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A b s t r a c t 

A heuristic improvement technique referred to 
as mult i -dimensional heuristics is presented. 
Instead of only apply ing the heuristic between 
two states X1 and X2, when a distance esti­
mate of X1X2 is needed, this technique uses a 
reference state R and applies the heuristic func­
t ion to {X1,R) and (X'2,R) and compares the 
result ing values. If two states are close to each 
other, then they should also be approximately 
equidistant to a th i rd reference state. It is pos­
sible to use many such reference states to im­
prove some heuristics. The reference states are 
used to map the search in to an N-dimensional 
search space. The process of choosing reference 
states can be automated and is in fact a learn­
ing procedure. Test results using the 15-puzzle 
are presented in support of the effectiveness of 
mult i -d imensional heuristics. Th is method has 
been shown to improve both a weak 15-puzzle 
heuristic, the ti le reversal heuristic, as well as 
the stronger Manhat tan distance heuristic. 

1 I n t r o d u c t i o n 

Tradi t ional heuristic search involves ordering state ex­
pansions relative to their estimated costs of part ic ipat­
ing in a solut ion. This cost is computed by a funct ion 
f = g + h where g is the known cost (depth) arid h 
is an estimate of the remaining cost or distance to the 
goal [Hart et a/., 1968]. Th is paper proposes a general 
method of improv ing h. Instead of est imat ing h by eval­
uat ing a given state X w i th respect to the goal G. several 
new reference states are used to gain perspective [Nelson, 
1988]. The relative posit ion of X and G among the refer­
ence states w i l l be used to estimate the distance between 
X and G. 

Assuming h is of a general nature and can be used 
to estimate the distance between any two states in 
the search space, then h can be used to estimate 
the distances f rom the reference states to both G 
and X. For each reference state Ri,-, a difference value 
ARi = | h(X, Ri) - h(G, Ri) | is computed, which is the 
absolute value of the difference between the estimated 
distances f rom X to R i and f rom G to Ri. Note that 
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if the goal is used as a reference state rK, then ARk is 
jus t the t radi t ional heuristic estimate h. These differ­
ence values ARi, where 1 < i < n and n is the number 
of reference states, wi l l be used to give a better estimate 
of the actual distance f rom the X to G. The new esti­
mate wi l l be referred to as Hn and wi l l be proport ional 
to the values of AR1, AR2 . .. ARn as wi l l be discussed 
in section 2. The method for combining the AR values 
to get Hu is based on mapping the search space into 
an N-dimensional space which is why Hn is referred to 
as a mult i -dimensional heuristic or M D H . Another key 
part of the calculation of Hn is that the AR values are 
independent of each other and can be computed simulta­
neously on a multiprocessor architecture. Also h ( G , R i ) 
is fixed and need only be computed once for each Ri. 

We would hope that a smaller ARi value for reference 
state R i would indicate that X is closer to G. The in tu­
i t ion is that if X is close to G, then both states should be 
approximately the same distance f rom any given refer­
ence state, thus yielding a small AR value. The farther 
X is f rom G, then the greater the AR value wi l l be. Fig-
ure 1 i l lustrates this. In this example only one reference 

Figure 1: Order ing Nodes using Reference Nodes 

node is being used. Nodes X, X ' , and G are estimated to 
be 43, 36 and 24 units away from R,1 respectively. The 
∆RX value for X is 19 while ∆R1, for X' is 12. W i t h re­
spect to R1 we see that X' has a smaller AR\ value than 
does X which is obviously farther away f rom G than X ' . 
Also note that because H1 wi l l be proport ional to ∆R1, 



H1(X') wi l l be less than H1(X). 
Of course, if X lies directly opposite R i., f rom G, it 

may have a small ∆R i,- and st i l l be far away from G. For 
each reference node there wi l l be such a region of decli­
nation relative to a given goal [Nelson, 1988]. The fix for 
this involves adding more reference nodes and posit ion­
ing these reference nodes so their (estimated) distances 
to each other is relatively large and their (estimated) 
distances to the goal node varies. 

The calculation of Hn and the reasons for viewing the 
search space as an N-dimensional space are explained in 
section 2. Section 3 reports on some empirical data using 
MDHs for the 15-puzzle. Concluding remarks and ideas 
for fur ther research are contained in section 4. 

2 V iewing the Search as an N-space 

At this point we demonstrate why a planar view can­
not be used satisfactorily to compute a distance from 
X to G using reference nodes and explain why the term 
"mul t i -d imensional" has been chosen to refer to this idea 
of using many reference states to estimate a distance to 
the goal. Figure 2 shows a typical case in using MDHs. 
The distance in question is between X and G. Estimates 
of the distances between the reference states to X and 
G are known. This planar or 2-dimensional view yields 
many possible values for the estimated distance between 
the states X and G. T w o of these distance estimates are 
shown in figure 2. The solid lines indicate one possible 
layout while the dotted lines show another. Geometry 
can be used to explain the di f f icul ty here even though 
the concept of an angle in a problem space is undefined. 
Because the angle values in figure 2 are not known, an 
inf inite number of distance estimates can be found for 
XG by varying the angles LR1XR2 and LR1GR2 (or 
equivalently moving R\ or R2) while st i l l preserving all 
the distances between X and G and the reference states. 
If these angles are set by using h to estimate the dis­
tance f rom R\ to R2) the resulting value of R1 R2 may 
lead to other inconsistencies. For example we know that 
R1R2 < a + d , but perhaps (the estimated value of R1R2) 
h{R1, R2) > a +d. The computat ion of these differ­
ent distances is relatively expensive and it is not known 
which to use as an estimate. Tha t is, should H2 be XG 
XG, or one of the other possible distance values. The 

addit ion of a th i rd reference state does not remedy this 
problem of mult ip le values for XG [Nelson, 1988]. 

This inabi l i ty to uniquely determine a distance for XG 
in the planar view is the impetus for a different model of 
the search space and reference states. This new model 
uses the reference states to set up an N-dimerisional 
search space. The number of dimensions is equal to 
the number of reference states. The current and the 
goal states are mapped into this N-space and their dis­
tance estimate is computed using; the standard distance 

formula The mapping of 
the states into the N-space is done by let t ing the esti­
mated distance of the goal (current state) to any given 
reference point R i be the coordinate value of the goal 
(current state) w i th respect to the R i axis. The exam­
ple shown in figure 2 would be mapped into a 2-space 
depicted by figure 3. 

This representation solves the problems associated 
w i th the planar view. There is only one distance value 
associated wi th any two states mapped into the N-space. 
The computational cost of Hn is also quite reasonable. 
This model yields the desired property that for any 
given ∆R i , if ∆R i decreases while everything else is con­
stant, then so does the distance estimate between the 
two states. This requirement was mentioned in section 1 
which stated that Hn should be proport ional to the AT? 
values. 

One quest ion has been raised as to how the M D H value 
should be computed if the original h consists of k compo­
nents. Al though this would really have to be examined 
on a case by case basis, there are really two reasonable 
approaches to consider: 

1. Ignore that h is a vector of components since it is 
st i l l a distance estimator and can be used to esti­
mate distances between the reference nodes. 

2. Analyze each component of h to see which compo­
nents, if any, can be improved by using the mu l t i ­
dimensional scheme. For each component which can 
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be improved using MDHs, pick a set of (possibly dis­
t inct) reference nodes and redefine h such that the 
appropriate components are actually MDHs. For 
example let 

where h i is replaced wi th the improved M D H com­
ponent H-hi . 

Probably most heuristics which are bui l t w i th a num­
ber of different components are already quite good and 
may not be able to achieve much of an improvement 
by using the first approach which ignores the different 
components. It may be more likely to improve such a 
heuristic by focusing on improving specific components 
of the heuristic w i th MDHs. The improvement of a spe­
cific component in this case would of course be defined 
in terms of how this component affects the accuracy of 
h. 

For any given state space problem and the h being 
used to estimate distances to the reference states, there 
are at least two questions that need to be answered in 
order to apply MDHs: 

1. what should the value of n be, that is how many 
reference states should be used, and 

2. which reference states should be used to approxi­
mate the N-space. 

The next section addresses these questions. 

3 Test Results 
The multi-dimensional approach was tested on the 15-
puzzle using the A* algori thm as described by [Rich, 
1983]. The goal of the testing was not to show that there 
exists an M D H which is more effective than any other 
existing heuristic, but rather to show that MDHs may 
be used to improve some existing heuristics. Therefore, 
ini t ial ly a heuristic was chosen for the 15-puzzle which 
had room for much improvement, this heuristic being a 
tile reversal count. Later the multi-dimensional scheme 
was tested on a much stronger 15-puzzle heuristic, the 
Manhattan distance heuristic. 

3.1 T i l e Reversa ls a n d M D H s 

The first set of tests used h as the number of tile rever­
sals. A tile reversal in state a w i th respect to state b 
has the meaning that a(i) = b(j) and b(i) = a(j) where i 
and j are adjacent tiles [De Champeaux and Sint, 1977]. 
The rationale for the heuristic is that if a reversal occurs 
between a state and the goal, then it takes many moves 
to get the ti le positioned correctly. The problem wi th 
tile reversals is that they do not occur often, so most of 
the heuristic values are 0, and the search just flattens 
out into a breadth first search. Usually ti le reversals are 
one component of a more sophisticated heuristic for the 
15-puzzle. Note also that this choice for h is general in 
that it may be applied to any two nodes in the 15-puzzle 
search space. 

The reference states were picked by first generating a 
number of states in a random fashion from which the 

reference states would be chosen. Then several hundred 
legal states (i.e. reachable f rom the goal) for which the 
distances to the goal were known were evaluated wi th an 
M D H using all the randomly generated reference states. 
(These legal states were found w i th their distances by 
generating nodes in reverse from the goal node.) Ideally 
an M D H would have reference states that yield distance 
estimates proportional to the actual distances. Therefore 
a score was kept to determine the predictive accuracy of 
each reference state. This was done by first computing 
the average of h(x) / Hn(x) for every x where x is one of 
the several hundred legal states, h(x) is the actual dis­
tance from x to the goal, and Hn(x) is the M D H value for 
x using the n randomly generated reference states. Once 
this average is computed, h(x) / Hn(x) was (retrieved) 
recomputed for every state x. The ratio for each state 
x was compared wi th the average rat io taken for all the 
states. If this ratio was close to the average ratio, then 
every reference node which participated in the calcula­
t ion received a "good" mark. If the rat io was not close 
to the average ratio, then all the reference nodes which 
helped to calculate it received a "bad" mark. At the end 
the score was tallied by subtracting the number of bad 
marks from the number of good marks. The score for a 
reference state indicates whether that R i helps or hin­
ders the M D H in achieving the goal of yielding distance 
estimates proportional to actual distances. These scores 
were computed for each of the possible reference states 
and a few of these states w i th the lowest scores (net 
goodness values) were eliminated from the set of possible 
reference states. This process was repeated many times 
wi th each iteration el iminating possible reference states 
unt i l there remained 13 possible reference states. This 
learning procedure, which is described more formally in 
[Nelson, 1988], is general and could be applied to other 
problem domains as long as states can be generated in 
reverse order from the goal state. 

Figure 4 shows the results from tests run on 30 puzzles 
using from 1 to 13 reference states. The goal state was 
added as a reference state and was ordered as the first 
reference state, thus the 1-dimensional t r ia l is exactly 
identical to a tradit ional A* search using tile reversals 
as the h. The number of nodes expanded is inversely 
proportional to the number of dimensions used by the 
M D H wi th the exception of some relative maxima at 
dimensions 5 and 7. W i t h the addit ion of each of the 
first 3 dimensions, the search space is cut in half. The 
graph in figure 4 shows that for these puzzles the best 
value for N is probably 4, since there is relatively l i t t le 
improvement in adding any dimension past the fourth 
dimension. 

The ini t ia l set of tests for the tile reversal case were run 
on puzzles wi th solution paths of length 10. Although 
the average path lengths for the 15-puzzle is about 50, 
these shorter puzzles were simple enough so that every 
dimension was capable of finding a solution without run­
ning out of memory. Using the same 13 reference nodes 
more tests were run on puzzles wi th solution paths of 
length 15, or a 50% increase f rom the previous tests. The 
results were consistent wi th the tests run on shorter puz­
zles. The biggest difference is that no puzzles were solved 

318 Search 



by dimensions 1 or 2 because the algorithm ran out of 
memory. Only one puzzle was solved in dimension 3. In 
the higher dimensions we see a dramatic decrease in the 
number of nodes expanded as extra reference nodes are 
added. These results are shown in figure 5. Although 
dimension 5 is no longer a relative maxima, dimension 
7 sti l l is. Another difference in these tests is that it ap­
pears that the best value for N would be 13. Dimension 
6 is a relative minima but by going out to dimension 13 
the average number of nodes expanded is cut in half as 
opposed to using only 6 reference nodes. If the puzzle 
lengths are increased further the results are similar in 
that there is the same downward trend in the number of 
nodes expanded as extra reference nodes are added. As 
would also be expected the lowest dimension capable of 
solving these more difficult puzzles also increases as the 
path length increases. 

The test results demonstrate how it may be possible 
to develop an MDH for a given problem domain. In this 
case the rather simple concept of tile reversals was by it-
self an inadequate heuristic. However wi th the addition 
of the mult iple reference states to map the search into an 
N-space, the use of tile reversals as the h was a much bet­
ter heuristic for solving 15-puzzles. This suggests that 
MDHs might prove especially useful for search spaces 
where relatively l i t t le is known about the problem. A 
simple heuristic h could be derived and a corresponding 
M D H might st i l l be effective even if h was not. 

3.2 M a n h a t t a n Distance and M D H s 
An interesting question is whether MDI Is could be used 
to improve a good heuristic for the 15-puzzle. Some tests 
were run to determine the effect of MDHs when applied 
to the Manhattan distance heuristic. This heuristic is 

an admissible heuristic that is also quite good; it gives 
the number of moves to reach the goal if the tiles could 
be moved "through" each other. 

The learning procedure used to find reference nodes 
for tile reversals proved ineffective for the Manhattan 
distance. Instead another "learning" procedure was used 
to choose reference nodes which would improve the Man­
hattan heuristic. Reference nodes 1 and 2 were set to be 
the goal and a "reversed" goal respectively. Now the 
100 randomly generated nodes in [Korf, 1985] were tar­
geted as the superset for the additional reference nodes 
to be added. Each of the 100 random puzzles was chosen 
as reference node 3 and the resulting M D H was tested 
on solving 10 tr ial puzzles. After looping through all 
100 possible choices for R3 it was found that puzzle 30 
minimized the number of node expansions using 3 di­
mensions. Puzzle 30 was therefore chosen as R3. This 
process was repeated 4 more times to pick (dimensions) 
reference nodes 4 through 7. This resulted in adding 
5 distinct reference nodes, selected from the 100 ran­
domly generated puzzles, which minimize node expan­
sions when solving the 10 test puzzles. The addition of 
these 5 reference nodes with the original two yields an 
M D I I wi th 7 dimensions. Figure 6 shows the result of 
solving the 10 puzzles using these reference nodes. This 
new MDH shows an improvement wi th the addition of 
every reference node. It also turns out that the path 
lengths were optimal for every puzzle solved which is 
surprising since this M D I I is obviously not admissible. 

It is a reasonable question to wonder if the improve­
ment offered by MDHs to the Manhattan distance re­
sulted from extra weight being placed on the heuristic. 
The heuristic distance estimate, h, obviously increases 
as more reference nodes are added, while the known 
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distance component, g, remains the same. To explore 
this possibility some tests were run where all 7 reference 
nodes were chosen to be the goal state. The result of do­
ing this is really just an increase in weight. There was no 
improvement offered by using the goal as the reference 
nodes. For these trials dimension 1 is the min imum or 
opt imal M D H . It also turned out that almost half of the 
solutions found using these reference nodes were not op­
t imal wi th respect to the length of their solution paths. 
Thus we can conclude that the improvement is not the 
result of a weight change in the heuristic. 

The results in figure 6 look very promising. The set 
of reference nodes form an M D H which significantly im­
proves an already good heuristic. However the manner in 
which the reference nodes were picked suggest the possi­
b i l i ty that these reference nodes are " tuned" or suitable 
for only these 10 puzzles. After all, reference nodes 3 
through 7 were chosen by a t r ia l and error process which 
involved solving each of these 10 puzzles hundreds of 
times. If the reference nodes are only suitable for these 
puzzles, it is quite obvious that the overhead in choosing 
the reference nodes far outweighs the benefit provided 
by using them. 

In order to test the general effectiveness of these ref­
erence nodes on other puzzles, some more tests were run 
using the M D H created by these 7 reference nodes to 
solve randomly generated 15-puzzles. Most randomly 
generated puzzles are not solvable by A*, using the Man­
hattan distance heuristic wi th or without this M D H in­
stance, because of exponential memory requirements. A 
"pre-screening" was conducted on these randomly gen­
erated puzzles by using the Manhattan distance to esti­
mate a min imum path length. Any puzzle whose lower 
bound was greater than 20 was immediately discarded. 

75 puzzles were generated with a lower bound path 
length < 20. Of these 75 puzzles, only 7 were able to 
be successfully solved by any of the 7 dimensions. The 
path lengths of these puzzles ranged from 22 to 30 with 
the average being 26. The worst case, wi th respect to 
the number of node expansions, for each of the 7 puz-
zles occurred in dimension 1, while the best cases were 
distributed over dimensions 4 through 7. For these ran­
domly generated puzzles the M D H proved very success­
ful. A graph of the results is shown in figure 7. There 
is a significant downward trend in the average number 
of nodes expanded as extra reference nodes or dimen­
sions are added. So it appears that the reference nodes 
which were originally found for 10 specific puzzles are 
also capable of reducing search costs for randomly gen­
erated puzzles. In fact no randomly generated puzzle 
was found to expand fewer nodes in dimension 1, which 
is equivalent to using A* without MDHs, than in any 
of the higher dimensions. Of course many puzzles were 
not solvable for any of the 7 dimensions. Additionally 
the path lengths were again optimal in every dimension 
for at least 6 of the 7 puzzles. The seventh puzzle was 
not solvable for dimension 1, the only provably admissi­
ble dimension, and therefore the optimal path length for 
this puzzle is not known. 

The reasons for the success of MDHs in improving the 
15-puzzle Manhattan distance heuristic is not as intu­
itive as to why MDHs improve the 15-puzzle tile reversal 
heuristic. Although the existence of a tile reversal be­
tween two states a and b is known to imply a significant 
difference between states a and b, the occurrence of a 
tile reversal is not likely. Using MDHs with numerous 
reference states in effect multipl ies the likelihood of de­
tecting tile reversals enabling the detection of previously 
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MDHs have been tested on the 15-puzzle for 2 differ­
ent heuristics. MDHs were first shown to offer a signif­
icant improvement in decreasing the number of nodes 
expanded when a tile reversal count is used as the h. 
These tests demonstrated that a weak heuristic based 
on a simple concept might be greatly improved by using 
the multi-dimensional scheme. Furthermore once an h 
is chosen, the process of creating the M D H , that is the 
picking of the reference nodes, can be automated. This 
may prove very beneficial for a sort of "computer-aided'' 
generation of heuristics for problems where there exist 
easily identifiable simple heuristic information, but for 
which no good heuristics are known. The second set of 
tests experimented with using MDHs to improve the al­
ready good Manhattan distance heuristic. MDHs were 
shown to be capable of improving this heuristic as well. 
This is somewhat surprising since the Manhattan dis­
tance heuristic is known to be one of the best 15-puzzle 
heuristics and shows that an MDH improvement is not 
exclusive to weak heuristics. An additional interesting 
result of the testing is that optimal solutions were found 
wi th respect to path lengths. This was unexpected since 
the higher dimensions of both M D H instances, particu­
larly the Manhattan distance M D H , obviously overesti­
mate distance values. 

Further research concerning MDHs is planned in sev­
eral different areas. In addition to the multi-dimensional 
model, there may be other models which could effectively 
represent, the concept of using reference states for heuris­
tic improvement. New and improved learning procedures 
could be developed to pick reference states. It would also 
be nice to identify other problems for which MDHs may 
offer an improvement. 
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