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Abstract 
One of the main disadvantages of computer generated 
proofs of mathematical theorems is their complexity 
and incomprehensibility. Proof transformation proce­
dures have been designed in order to state these proofs 
in a formalism that is more familiar to a human ma­
thematician. But usually the essential idea of a proof 
is still not easily visible. We describe a procedure to 
transform proofs represented as abstract refutation 
graphs into natural deduction proofs. During this 
process topological properties of the refutation graphs 
can be exploited in order to obtain structured proofs. 

1 Introduction 

A problem for the acceptance of Automated Deduction Sy­
stems has been the difficulty to understand proofs that are 
automatically generated. If this has been an obstacle for ma­
thematicians to accept automatic help, when proving tech­
nical lemmata, or trying to find proofs interactively, it has 
even more hindered the explanation of results in other 
knowledge based systems. The transformation of these 
proofs into a natural deduction formulation has solved some 
of the problems, see [Andrews, 1980, Miller, 1983, Lin­
genfelder, 1986, Pfenning, 1987], but by and large the in­
creasing length and complexity of the transformed proofs 
adds to their incomprehensibility rather than to reduce it. It 
is therefore paramount to be able to state the proofs in a 
hierarchically structured way, as mathematicians do, formu­
lating subgoals and lemmata. It should also be avoided to 
overload the proofs with trivial steps, thus hiding its main 
interesting ideas. 

We aim to simplify and transform proofs that are found 
automatically into that subset of natural language a math­
ematician might use. This shall be done in several steps. In 
a first step the automatically constructed proof is trans­
formed into a natural deduction proof, which is still formal 
but more human-oriented than most other formats. During 
this process the proof is already structured by the intro­
duction of lemmata and subgoals. Then the proof lines are 
arranged in a graph representing their dependencies, which 
allows grouping of lines and a gradual linearization of the 
natural deduction proof in accordance with its logical struc­
ture. Finally a simplified version of this natural deduction 
proof is to be transformed into an intermediate representa­
tion, upon which structural, and stylistic procedures operate 

in order to find a "human like" proof style and to transform 
it into mathematical natural language. 

2 Definit ions 

This chapter explains the proof representation formalisms 
needed in this paper. Exact definitions can be found in 
Shostak [1976], Lingenfelder [1986], or Eisinger [1988]. 

2 .1 Clause Graphs 

Definit ion: A clause graph consists of a set of literal 
nodes, that are partitioned into clause nodes. Each literal 
node is labelled with a literal, the distinction between the l i­
teral nodes and the literals themselves is needed because the 
same literal may be attached to several literal nodes. Finally 
the links of the clause graph connect sets of literal nodes, 
such that for all links the following conditions hold: 
(πi) Al l the literal nodes in a link are labelled with literals 

with unifiable atoms. 
(π2) A link must connect at least one positive and one ne-

gative literal. 
Each link A has two opposite shores, a positive shore 

S+(A), and a negative shore S"(A), constituted by the literal 
nodes with positive and negative literals, respectively. Lite­
ral nodes belonging to no link at all are called pure. 

A clause graph F is called a subgraph of a clause graph r, 
if it can be obtained from T by any number of the following 
actions: 
(S1 Remove literal nodes from a link. If the resulting set 

of literal nodes no longer fulfils condition π2, the 
complete link is removed from the graph. 

(S2) Remove clause nodes from the graph. At the same 
time all its literal nodes must be removed from their 
respective links according to (s1 . 

Below you find an example of a clause graph. Literal 
nodes are drawn as boxes with the appropriate literals inside. 
It can be seen that the same literal may belong to several 
literal nodes. Therefore literal nodes cannot be identified by 
their literals and the labelling outside of the boxes is for 
their identification. The example contains six clause nodes, 
built up by bordering literal nodes, and four links: {L1 L3), 
{L4 , L6, L7, L10), {L8 , L11), and [L9, L1 2 ,L1 3) . They are 
drawn as lines with a little dot, which branch on each side to 
connect the different literal nodes of the opposite shores. The 
literal nodes L2 and L5 are pure. 
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Definition: A walk in a clause graph T is an alternating 
sequence CoII1C1.. .Cn I l InCn (n>1) of clause nodes and links 
such that for every pair of clause nodes Ci-1 Cione of them 
contains a literal node of the positive shore of the 
connecting link IIi and the other contains a literal node of its 
negative shore. 

A link is separating T, if there exist two clause nodes C 
and D connected by a walk in T, that are no longer connected 
when the link is removed. In the example all links except 
(L8 , L11) are separating. A trail in a clause graph T is a 
walk, where all the links used are distinct. A cycle is a trail, 
whose start and end clause nodes coincide. A deduction graph 
is an acyclic clause graph. A refutation graph is a deduction 
graph without pure literal nodes. The example graph A is a 
deduction graph; it could be extended to a refutation graph by 
inserting an additional link {L2, L5). 

A refutation graph represents a proof for the unsatis-
fiability of the set of its clauses, while a deduction graph 
represents a derivation for the disjunction of its pure literals. 
As an example we give a refutation graph for a theorem 
known as (part of) the subgroup criterion: 

Main Example: Let G be a group, and let SCG. If for 
all elements x, y in S the element x°y'] is also in S, then 
for every x in S its inverse x1 is also in S. 

This theorem must be formulated in first order logic for 
the automatic theorem prover. Here Pxyz means x0y=z in a 
group, Sx means x E S, a subset of the group, and the 
function i calculates the inverse of the group elements: 

The refutation graph T0 was generated automatically by 
our theorem prover MKRP, [Eisinger and Ohlbach, 1986]. 
For the purpose of this paper, we assume that it is given. 

2.2 Natural Deduction Proofs 

Definition: A proof line of natural deduction consists of 
a finite, possibly empty set of formulae, called the assump­
tions, a single formula, called conclusion, and a justifica­
tion. A proof line with assumptions A, conclusion F and 
justif ication is written " . Sometimes 
comments are given to make the proof easier to read, they 
are written as if they were proof lines. A finite sequence S of 
proof lines is a Natural Deduction Proof (NDP) of a formula 
F, if 

F is the conclusion of the last line of S, 
the set of assumptions of this last line is empty, 
every line in S is justified by one of the rules of na­
tural deduction. A complete set of such rules is de­
scribed by Andrews [1980]. 

The construction of natural deduction proofs, by humans 
and computers alike, is conducted in single steps. To prove 
any valid formula F one always starts with a line 1— F. 
Such a line is obviously no proof, because it is not correctly 
justified. Now the proof is constructed by deriving subgoals 
until the proof is completed. In the intermediate states, 
called proof outlines by Andrews [1980], one may find 
completed subproofs, but also others that are not yet done. 
To formalize the procedure of the search for such a natural 
deduction proof, we use Generalized Natural Deduction 
Proofs (GNDPs). They differ from natural deduction proofs 
only in point . This allows lines not correctly justified 
within the calculus, but it is assumed that these lines are 
"correct", in the sense that a proof exists for (Apremises => 
conclusion) in an arbitrary formalism, for instance as a 
refutation graph. Such lines are called external lines, lines 
justified within the calculus are called internal When no 
external lines are present in a GNDP, it is an ordinary NDP. 

A GNDP consisting of just one line, which is an external 
line without premises and with conclusion F, is called the 
trivial GNDP for F. In order to find a natural deduction proof 
for a formula F, for which a proof π is known, a finite 
sequence of GNDPs can be constructed, whose first element 
is the trivial GNDP, and whose last element is an NDP for 
F. The transition between consecutive GNDPs is governed 
by the set of rules described in [Lingenfelder, 1986]. As an 
example, here are two of the rules: 

Example: In the description of the transformation rules, 
A is a list of assumption formulae, capital letters indicate 
single formulae, small greek letters are used as labels for the 
lines, the justification R stands for an arbitrary rule of the 
natural deduction calculus, and the justifications Π, π1, and 
Π2 represent proofs of the respective lines. In any case one 
must make sure that the proofs π1 and π2 can be constructed 
from π or are otherwise known. 
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3.1 Tr iv ia l Subproofs 

In the following subsections, subgraphs of the orginal 
refutation graph wi l l be viewed as deduction graphs 
representing lemmata in a larger proof. This only makes 
sense, when the deduction graph in question is complex 
enough to warrant the introduction of a lemma. Otherwise it 
may be better to repeat a trivial argument instead of using a 
lemma. It is of course not straightforward to decide whether 
a deduction graph is trivial. To make a decision we use a 
heuristic approach taking into account several properties of 
the graphs involved. 

It is indeed not easy to find objective criteria to decide 
when a proof is trivial. Davis [1981] proposes that "an infe­
rence is obvious, precisely when a Herbrand proof of its 
correctness can be given involving no more than one 
substitution instance of each clause". Pelletier and Rudnicki 
[1986] argue along the same lines, but point out that in ge­
neral it may be difficult to decide if any proof of a given fact 
is non-obvious because this requires to check a property of 
all possible proofs. This doesn't pertain to our case, how­
ever, since we are only concerned with the question if a gi­
ven proof is trivial as opposed to the question whether an 
obvious proof can be found for a given theorem. 

So Davis' approach seems to be a good starting point, 
however there is an additional complication. We have to fi­
gure out whether a given proof (deduction graph) is a sub­
stantial part of a larger proof. When this is the case, it is 
normally desirable to use the subgraph as a lemma or as an 
intermediate step in the overall proof. Therefore we must 
check, if the rest of the proof - after removing the proof for 
the lemma - has become "easier". According to Davis this 
will be the case when the subgraph contains an instance of a 
clause, of which a different instance appears somewhere else 
in the rest of the proof. It may even be the case that both 
resulting proofs are obvious although the total proof wasn't. 

But that's what dividing large proofs into steps is all about. 
Finally, when it comes to make someone understand a 

proof, other non-logical properties must also be considered. 
For example its absolute length and the length in relation to 
the total proof must be taken into account. When the sub-
proof is relatively long, it will always pay to prove it sepa­
rately as a lemma. If this lemma is already known to the 
reader one may later dispense with its proof altogether. 
Doing this intelligently requires a database of known lem­
mata and a model of the reader's knowledge about the field of 
mathematics in case. When a freshman uses the system as 
an explanation for a proof one should not omit arguments 
which a graduate student might consider trivial. Conversely, 
it may obscure the idea of a complex proof to mention all 
the applications of lemmata that have been thoroughly un­
derstood long before. As one never knows, however, who 
wil l read the proof later, it is useful to postpone this deci­
sion as long as possible. At this stage it is not yet necessary 
to take a user model into account, this wil l only be done 
when the natural deduction proof is finally brought into a 
well-structured linear form. 

3.2 Shared Subgraphs as Lemmata 

Now we assume that a proof for a formula φ has already 
been found by an automated deduction system. We will fur­
ther assume that this proof is represented as a refutation 
graph T, a form that can easily be constructed from a resol­
ution proof, see [Posegga, 1985, Lehr, 1988]. This means, 
however, that the equivalent problem of proving the unsat-
isfiability of the negated formula in a special normal form 
has been solved. In addition to the refutation graph, we 
therefore need a correspondence between the literal nodes of 
T and the atom occurrences in φ. Full details of the material 
presented in this chapter can be found in [Lingcnfelder, 
1988]. 

An initial "trivial" generalized natural deduction proof can 
now be constructed to start a transformation process as 
described in [Lingcnfelder, 1986]. After each application of a 
transformation rule a number of tasks need to be performed 
in order to guarantee a smooth transformation process. 

1. The relation between literal nodes of the refutation 
graph and atom occurrences of the conclusion formula 
of every proof line must be established. 

2. The refutation graph is changed or divided according to 
the rule applied. 

3. Additional parts of the refutation graph may become 
positively polarized; a clause node is positively pola­
rized, when each of its literal nodes corresponds to an 
atom occurrence of an axiom or a current assumption. 
This neatly reflects the general idea of natural deduc­
tion proofs, where new assumptions are introduced 
during the proof process. 

Some of the transformation rules, EA for instance, lead to 
new external lines, and as a consequence to a division of the 
refutation graph. In the simplest case the refutation graph 
proving F1 ^F2 is "cut" through the clause [-F1 -F2], such 
that the two resulting components arc refutation graphs for 
F and for F2. In general these graphs may have a non-e m p t y 
intersection, and this is similarly the case for other rules 
leading to a division of the refutation graph. 
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If this intersection is comparatively small, it may easily 
be duplicated and then used twice in the two subproofs. If it 
is relatively large, however, it may be sensible to prove a 
lemma first and then use it in both proofs. In order to 
formalize such a procedure, a new transformation rule 
E-Lemma is introduced. 

This rule must of course be used with discretion, i.e. only 
when an appropriate formula G could be found, which sim­
plifies the proof of the formulae Fi In particular it may only 
be used, when all the literal nodes in the refutation graph π0 
are positively polarized, so that it is possible to prove G 
from axioms and current assumptions only. It goes without 
saying, that Π0 must be a common subgraph of all the 
graphs πi. In constructing the graphs π' one is entitled to 
use the formula G as an additional axiom. The case n=l may 
also be meaningful, when a lemma is introduced as a 
subgoal, see section 3.3. 

Let us consider for a moment what these shared subgraphs 
may look like. We always assume that a cut is being made 
in order to apply EA . In the simplest case the lemma con­
sists of just one atom G. Then the graph has the form 

When G is a disjunction G1VG2, however, things are no 
longer as easy. One might think that it suffices to introduce 
a link between the two subgraphs of the previous case. It is 
true that we could now prove the disjunction, but a cycle is 
introduced into the graph, which therefore ceases to be a re­
futation graph. In fact, a shared subgraph representing a dis­
junction can only occur, when the theorem F 1 F 2 appears 
more than once in the graph, as in the next example. 

subgraph3. In both cases the proof can be done by cases after 
the lemma G1vG2 has been introduced. 

Already Shostak [1979] mentioned, that unsatisfiable 
ground clause sets exist, for which every refutation graph 
contains at least one of its clauses twice. But in this case 
one can inhibit the duplication of any specific clause. 

Lemma: For every unsatisfiable ground clause set S 
containing a clause C, one can construct a refutation graph, 
which contains C only once. 

If one chooses the theorem clause [-F1 -F2 ] to appear 
only once, the graph of the last example takes the form 
shown below. Now the subgraph proving G1vG2 is no lon­
ger shared, but two copies of it exist in the refutation graph. 

So in general one has to search for isomorphic subgraphs 
that are complex enough to warrant the introduction of a 
lemma. In addition to an isomorphic graph structure corre­
sponding literal nodes must represent identical literals and 
must be related to the same atom occurrences in the original 
formula. This condition may, however, be relaxed for term 
arguments of the free (lemma) literals, if they correspond to 
variables, that need not be instantiated in the subgraph. In 
this case the lemma becomes a quantified formula used more 
than once in different instantiations. 

Such a lemma corresponds to a resolvent used more than 
once during the resolution proof. Thus, if the refutation 
graph was originally constructed from a resolution proof, 
one should keep this information in order to obviate the 
search for that kind of lemma. An example can easily be 
constructed by slightly altering the above graph. 

3.3 Separating Links that Define Subgoals 

In the previous chapter, the main incentive for the intro­
duction of a lemma was to avoid unnecessary duplication in 
the proof. But this is not the only reason, why mathema­
ticians use lemmata. Often they are used purely to structure 
the proof, so that its main ideas become better visible. 

In an automatic proof transformation it is obviously dif­
ficult to find meaningful lemmata. And it is here again that 
the topological structure of the refutation graph may suc­
cessfully be exploited. The task is to find parts of the refu­
tation graph that are sufficiently complex in order to justify 
the introduction of a lemma, while they should at the same 
time be easily separable from the rest of the graph. Besides, 
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a) If only one of the resulting components contains ne­
gatively polarized literal nodes, then an extra and un­
necessary proof by contradiction must be performed. 

b) If the two resulting parts overlap widely, including 
negatively polarized literal nodes, then large parts of 
the proof will be duplicated in both cases. 

A good case for the application of M-Cases appears, when 
both of the resulting components contain parts of the 
theorem, and their overlap is either small or restricted to po­
sitively polarized parts, in which case a lemma can be de­
fined to avoid the duplication, cf. cases 3b and 3c above. 

The most important case for the rule M-Cases comes up, 
when an existentially quantified formula cannot be proven 
constructively. In the refutation graph, this fact is reflected 
by the existence of several copies of the theorem clauses. 
M-Cases can now be applied, if all the resulting components 
contain just one of these copies. 

4 Final Remarks 

After the transformation process from a refutation graph into 
a natural deduction formalism the proof must now be ordered 
in accordance with its logical structure. A first algorithm to 
structure natural dedcution proofs has been proposed by 
Chester [1975]. He starts his transformation process from a 
given, completely unstructured natural deduction proof, ha­
ving no information of how it was constructed. However, if 
an NDP was constructed by the method described above, one 
already knows about lemmata from the topological structure 
of the refutation graph as described before in section 3. 

When the natural deduction graph has been ordered, some 
further steps are required to make the proof really under­
standable. The main drawback of natural deduction proofs is 
their length and the difficulty in seeing the important steps. 
One has to distinguish therefore between trivial proof steps 
and more important steps, which is not straightforward, as 
the answer depends on the context of the proof as well as on 
the intended reader. After all, a mathematician will consider a 
lot of proof steps trivial, that inexperienced readers might 
not find easy at all. This raises the question how this di­
stinction can be made automatically. 

A first approach will group several steps, especially when 
only propositional reasoning is involved. But it may also be 
indicated to combine propositional steps with an in­
stantiation. If it is known, however, that the proof will ap­
pear in a text book immediately after the proof of some 
lemma, or that an expert wil l read the proof, a complete 
subproof may be omitted. In order to achieve this sort of 
reader dependent simplification of the proof it will be neces­
sary to have a model. The development of user models is a 
well known research problem in AI , especially in the field of 
natural language processing and computer interfaces. 

Summary: In this paper we have seen, that we can ex­
ploit the topological structure of computer generated proofs, 
in order to break them up into smaller lemmata. In particular 
this may avoid the need to prove a subformula more than 
once, when it is shared by different branches of the proof. In 
addition the information implicit in the topological proper­
ties of refutation graphs is used to structure the proof. This 
is done by dividing the graph into disjoint parts to be proved 

separately, either sequentially, as a lemma cited later in the 
proof, or as a proof by case analysis. In order to do this, the 
algorithm for the transformation of refutation graphs into 
natural deduction proofs had to be extended. 

The same information also facilitates the process of orde­
ring the natural deduction proof. The parts to be brought 
into a meaningful order are much smaller, thus reducing the 
number of arbitrary decisions that have to be made to choose 
an actual sequence of proof lines. In fact one has to solve 
several smaller linearization problems instead of a single 
large one; of course one also has to find a sequence of the 
lemmata in the end. 

The final ordered version of the natural deduction proof is 
then used as a starting point for removing trivial steps from 
the proof. In general this can only be done with the help of a 
user model. When all of this has been done one can tackle 
the problem to state this formal proof in mathematical 
natural language, which is the topic of our current research 
interest, see [Huang, 1989]. 
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