
Simulating Student Programmers 

James C. Spohrer 

Computer Science Department 
Yale University 

51 Prospect Street 
New Haven, CT 06520 

e-mail: spohrer@cs.yale.edu 

Elliot Soloway 

Dept of EE and CS 
University of Michigan 

1101 Beal Avenue 
Ann Arbor, MI 48109 

e-mail: soloway@csmiI.umich.edu 

Abstract 

A cognitive model of student programmers is presented. The model 
is based on protocol studies of students wri t ing Pascal programs, 
and is implemented in a computer simulation program. The claim 
of this paper is that a computational cognitive model of student 
program generation fits within a generate-test-and-debug (GTD) 
problem solving architecture in which impasse/repair knowledge 
plays a key role. The claim is supported by showing how the 
model provides a useful descriptive account of the way students 
write alternative programs. 

1 In t roduct ion: Mot ivat ion, Goals, and Overview 

Our motivation for studying student programmers derives from three beliefs: 

(1) it is important to teach students design ski l ls (i.e., p lanning, 

constructing, and debugging artifacts), (2) programming is an excellent 

vehicle for teaching design skil ls, and (3) computers by virtue of their 

ability to help students visualize and manipulate artifacts can play a unique 

role in supporting design activities. Our short term goal has been to 

develop a simulation model of the way students write programs. 

Since design tasks can be solved in many different ways, any attempt to 

understand the way students wri te programs runs head-long into the 

variability problem. Unl ike tasks such as subtracting numbers (i.e., non-

design tasks) that have only a single correct answer, there are an enormous 

number of programs that solve any given programming task (just ask 

someone who has graded a couple hundred student programs!). When one 

considers alternative buggy programs as wel l as correct programs, the 

variability problem takes on truly staggering proportions, and bug diagnosis 

for tutorial purposes becomes quite di f f icul t [JS85]. In addition, tracking 

student program generation behavior for the purpose of providing tutorial 

assistance is complicated by student variability [ABR85] . A student model 

for programming should provide an account of the program generation 

process and the individual differences between students that cause vari ibi l i ty. 
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To develop a cognitive model of student programmers, we began an in depth 

study of students as they sat in front of computer terminals and wrote 

programs. A substantial amount of data -- both on-line protocols (the end-

product programs) and thinking-aloud protocols (complete problem solving 

behavior traces of the verbally reported planning, implemention, and 

debugging steps involved in writ ing a program) - were collected. Based on 

an analysis of these data, a generate-test-and-debug (GTD) problem solving 

architecture (see [Su75], [Ham86], [Si88]) was adopted as an overall 

framework. 

During the generate phase, students use different generation mechanisms to 

write code to achieve the goals of the task specification. The students either 

(1) used previously acquired programming knowledge to write the code, or 

(2) created new programming knowledge by translating relevant non-

programming knowledge into code. Non-programming knowledge (see 

[BS85]) corresponds intuitively to knowledge that would allow a student to 

easily do a calculation-by-hand. For instance, a student may be able to 

calculate the average of an arbitrary set of numbers by hand, but have a great 

deal of dif f iculty writ ing a program to do the same. During the test phase, 

students use different program testing mechanisms to detect one of a few 

types of problems, or impasses. The students either (1) compared a 

simulation of their programs to an internal model, or (2) checked for specific 

commonly occuring bugs. During the debug phase, impasses are f ixed 

using one of small set of repairs. 

Variabil ity can arise in several ways in a GTD impasse/repair student model. 

One way variabil ity can arise is when different students choose different 

repairs for the same impasse [BV80] [BS85]. For instance, when we asked 

students to write a program that handled both valid and invalid input data, 

42% of the students generated a program with an "output-after-error" bug. 

Figure 1 shows a pseudo-code program with the bug and two repairs. In the 

buggy program, if the input is invalid, after printing the error message the 

output w i l l be attempted. Since the program should stop after printing the 

error message, a student might detect an impasse. The impasse is caused by 

an expectation violation — after the "error" goal, "stop" was expected, but 
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"output" was found (i.e., BAD-NEXT-GOAL). Some students chose to 

repair the impasse by moving the the output (i.e., MOVE-

ENCOUNTERED), while other students put a guard around the output (i.e., 

INSERT-SPLIT). 

MARCEL is a simulation program that embodies the GTD impasse/repair 

model descibed in this paper. As shown in Figure 2, MARCEL's inputs are 

a specification of a programming task and a description of a particular 

student. MARCEL's outputs are a Pascal program and a behavior trace. A 

behavior trace corresponds to the main planning and debugging steps taken 

by a student writing a program. Inside the process box in Figure 2, three 

main components are identified: (1) model of individual differences, (2) 

model of program generation, and (3) the contents of working memory. 

GRAPES [AFS84] is another system that simulates students writing both 

correct and buggy programs for moderately complex introductory tasks. 

Unlike MARCEL's GTD impasse/repair architecture, GRAPES uses a goal-

restricted production system architecture and focuses on the way students 

learn to write short Lisp functions, rather than on accounting for inter-

subject variability. In GRAPES, individual differences are modelled by 

using different production rules and manually changing the contents of 

working memory during processing. 

The remainder of this paper summarizes the four main results of this 

research: (1) categorization of student programming data, (2) taxonomy of 

student programmer plan knowledge, (3) model of student program 

generation, and (4) preliminary model of individual differences and 

variability. Examples of student program generation and individual 

differences will be presented. 

2 Student Programming Data 

The students under study were Yale undergraduates taking their first Pascal 

programming course. The stimulus material included three programming 

tasks. Summaries of the tasks along with sample pseudo-code programs are 

shown in Figure 3 (familiarity with the tasks and programs is essential foi 
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understanding this paper). The tasks are called arithmetic word 

programming tasks (see [KG85] [MPS87] for related non-programming 

tasks). 

The data (programs and behavior traces) were broken down into four 

categories of variability: (1) goals and plans - the goals (e.g., input, 

validation, calculate, output, loop, etc.) and the alternative plans to achieve 

the goals with Pascal code were catalogued [SPL*85], (2) bugs - nearly all 

of the programs contained bugs, and different student made different bugs 

[SSP85], (3) goal orders - the order in which different students worked on 

the main goals in the program varied and so the different orders were 

catalogued, and (4) impasse/repair episodes — on average about once every 

three minutes while writing the programs, students would encounter 

difficulties or impasses that they would fix or repair, and so these episodes 

were catalogued. A coding scheme was developed, and the data were 

classified with 85% inter-coder reliability into over twenty different 

subcategories (see [S89] for details). 

3 Student Programmer Plan Knowledge 

Before considering the way MARCEL simulates inexperienced students, it is 

instructive to consider the knowledge that MARCEL requires to simulate 

experienced programmers. When MARCEL simulates an experienced 

programmer, it performs as an automatic programming system with a 

knowledge-base that is appropriate for arithmetic word tasks. Programming 

plans (i.e., multiple lines of code that work together in specific ways) are a 

key type of knowledge that programmers use when they write and read 

programs [Sh76][MRRH81][SE84]. Evidence for plans can be found in 

protocol snippets (e.g., "...same as [last] problem. I'm gonna have... two 

prompts to enter the value, one outside the loop... and then one inside the 

loop...). 

Two categories of plans have been identified: (1) information transfer or 

communication plans (e.g., input/validation/output), and (2) information 

transmutation or calculation plans. One motivation for making this 

division is that a small set of very modular programming plans result, in 

which different calculation plans can be "plugged into" standard positions in 

communication plans. Also, students have well developed non-programming 

knowledge in these two areas: communication between agents [P86]t and 

"calculations-by-hand" [BS85]. 

The communication plans are broken down into two categories: (1) four 

input/output plans (i.e., "transform", "alternate", "compress", and "expand"), 

and (2) four validation plans (i.e., "no-check", "error-stop", "one-retry", and 

"multiple-retry"). The input/output plans correspond to the four 

possibilities of the input/output being non-stream/stream, where a stream is 

a series of values. A non-stream is either an individual (a single value) or an 

1. The Electric Bill Task: Calculate the electric bill for a customer 
{id) based on how many kilowatt hours of electricity the customer 
used (kwh). The charge is 9 cents for the first 350 kwh used, 5 
cents for the next 275 kwh used, 4 cents for the next 225 kwh 
used, and 3 cents for all usage over 850 kwh. [Implicit requirement 
from classroom lecture: The program should print an error 
message and stop if the kwh amount input is invalid.] 

2. The Reformatting Task: Read in raw data collected during an 
experiment and print out the reformatted data. The input is the 
subject number, problem type ('a', 'b' or 'c'), the start and end 
times of the experiment (in hours, minutes and seconds), and the 
subject's accuracy (V or '-'). The output should be the subject 
number, the problem type, the elapsed time in seconds, and the 
accuracy. Perform valid-data-entry: If any of the input values are 
invalid, give the user a second chance to enter them and assume 
valid data will be entered the second time. The program should input 
and print out data for a series of subjects as long as the user has 
more data to process; stop when a sentinel value is entered. 

3. The Rainfall Task: Read in a series of rainfall values stopping 
when the sentinel value (999999) is entered. The sentinel value is a 
special value, indicating the end of the input data, and should not be 
included in the calculation. If the input is invalid, prompt the user 
again and again until the input is valid (vde). The program should 
print out the number of valid rainfall amounts entered, the number 
of rainy days, the maximum rainfall amount, and the average 
rainfall amount. 

input(id.kwh) 
if invalid 

then error 
else begin 

calculation 
output(id,kwh,cost) 

end 

valid-data-entry (more-data) 
while not-sentinel(more-data) 

do begin 
valid-data-entry(raw-data) 

calculation 
output(reformatted-data) 
valid-data-entry(more-data) 

end 

initialization; vde(rain) 
if sentinel(rain) 

then no-valid-input-error 
else begin 

while not-sentinel(rain) 
do begin 

update; vde(rain) 
end 

calculation; output 
end 

Figure 3: Three tasks and pseudo-code programs. 
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aggregate (a small fixed set of values). Figure 4 shows pseudo-code 

programs for the possible information transfer plans ("error-stop" validation 

on right). Referring back to Figure 3, note that the Electric Bill task is of 

type "transform" "error-stop", the Reformatting Task is "alternate" "one-

retry", and the Rainfall Task is "compress" "multiple-retry". 

The calculation plans are indexed by a set of goals and objects. The goals 

consume objects and produce new objects. Each calculation plan is 

composed of a small set of goals (e.g., CONVERT, COMBINE, etc.) and 

objects (AMOUNT, COUNT, etc.). The complete set of goals and objects 

along with supporting protocol evidence is provided in |S89j. 

4 Model of Program Generation 

The MARCEL model of student program generation is an example of a 

generate-test-and-debug (GTD) problem solver. A GTD problem solver has 

three main phases: (1) a generate phase in which plans for goals are 

generated and implemented, (2) a test phase in which impasses are detected, 

and (3) a debug phase in which impasses are repaired. Fleshing out the 

model requires identifying specific mechanisms that underlie each phase and 

that could give rise to the observed behavior traces. In addition, it requires 

specifying the impasse/repair knowledge. 

During the generate phase, MARCEL uses two mechanisms to write 

programs: (1) plan instantiation, if a student knows a programming plan for 

achieving a goal, and (2) plan translation, if a student does not know a 

programming plan, but does know a non-programming plan to achieve the 

goal by hand calculation. Unlike programming plans which organize 

subgoals using Pascal language constructs, non-programming plans 

organize subgoals in a domain general manner. Non-programming plans 

order goals and specify the circumstances (or cases) in which a goal should 

be achieved. Non-programming plans of this type are called goal-case-

network (GCN) plans. A GCN plan is a directed and labeled graph (possibly 

with cycles) that represents information similar to that contained in a 

programming plan, but without using programming language constructs. A 

GCN plan for the Electric Bill Task is shown in Figure 5 (note the black 

square box in the GCN plan is a stop goal, terminating the plan). 

A student solving the Electric Bill Task starts by retrieving a template for 

the top-level program goal (see top of Figure 6). The goal for the body of 

the program is the next substantitive goal to be achieved. To achieve the 

body goal, a student may decide to instantiate a "transform" plan learned 

from solving a previous task, or translate the GCN plan from the 

specification. If a student instantiates a "transform" "no-check" plan (i.e., 

input, calculate, output), the calculation will be done on invalid input data 

(i.e., BAD-KIND-TO-CONSUMER impasse). If the impasse is detected, it 

can be repaired by inserting a validation guard around the calculation goal 

(i.e., INSERT-SPLIT repair). However, the repair results in the "output-

after-error" bug (the bug described previously in Figure 1; in Figure 6 the 

second box down from the top on the left). 
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During the test phase, M A R C E L employs two main mechanisms to test 

the program and detect impasses: (1) isonwrphism test, a student may use 

expectations derived from non-programming plan knowledge to simulate and 

match against the program to detect impasses (e.g., bad-next-goal, object-

used-but-not-produced, double-use, bad-source, over-write, and bad-kind-to-

consumer) (2) critics, a student may use a set of critics, or special purpose 

heuristics learned from textbooks or classroom instruction, to evaluate a 

program (e.g., variable-used-but-not-declared, missing-begin-end, etc.). The 

iso-morphism test employs a simulate-and-compare mechanism to ensure 

that not only are goals being achieved in the correct order, but that 

appropriate object values are being produced and consumed by the goals. 

Sometimes students use isomorphism tests that do not detect al l impasses 

under al l circumstances. For instance, Figure 6 shows a pseudo-code 

program wi th an "output-after-error". The bug is not detected if the stop 

goal is not checked for after the error goal. However, if the stop goal is 

checked for then, after the error goal the student would expect to f ind a stop 

goal, but instead encounters an output goal, thereby detects an impasse (i.e., 

B A D - N E X T - G O A L impasse; see third box down on left in Figure 6, also 

see Figure. 1). 

Dur ing the debug phase, a repair is selected for an impasse. A l l of the 

repairs involve simple editing operations (insert, delete, move, change, 

duplicate) on a few basic types of program elements (producer, consumer, 

expected, encountered, object, test, split), defined when a particular impasse 

is detected in a particular program context. For instance, in Figure 6, a 

B A D - K I N D impasse is repaired with an INSERT-SPLIT repair. At the 

bottom of Figure 6 (as previously seen in Figure 1), a B A D - N E X T - G O A L 

impasse is repaired wi th, in one case, a MOVE-ENCOUNTERED repair, 

and in a second case, with an INSERT-SPLIT repair. After attempting a 

repair, the test phase is re-entered to see if the repair succeeds or gives rise to 

a new impasse. If the repair succeeds the generate phase is returned to, but if 

the repair gives rise to a new impasse, the debug phase is returned to and a 

new round of repairing w i l l begin. By applying different repairs to an 

impasse, programs can be generated in different ways. 

5. Model of Individual Differences 

Three types of individual differences are considered in the current model: (1) 

specification understanding -- students interpret the same specification 

di f ferent ly, (2) domain-specific learning -- students learn different 

programming plans and then re-use them later, and (3) progress criteria 
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[NS72] - students may use different criteria for evaluating what course of 

action will lead to progress. For example, consider writing a program that 

repeatedly processes different input values, stopping when a sentinel value is 

entered (e.g., like the Reformatting Task). Figure 7 shows correct and buggy 

pseudo-code programs based on the programs that students typically 

generate. 

Specification Understanding: The "missing loop" bug can be generated by 

assuming an alternative interpretation of the programming task. For 

instance, one student who left out the loop said, 7 didn't [SEE] this the 

first time..." , upon looking more closely at the problem speicification. 

MARCEL does not simulate the understanding process, but can be given 

"buggy" representations of the specification to work from. 

Domain-Specific Learning: One way to simulate different students using 

different plans is to simply give different student models different plans. 

For instance, for dealing with repeately processing input, some students 

may have learned the "duplicate input" plan, others the "dummy ini i ' plan, 

and still others the "more data" plan. This assumes that the different 

students somehow learned different plans (see below). 

Progress Criteria - Relative Impasse Difficulty: Another way in which the 

programs in Figure 7 can be generated is based on different progress criteria. 

Note that all but the "missing loop" program of Figure 7, occur in the 

impasse/repair tree in Figure 8 ("duplicate input" third column and first row, 

"dummy init" second column and fifth row, "more data" first column and 

fourth row, "missing re-input" second column and first row, and "missing 

guard" second column and third row). Given a tree of possible 

impasse/repair episodes, each program in die tree can be obtained by (1) a 

proper setting of the relative impasse difficulty parameters (controlling 

backtracking and pushing on), and (2) a properly designed isomorphism test 

that overlooks certain types of impasses (stops before reaching a correct 

program at a leaf in the tree). 

6 Concluding Remarks 

This paper describes a cognitive model of student programmers. Parts of the 

model are implemented in a simulation program called MARCEL. This 
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research is important theoretically because it explores the use of a GTD 

impasse/repair problem solving architecture in a new domain, and important 

practically because of its educational implications for programming 

instruction. 

Although the preliminary model for simulating variability is computational, 

it is still quite descriptive in nature (e.g., it does not provide an answer to 

why different impasses are more or less difficult for different student, where 

dispositions come from, by what process students understand the task 

specification, how students learn different plans, and what the space of 

incomplete isomorphism tests is, etc.). Another limitations is that the 

cognitive plausibility claim is supported by using qualitative protocol 

evidence. Stronger evidence (a future goal) might require that the model 

generate "all and only" the observed bugs that students make with limits on 

the tailorability of the model [BV80], or accurately predict the relative 

difficulty and bug-proneness of specific tasks [HW84], or predict error rates 

and reaction times for tasks [CMN 80], or account in detail for a larger 

percentage of the protocol data [NS74]. 
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