
General ized Game Trees 

R i c h a r d E . K o r f 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, Ca. 90024 

A b s t r a c t 

We consider two generalizations of the standard 
two-player game model: different evaluation 
functions for the players, and more than two 
players. Relaxing the assumption that players 
share the same evaluation function produces a 
hierarchy of levels of knowledge as deep as the 
search tree. Alpha-beta pruning is only pos­
sible when the different evaluation functions 
behave identically. In extending the standard 
model to more than two players, the minimax 
algor i thm is generalized to the maxn algor i thm 
applied to vectors of N-tuples representing the 
evaluations for each of the players. If we as­
sume an upper bound on the sum of the com­
ponents for each player, and a lower bound on 
each individual component, then shallow alpha-
beta pruning is possible, but not deep pruning. 
In the best case, the asymptotic branching fac­
tor is reduced to (1 + \ /46 — 3) /2 . In the av­
erage case, however, pruning does not reduce 
the asymptotic branching factor. Thus, alpha-
beta pruning is found to be effective only in 
the special case of two players w i th a common 
evaluation function. 

1 I n t r o d u c t i o n 

Min imax search w i th alpha-beta pruning is the pre­
dominant algor i thm employed by two-player game 
programs[1]. Figure 1 shows a game tree, where squares 
represent Max nodes and circles correspond to Min 
nodes, along w i th its min imax value, bounds on interior 
nodes, and those branches pruned by alpha-beta. 

There are two assumptions made in this model. One 
is that there are two players, and the other is that they 

*This research was supported by an NSF Presidential 
Young Investigator Award, and NSF Grant IRI-8801939. 
Thanks to Chris Ferguson for helpful discussions concerning 
this work, and Valerie Aylett for drawing the figures. 

both use the same evaluation funct ion. There are, how­
ever, games that involve more than two players. Further­
more, the knowledge of different players is l ikely to be 
quite different in practice. First we wi l l consider the con­
sequences for min imax and alpha-beta of assuming that 
two players use different evaluation functions. Next we 
wi l l examine mult i-player game trees. Finally, we wi l l 
combine the two cases and briefly discuss multi-player 
games wi th different evaluation functions. 

2 D i f f e ren t E v a l u a t i o n Func t i ons 

Given separate evaluation functions, there are two cases 
to consider, depending on whether or not each player 
knows his opponent's funct ion. 

2.1 Separa te b u t S h a r e d K n o w l e d g e 

In the simplest case of separate evaluation functions, 
each player uses a different function and each player 
knows his opponent's funct ion. This requires that min­
imax be modified as follows: Each node now has two 
evaluations, one for Max and one for M in . In figure 
2, the first component is Max's value and the second 
is Min 's . The player to move at a given node uses his 
evaluation of the children, and backs up the complete 
ordered pair for which his component is a maximum or 
min imum, respectively. 

In general, alpha beta pruning cannot be used in this 
case. Compare figure 2 w i th the two-level tree in the 
lower left corner of figure 1. Using either Max or Min's 
function exclusively would cause the last node to be 
pruned, yet its value is the min imax value of the root 
when both functions are used. The problem is that (12,8) 
is better than (9,9) for both Max and M i n . 

Pruning is possible only if the two evaluation func­
tions always agree on the relative ordering of the mer­
its of different positions. In other words, if one node 
looks better to Max than another, then it also must look 
worse to M I N . Since the actual values of positions don't 
matter, but merely their relative order, this constraint 
implies that both evaluation functions always make the 

328 Search 



same decisions, and hence are effectively identical. If two 
evaluation functions rank different positions differently, 
then alpha-beta pruning cannot be used and the entire 
tree must be searched. 

2.2 N o S h a r e d K n o w l e d g e 

So far we have assumed that each player knows his op-
ponent's funct ion. Now we relax that constraint, and 
assume that each player merely has a model of his oppo­
nent's funct ion, which may or may not be accurate. This 
is the most general and realistic case since in general one 
player can only guess at what his opponent may know. 
We wi l l i l lustrate the necessary modif ication to minimax 
by a series of examples. 

In a one-level game tree wi th Max at the root, Max 

simply applies his evaluation function to each of the chil­
dren, and chooses the one wi th the largest value. 

In a two-level tree wi th Max at the root, Max's choice 
of move depends on what he thinks Min's move wi l l be. 
Min's decision wi l l be based on Min's evaluation of the 
terminal nodes, but Max only has a model of Min's func­
t ion. Thus, Max applies his model of Min's evaluation 
to the frontier nodes, and backs up the position wi th the 
minimum value. Then, Max's evaluation function is ap­
plied to the two positions that are backed up, and the 
one wi th the maximum value is chosen for the move. 

The situation gets more complex wi th a three-level 
tree. Again assume that Max is to move at the root. 
Max's decision wi l l be based on what he thinks Min wi l l 
do. However, Min's decision wi l l be based on what he 
thinks Max wi l l do two levels down. Thus, Max's deci­
sion is based on what Max thinks that M in thinks that 
Max wi l l do. Therefore, the evaluation function that is 
applied to each of the frontier nodes is Max's model of 
Min's model of Max's evaluation, and the nodes wi th 
the maximum values are backed up to the Max nodes 
directly above the frontier. Next, Max's model of Min's 
evaluation is applied to the backed up nodes, and the 
nodes wi th the min imum values are backed up to the 
M in nodes directly below the root. Finally, Max's eval­
uation is applied to these backed up nodes to determine 
the final move. 

In general, an additional level of knowledge is added 
for each level of the search tree. In theory, each of these 
different levels of knowledge could involve different eval­
uation functions. While the concept of mult iple levels of 

Korf 329 



knowledge is well-known in the game theory context of 
simultaneous decisions [2], alternating-move game trees 
provide a simple and often overlooked example of this 
phenomenon in art i f icial intelligence. 

The restrictions on alpha-beta pruning in this case are 
the same as in the case of different but shared functions. 
In other words, the models of the different evaluation 
functions must agree in their relative ordering of different 
positions, which is to say that they must be functionally 
equivalent. 

3 Mul t i -P layer Game Trees 
We now consider games w i th more than two players. For 
example, Chinese Checkers can involve up to six different 
players moving alternately. As another example, Othello 
can easily be extended to an arbi trary number of players 
by having different colored pieces for each player, and 
modify ing the rules such that whenever a mixed row of 
opposing pieces is flanked on both sides by two pieces of 
the same player, then all the pieces are captured by the 
flanking player. 

3.1 M a x n A l g o r i t h m 

Luckhardt and Irani[3] extended min imax to mu l t i -
player games, call ing the resulting algor i thm maxn. We 
assume that the players alternate moves, that each player 
tries to maximize his return, and is indifferent to the re-
turns of the remaining players. At the leaf nodes, an 
evaluation function is applied that returns an N-tuple of 
values, w i th each component corresponding to the esti­
mated merit of the position w i th respect to one of the 
players. Then, the value of each interior node where 
player i is to move is the entire N-tuple of the child for 
which the ith component is a max imum. Figure 3 shows 
a maxn tree for three players, w i th the corresponding 
maxn values. 

For example, in Chinese Checkers, the value of each 
component of the evaluation function might be the neg­
ative of the m in imum number of individual moves re­
quired to move al l of the corresponding player's pieces to 
their goal positions. Similarly, an evaluation function for 
multi-player Othello might return the number of pieces 
for each player on the board at any given point. 

The negamax formulat ion of two-player min imax is a 
special case of maxn for two players. The evaluation 
function returns an ordered pair of x and - x , and each 
player maximizes his component at his moves. 

3.2 A l p h a - B e t a P r u n i n g i n M u l t i - P l a y e r G a m e 
Trees 

Luckhardt and Irani[3] observed that at nodes where 
player i is to move, only the ith component of the chil­
dren need be evaluated. At best, this can produce a 
constant factor speedup, but it may be no less expensive 
to compute all components than to compute only one. 

They correctly concluded that wi thout further assump­
tions on the values of the components, pruning of entire 
branches is not possible w i th more than two players. 

If, however, there is an upper bound on the sum of 
all components of a tuple, and there is a lower bound 
on the values of each component, then alpha-beta prun­
ing is possible. The first condit ion is a weaker form of 
the standard constant-sum assumption, which is in fact 
required for two-player alpha-beta pruning. The second 
is equivalent to assuming a lower bound of zero on each 
component, since any other lower bound can be shifted 
to zero by subtracting it f rom every component. Most 
practical evaluation functions w i l l satisfy both these con­
dit ions, since violat ing them implies that the value of 
an individual component can be unbounded in at least 
one direction. For example, in the evaluation function 
described above for multi-player Othello, no player can 
have less than zero pieces on the board, and the total 
number of pieces on the board is the same for all nodes 
at the same level in the game tree, since exactly one piece 
is added at each move. 

3.2.1 I m m e d i a t e P r u n i n g 
The simplest k ind of pruning possible under these as­

sumptions occurs when player i is to move, and the ith 

component of one of his children equals the upper bound 
on the sum of al l components. In that case, all remaining 
children can be pruned, since no child's ith component 
can exceed the upper bound on the sum. We wi l l refer 
to this as immediate pruning. 

3.2.2 Sha l l ow P r u n i n g 
A more complex situation is called shallow pruning in 

the alpha-beta l i terature. Figure 4 shows an example of 
shallow pruning in a three-player game, where the sum 
of each component is 9. Evaluating node a results in a 
lower bound of 3 on the first component of the root, since 
player one is to move. This implies an upper bound on 
each of the remaining components of 9 — 3 = 6. Eval­
uating node / produces a lower bound of 7 on the sec­
ond component of node e, since player two is to move. 
Similarly, this implies an upper bound on the remaining 
components of 9 — 7 = 2. Since the upper bound (2) 
on the first component of node e is less than or equal to 
the lower bound on the first component of the root (3), 
player one won't choose node e and its remaining chil­
dren can be pruned. Similarly, evaluating node h causes 
its remaining brothers to be pruned. This is similar to 
the pruning in the left subtree of Figure 1. 

The procedure Shallow takes a Node to be evaluated, 
the Player to move at that node, and an upper Bound on 
the component of the player to move, and returns a vec­
tor that is the maxn value of the node. Sum is the global 
upper bound on the sum of the components. Ini t ia l ly, 
Shallow is called w i th the root of the tree, the player to 
move, and Sum. Note that shallow pruning includes im-

330 Search 



Korf 331 



3.2.3 F a i l u r e o f D e e p P r u n i n g 
In a two-player game, alpha-beta pruning allows an 

addit ional type of pruning known as deep pruning. For 
example, In Figure 1, nodes b and c are pruned based 
on bounds inherited f rom their great-great-grandparent, 
the root in this case. Surprisingly, deep pruning does 
not generalize to more than two players. 

Figure 5 il lustrates the problem. Again, the sum of 
each component is 9. Evaluating node b produces a lower 
bound of 5 on the first component of node a and hence an 
upper bound of 9 — 5 = 4 on the remaining components. 
Evaluating node e results in a lower bound of 5 on the 
th i rd component of node d and hence an upper bound of 
9 — 5 = 4 on the remaining components. Since the upper 
bound of 4 on the first component of node d is less than 
the lower bound of 5 on the first component of node a, 
the value of node / cannot become the value of node a. 
In a two-player game, this would allow us to prune node 
/ . 

W i t h three players, however, the value of node / could 
effect the value of the root, depending on the value of 

node g. If the value of node / were (2,3,4) for example, 
the value of e would be propagated to d, the value of d 
would be propagated to c, and the value of b would be 
propagated to a, giving a value of (5,2,2). On the other 
hand, if the value of node / were (3,0,6) for example, 
then the value of / would be propagated to d, the value 
of g would be propagated to c, and the value of c would 
be propagated to a, producing a value of (6,1,2). Even 
though the value of node / cannot be the maxn value of 
the root, it can effect i t . Hence, it cannot be pruned. 

3.2.4 O p t i m a l i t y o f S h a l l o w P r u n i n g 
Given the failure of deep pruning in this example, is 

there a more restricted form of pruning that is val id, or 
is shallow pruning the best we can do? The answer is 
the latter, as expressed by the following theorem: 
T h e o r e m 1 Every directional algorithm that computes 
the maxn value of a game tree with more than two players 
must evaluate every terminal node evaluated by shallow 
pruning. 

By a directional a lgor i thm we mean one in which the 
order of node evaluation is independent of the value of 
the nodes, and once a node is pruned it can never be re­
visited. For example, a str ict ly left-to-right order would 
be directional. The main idea of the proof amounts to a 
generalization of the above example to variable values, 
arbi trary depth, and any number of players greater than 
two. Unfortunately, space constraints preclude us from 
including the proof here. 

3.2.5 Bes t -Case P e r f o r m a n c e 
How effective is shallow pruning in the best case? To 

simplify the analysis, we wi l l exclude immediate pruning 
by assuming that no one component can equal the upper 
bound on the sum. The best-case analysis of shallow 
pruning is independent of the number of players and was 
done by Knuth and Moore[4] for two players. 

In order to evaluate a node in the best case, one child 
must be evaluated, and then evaluating one grandchild 
of each remaining child wi l l cause the remaining grand-
children to be pruned (see Figure 4). Thus, If F(d) is 
the number of leaf nodes generated to evaluate a tree of 
depth d w i th branching factor 6 in the best case, then 
F(d) = F(d - 1) + (b - 1) * F(d - 2). Since a tree of 
depth zero is a single node, and a tree of depth one re­
quires al l children to be evaluated, the in i t ia l conditions 
are F(0) = 1 and -F(l) = 6. Note that in a binary tree, 
F(d) is the famil iar Fibonacci sequence. The solution 
to the general recurrence has an asymptotic branching 
factor of (1 -f y/4b — 3) /2 . For large values of 6, this ap­
proaches y/b which is the best-case performance of full 
two-player alpha-beta pruning. 

3.2.6 Ave rage -Case P e r f o r m a n c e 
Knuth and Moore[4] also determined that in the aver­

age case, the asymptotic branching factor of two-player 

332 Search 



shallow pruning is approximately b/ log 6. They assumed 
independent, distinct leaf values. 

In the case of multiple-players, however, our model 
of the evaluation function must have a lower bound on 
each component and an upper bound on their sum. For 
simplicity, assume that the lower bound is zero and that 
the sum is exactly one. Thus, we need a way of ran­
domly choosing N-tuples such that each component is 
identically distr ibuted between zero and one, and the 
sum of al l components is one. One way to do this is 
by cutt ing the zero-one interval in N — 1 places, w i th 
each cut-point independently and identically distributed 
f rom zero to one, and using the N resulting segments as 
the components of the N-tuple. Furthermore, we assume 
that each tuple is independently generated. 

Under this average-case model, the asymptotic 
branching factor of shallow pruning w i th more than two 
players is simply b, the brute-force branching factor. The 
analysis relies on the min imax convergence theorem[l] , 
which was derived for two-player minimax trees but also 
holds for multi-player maxn trees as well. This surpris-
ing phenomenon is that if the leaf values are chosen in­
dependently from the same distr ibut ion, the variance of 
the root values decreases wi th increasing height of the 
tree, and in the l im i t of infinite height, the root value 
can be predicted wi th probabil i ty one. The actual l im­
i t ing value depends on the leaf distr ibut ion and also on 
which player moves last in the tree, but the convergence 
does not. 

In order for pruning to take place, the lower bound 
on one component must be greater than or equal to its 
upper bound, which equals one minus the lower bound 
on another component. Thus, pruning only takes place 
when the sum of the lower bounds on two different com­
ponents is greater than or equal to one. In order for 
this to occur in the l im i t ing value, the values of the re­
maining components must be zero, since the sum of the 
two components in question is one. This cannot hap­
pen in the l im i t ing value, assuming continuous terminal 
values. Thus, while pruning occurs at low levels of the 
tree, at higher levels it becomes increasingly rare, and in 
the l im i t of infinite depth, it disappears entirely. Thus, 
the asymptotic branching factor is simply 6. This has 
been verified experimentally, using the model described 
above. 

4 M u l t i - P l a y e r Games w i t h Separate 
E v a l u a t i o n Func t ions 

What happens when we combine the assumptions of sep-
arate evaluation functions and mult iple players? The re­
sult is a hierarchy of mult iple functions, each of which 
returns a vector of values for each position. For example, 
in the three-player game tree of Figure 3, the evaluation 
function applied to the frontier nodes would be player 
l 's model of player 2's model of player 3's evaluation 

function. At the next higher level, player l 's model of 
player 2's function would be used, and finally player l 's 
evaluation would be applied to the children of the root. 

The constraints on alpha-beta pruning are the same. 
Namely, deep pruning cannot be done, and shallow prun­
ing can only be used where the corresponding functions 
behave identically. In the average case w i th more than 
two players, pruning does not reduce the asymptotic 
branching factor. 

5 Conclus ions 
We have considered two extensions to the standard 
game-tree model. The first is to allow different play­
ers to have different evaluation functions, and different 
model's of their opponent's functions. In general, this 
produces a hierarchy of levels of knowledge that is as 
deep as the search tree to be evaluated. Furthermore, 
alpha-beta pruning cannot be used unless the different 
evaluations are functionally equivalent. 

The second is to allow an arbitrary number of play­
ers. This leads to a generalization of the minimax al­
gor i thm called maxn. If we further assume that there 
is a lower bound on each component of the evaluation 
function, and an upper bound on the sum of all compo­
nents, then shallow alpha-beta pruning is possible, but 
not deep pruning. In the best case, this results in signif­
icant savings in computation, but in the average case it 
does not reduce the asymptotic branching factor. 

This implies that alpha-beta is a rather specialized 
algorithm whose effectiveness is l imi ted to the case of 
two-players wi th a common shared evaluation function. 
Since alpha-beta pruning is one of the main reasons for 
the effectiveness of the minimax backup rule, alternative 
backup rules may be more competit ive in these more 
general settings. 

References 

[1] Pearl, J. Heuristics, Addison-Wesley, Reading, Mass, 
1984. 

[2] Rosenschein, J.S., The role of knowledge in logic-
based rational interactions, Proceedings of the Sev­
enth Annual International Phoenix Conference on 
Computers and Communications, Scottsdale, AZ, 
IEEE Computer Society, March, 1988, pp. 497-504. 

[3] Luckhardt, C.A., and K.B. I rani , An algorithmic so­
lut ion of N-person games, Proceedings of the Na­
tional Conference on Artificial Intelligence (AAAI-
86), Philadelphia, Pa., August, 1986, pp. 158-162. 

[4] Knuth , D.E., and R.E. Moore An analysis of Alpha-
Beta pruning, Artificial Intelligence, Vol. 6, No. 4, 
1975, pp. 293-326. 

Korf 333 


