f i ­
cient ly than a non-selective learning system and a non-learning 
system. 

7. Related works 

STRIPS [Fikes et a!., 1972| saves all the sub-sequences from 
worked examples as M A C R O P S . However, our macro-
learning method can selectively generate only the useful 
macro-operators f rom many candidates. Our system can 
thereby solve more ef f ic ient ly than STRIPS. This is evident 
f rom the experimental results in a classical robot planning. 

Both M in ton 's [Minton, 19851 and Iba's methods [Iba , 1985] 
for selecting macro-operators depend on the heuristic evalu­
ation funct ion for the problem solv ing. However, our method 
can select only useful macro-operators independently f rom the 
evaluation funct ion. Furthermore, the generating Min ton 's 
S - M A C R O |Minton, 1985], common sequences in worked exam­
ples, needs a lot of worked examples. Our method learns 
macro-operator f rom only a single worked example. 

K o r f s method is powerfu l to generate macro-operators in 
the domain that exhibits operator decomposabil i ty [Korf, 1985). 
However, our method's cost for generating the macro-
operators is considered less than Kor f ' s one. Furthermore, 
Ko r f ' s def in i t ion; a macro-operator achieves one of the 
subgoals of the problem wi thout disturbing any subgoals that 
have been previously achieved, is considered more restricted 
than ours. 

The SOAR 's generalization method of macro-operators is 
imp l ic i t and may leads the over/under generalization (Laird, 
1986], Our macro-operators are expl ic i t ly generalized by an 
EBG method and the under/over generalization never occurs. 

8. Perfect Causality as an Operationality Criterion in 
EBL 

We discuss Perfect Causality in the E B L perspective. Our 
macro-learning method is considered one of E B L frame works. 
Therefore, we think our method has inputs corresponding to 
the four inputs of E B L . As already mentioned in section 4, our 
method has E B L ' s three inputs but an operationality cr i ter ion. 
What is an operationali ty cri terion in macro-operator learning ? 

The def in i t ion of operationality commonly cited in 
describing E B L system is the fo l l ow ing ; A concept description 
is operational if it can be used eff ic ient ly to recognize 
instances of the concept it denotes [Keller, 1987). The cond-lists 
of macro-operators, wh ich are the concept descriptions in 
macro- learning, consist of wf fs in the cond-l ist of basic-
operators. Since a problem solver can easily recognize the wf fs 
in basic operators, instances of the concept descriptions can be 
recognize ef f ic ient ly. Thus, according to the def in i t ion of 
operationali ty mentioned before, al l concept descriptions in 
macro-learning are operational. Is there no operationality 
cr i ter ion in macro-learning ? 

Kel ler 's research for an operationality gives the answer to 
this problem. He redefined an operationality more precisely 
[Keller, 1987]. His def in i t ion is the fo l l ow ing ; the concept 

description is considered operational if it satisfies the fo l low­
ing two requirements: 1. usabi l i ty: the description must be 
usable by the performance system, 2. u t i l i ty : when the 
description is used by the performance system, the system's 
performance must improve in accordance w i th the specified 
objectives. The concept descriptions in macro-learning satisfy 
the first requirement and not the second one. Because most 
macro-operators can not actually make a performance system 
more eff icient. Perfect Causality can select the effective 
macro-operators, whose cond-lists are the concept descriptions 
satisfying the second requirement. Thus, we consider Perfect 
Causality is an operationality cr i ter ion in macro-learning. 

9. Conclusion 

We proposed the method to selectively learn only useful 
macro-operators w i th Perfect Causality, a new heurict ic, and to 
generalize them w i th an EBG method. The capabil i ty of our 
method was tested both in a classical robot planning and 
solv ing equations. 

We ver i f ied the ut i l i ty of Perfect Causality in two 
different domains. However, we do not know the ut i l i ty in 
other domains and the analytical evaluation for the l imi tat ion 
of our method is necessary. 
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