
Const ra ined Heur is t i c Search 

M a r k S. Fox, No rman Sadeh and Can Baykan 
Robot ics I ns t i t u te & Computer Science Depar tmen t 

Carnegie Me l lon Un ive rs i t y 
P i t t sbu rgh , Pennsy lvania 15213 

Abs t rac t 
1 

We propose a model of problem solving that 
provides both structure and focus to search. The 
model achieves this by combining constraint 
satisfaction wi th heuristic search. We introduce 
the concepts of topology and texture to charac­
terize problem structure and areas to focus at­
tention respectively. The resulting model reduces 
search complexity and provides a more prin­
cipled explanation of the nature and power of 
heuristics in problem solving. We demonstrate 
the model of Constrained Heuristic Search in two 
domains: spatial planning and factory schedul­
ing. In the former we demonstrate significant 
reductions in search. 

1. In t roduct ion 
We propose a model of problem solving that 

provides both structure and focus to search in the 
problem space. The model achieves this by combin­
ing the process of constraint satisfaction (CSP) with 
heuristic search (HS). The resulting model both 
reduces search complexity and provides a explana­
tion of the nature and power of heuristics in 
problem solving. Our model focuses on reasoning 
within a problem space, and can be viewed as being 
complementary to the Soar architecture [Laird, 
Newell & Rosenbloom 87]. 

Our problem solving model, called Constrained 
Heuristic Search (CHS), retains heuristic search's 
synthetic capabilities and extends it by adding the 
structural characteristics of constraint satisfaction 
techniques. In particular, our model adds to the 
definition of a problem space, composed of states, 
operators and an evaluation function, by refining a 
state to include: 

l This research hag been supported, in part, by the Defense 
Advance Projects Agency under contract #F30602-88-C-0001, and 
in part, by grants from McDonnell Aircraft Company, Boeing 
Computer Services, and Schlumberger Corp. 

1. Prob lem Topology: Provides a structural 
characterization of a problem. 

2. P rob lem Textures: Provide measures of a 
problem topology that allows search to be 
focused in a way that reduces backtracking. 

3. P rob lem Object ive: Defines an objective 
function for rating alternative solutions that 
satisfy a goal description. 

This model allows us to (1) view problem solving as 
constraint satisfaction, thus taking advantage of 
these techniques, (2), incorporate the synthetic 
capabilities of heuristic search, thus allowing the 
dynamic modification of the constraint model, and 
(3) extend constraint satisafaction to the larger 
class of optimization problems. In the following, 
problem topology and textures are defined, followed 
by examples of their use in the domains of spatial 
planning and factory scheduling. 

2. Problem Topology 
Our intent is to define a problem's topology so 

that search can be performed more efficiently; this 
is related to the notion of a problem being "well 
structured" [Simon 83]. 

Within the heuristic search model, a variety of 
techniques for structuring problems have been in­
vestigated. ABSTRIPS [Sacerdoti 74] demonstrated 
how hierarchical reformulation of the problem via 
omission of variables reduces search complexity, 
Hearsay-II [Erman et al 80], MOLGEN [Stefik 81], 
and OPIS [Smith, Fox & Ow 86] demonstrated how 
hierarchical reformulation via aggregation and 
abstraction reduces search complexity. ISIS [Fox 
87] demonstrated how hierarchical reformulation 
via omission of constraints reduces search com­
plexity. These structuring techniques are more en­
gineering guidelines than formal characterizations. 

On the other hand, constraint satisfaction 
research has begun to formalize the concept of well 
structured constraint graphs, but their techniques 
can be applied only to a narrow set of problems. 
Constraint satisfaction techniques, as described in 
[Mackworth 77, Haralick & Ell iott 80, Freuder 

82, Dechter & Pearl 87], approach problem solving 

Fox, Sadeh and Baykan 309 



by constructing a constraint graph where nodes are 
variables wi th discrete domains and arcs are n-ary 
constraints among the values the variables may be 
assigned. Problem solving is performed by sequen­
t ial ly choosing a variable and a value to assign to it 
that satisfies all constraints incident upon i t . Back­
tracking occurs when an assignment cannot be 
found. Research has gone into methods for struc­
tur ing the network so that the amount of backtrack­
ing can be reduced. Arc-consistency is one such 
technique that achieves local consistency between 
groups of variables via the elimination of incom­
patible values [Montanari 74, Mackworth 77, Davis 
87]. Width 1 networks that are arc consistent are 
backtrack free [Freuder 82]. 

Solving a CSP involves f inding an assignment of 
values to the variables that satisfy a set of con­
straints. From a heuristic search perspective, the 
in i t ia l state contains all the variables and their 
domains and constraints, the operators select a vari­
able and a value to assign i t , and the evaluation 
function is composed of constraints, some distance 
metric and an objective function. The sequence of 
states generated in the problem space represent al­
ternative orderings of variables and values to assign 
to them. Backtracking results in new braches in the 
search tree. The important insight that we wish to 
draw from CSP research is that by manipulating the 
constraint graph, the ordering of variables and 
values can be optimized. That is, the constraint 
graph can be viewed as providing a structure for the 
problem. 

We define problem topology as a graph G, com­
posed of vertices V and edges E: 

Each variable in N may be a vector of variables 
whose domains may be finite/infinite and 
continuous/discrete. Constraints are n-ary predi­
cates over variables vertices. A satisfiability 
specification vertex groups constraints into sets of 
type AND, OR, or XOR. An XOR satisfaction set 
denotes that only one constraint in the set must be 
satisified. Edges l ink constraint vertices to variable 
vertices, and satisfiability specifications to con­
straints. 

We distinguish between two types of problem 
topologies: 

D e f i n i t i o n 1: A completely structured 
problem is one in which all non-redundant 
vertices and edges are known a priori . 

This is true of all CSP formulations. 

D e f i n i t i o n 2: A partially structured 

problem is one in which not al l non-
redundant vertices and edges are known 
prior to problem solving. 

This definition tends to be true of problems in which 
synthesis is performed resulting in new variables 
and constraints (e.g. the generation of new subgoals 
during the planning process). 

Operators in CHS have many roles: refining the 
problem by adding new variable and constraint ver­
tices, reducing the number of solutions by reducing 
the domains of variables (e.g., assigning a value to a 
variable vertex), or reformulating the problem by 
relaxing constraints or omitt ing constraints and/or 
variables. 

Features of the problem topology are the types of 
variables and constraints (and their associated 
propagation algorithms). Davis [Davis 87] mentions 
two classes of what we view as topological features, 
namely the types of values the domain of a variable 
may contain, such as variables whose domains are 
discrete and finite (label and value inference), are 
intervals, have belief for each member (relaxation 
labelling), and are expressions (expression 
inference). The second classs of features focus on the 
types of constraints, such as constraints that are 
unary predicates, order relations, bounded dif­
ferences (e.g. x-y>c), linear equations with unit 
(i.e. - 1 , 0, 1) coefficients, linear equalities and in­
equalities wi th arbitrary coefficients, boolean com­
binations of constraints, algebraic equations, and 
transcendental equations. Additionally, domains 
may or may not have preferences for values (e.g. 
preferences for due dates of a job). 

What value do we derive from viewing a problem 
space state as a constraint graph? First, we have 
provided a more refined definition of a problem 
space state thereby reducing the looseness of its 
definition and allowing the definition of general 
measures of problem structure, i.e., textures. 
Second, properties can be proved about the nature 
of the problem, e.g., width-1 constraint networks 
that are arc consistent are backtrack free [Freuder 
82]. Third, the process of problem reformulation 
can be viewed as transformations of problem 
topological primitives. A possible negative, is that 
the number of problem types that can be 
represented in the form of a constraint graph is 
l imited. But this set is growing larger; in the fac­
tory scheduling example, we show how the 
representation can be extended to handle optimiza­
tion. By adding the power of heuristic search, we 
believe that we can apply the model to a broader 
class of problems. 

3. Problem Textures and Objective 
Focus of attention in search is concerned with the 

ability of the search algorithm to opportunistically 
decide where the next decision is to be 
made [Erman et al 80]. In CHS, for search to be 

310 Search 



well focused, that is to decide where in the problem 
topology an operator is to be applied, there must be 
features of the topology that differentiate one sub­
graph from another, and these features must be re­
lated to the goals of the problem. We have iden­
tified and are experimenting with seven such fea­
tures that we call problem textures [Sadeh & Fox 
88]. Below we define these textures for CHSs where 
all solutions are equally preferred, i.e., the Problem 
Objective rates all solutions to the constraints 
equally acceptable. 

(Var iable) Va lue Goodness: the probability 
that the assignment of that value to the variable 
leads to an overall solution to the CHS (i.e. to a fully 
consistent set of assignments). This texture is re­
lated to the value ordering heuristics [Haralick & 
Ell iott 80] which look for the least constraining 
values. Value ordering heuristics are meant to 
reduce the chance of backtracking. In the case of 
discrete variables, the goodness of a value is the 
ratio of complete assignments that are solutions to 
the CHS and have that value for the variable over 
the total number of possible assignments. 

Cons t ra in t T ightness: Constraint tightness 
refers to the contention between one constraint or a 
subset of constraints wi th all the other problem con­
straints. Consider a CHS A and a subset C of con­
straints in A. Let B be the CHS obtained by omit­
t ing C's constraints in A. The constraint tightness 
induced by C on A is defined as the probability that 
a solution to B is not a solution to A. In the case of 
discrete variables, this is the ratio of solutions to B 
that are not solutions to A over the total number of 
solutions to B. 

Va r i ab le T ightness w i t h respect to a set of 
cons t ra in ts : Again consider a CHS A, a subset C 
of constraints, and the CHS B obtained by omitting 
C in A. A variable Vs tightness with respect to the 
set of constraints C is defined as the probability 
that the value of V in a solution to B does not vio­
late C\ In the case of discrete variables, this is 
simply the ratio of solutions to B in which Vs value 
violates C (i.e. at least one of the constraints in C) 
over the total number of solutions to B. 

Cons t ra in t Rel iance: This measures the the im­
portance of satisfying a particular constraint. Con­
sider a constraint ci. We defined CHS B as being 
CHS A - (ci). Given that constraints can be disjunc­
tively defined, the reliance of CHS A on a constraint 
Ci is the probability that a solution to CHS B is not a 
solution to A. In the case of discrete variables, con­
straint reliance is defined as the ratio of the number 
of solutions to CHS B that are not a solution to CHS 
A to the number of solutions to CHS B. The larger 
the value, the greater the reliance the problem has 
on satisfying the particular constraint. 

Va r i ab le T ightness: Consider a variable v in a 
CHS A. Let C be the set of constraints involving v 
and B be the CHS obtained by omitting C in A. Vs 

tightness with respect to C is simply called v's 
tightness. Hence the tightness of a variable is the 
probability that an assignment consistent wi th all 
the problem constraints that do not involve that 
variable does not result in a solution. Alternatively 
one can define variable looseness as the probability 
that an assignment that has been checked for con­
sistency with all the problem constraints, except 
those involving that variable, results in a ful ly con­
sistent assignment. Notice that if one uses a vari­
able instantiation order where v is the last variable, 
v's tightness is the backtracking probability. Vari­
able looseness/tightness can be identified with vari­
able ordering heuristics [Haralick & Ell iott 
80, Freuder 82] which instantiate variables in order 
of decreasing tightness. 

Var iab le Content ion : It estimates the degree of 
contention that exists among a set of constraints in 
assigning a value to a variable. Given a CHS A, a 
set C of constraints incident at variable v, and CHS 
B = CHS A - C, one measure of contention is to take 
the ratio of the number of elements c' of the power-
set of C' that do not have a solution to CHS B + c', to 
the total number of elements in the powerset of C' 
In essence, the more combinations of constraints in 
C' for which there is not a solution, the greater the 
contention. 

Const ra in t A r i t y : the number of variables in­
volved in a constraint or more generally in a group 
of constraints. 

These textures generalize the notion of constraint 
satisfiability or looseness defined by [Nadel 86] and 
apply to both CHSs (and CSPs) with discrete and 
continuous variables. Notice that, unless one knows 
all the CHS's solutions, the textures that we have 
just defined have to be approximated. Textures may 
sometime be evaluated analytically [Sadeh & Fox 
88]. A brute force method to evaluate any texture 
measure consists in the use of Monte Carlo tech­
niques. Such techniques may however be very 
costly. In general, for a given CHS, some textures 
are easier to approximate than others, and some are 
also more useful than others. Usually the texture 
measures that contain the most information are also 
the ones that are the most difficult to evaluate. 
Hence there is a tradeoff. Each domain may have 
its own approximation for a texture measure. 

We have extended these textures to take into ac­
count the Problem Objective where the objective is 
expressed as a sum of functions of one variable, 
using Bayesian probabilities to approximate the 
likelihood that a variable results in an optimal 
value [Sadeh & Fox 88]. 

Textures provide a more principled view of atten­
tion focusing. As such, they can explain the power 
of heuristic knowledge used in search. We have al­
ready mentioned variable and value ordering 
heuristics respectively based on variable looseness 
and value goodness. Another example is in factory 

Fox, Sadeh and Baykan 311 



scheduling, where a useful heuristic is to schedule 
the bottleneck resource first. In our factory schedul­
ing example we show that the concept of resource 
bottleneck analysis is motivated by constraint arity 
considerations and illustrates the concept of con­
straint tightness. 

4. CHS Problem Solving Process 
The CHS model of problem solving is a combina­

tion of constraint satisfaction and heuristic search. 
Search is performed in the problem space where 
each state contains a problem topology. The 
problem solving model we propose contains the fol­
lowing elements: 

• An in i t ia l state is defined composed of a 
problem topology, 

• Constraint propagation is performed within 
the state, 

• Texture measures and the problem objective 
are evaluated for the state's topology, 

• Operators are matched against the state's 
topology, and 

• A variable node/operator pair is selected and 
the operator is applied. 

The application of an operator results in either ad­
ding structure to the topology, further restricting 
the domain of a variable, or reformulating the 
problem (e.g., relaxation). 

The next two sections demonstrate the applica­
tion of the CHS model to the problems of spatial 
planning and factory scheduling. 

5. Spatial Planning 
WRIGHT [Baykan & Fox 89] is a spatial planning 

system that generates two-dimensional layouts con­
sisting of configurations of rectangles. It is cur­
rently being applied to the design of kitchens. 
WRIGHT formulates space planning as a hierarchical 
CHS. Each level of the hierarchy consists of a set of 
variables and constraints. Knowledge of the design 
domain is represented by a class hierarchy of 
prototype design units and constraints on them ex­
pressing desired spatial relations and l imits on 
dimensions, areas and distances. Inputs for 
generating a layout are an existing configuration 
which may be an empty space wi th dimensions 
specified as a range of values, and a set of design 
uni t instances to be located and/or dimensioned. At 
the second level, the variables are the design uni t 
instances. At the th i rd level, variables are the loca­
tions of horizontal and vertical lines, dimensions, 
areas and orientations of the rectangular design 
uni t instances. Constraints are unary, binary or 
ternary algebraic relations. The constraint graph 
uses satisfiability specifications to denote conjuncts 
and disjuncts of constraints. Spatial relations be­
tween design units are mapped onto algebraic rela­
tions between their component variables. Prototype 

design units that have more than one instance may 
cause disjuncts in the constraint graph between 
levels 1 and 2, and spatial constraints that can be 
satisfied in different ways introduce disjuncts to the 
constraint graph between levels 2 and 3. The top 
level of the graph is in conjoint normal form. A new 
state is generated for satisfying each disjunct of the 
selected constraint. WRIGHT finds all significantly 
different solutions that are pareto optimal. 

The spatial planning problem demonstrates the 
following characteristics of the CHS problem solving 
model: 

• the problem topology is hierarchical, nodes, 
i.e., design units are composed of multiple 
variables whose domains are continuous in­
tervals or discrete numbers, 

• constraints define spatial l imitations using 
size bounds and relative positioning, 

• texture measures are used to identify the con­
straint to satisfy, 

• the problem objective is used to rate alteran-
tive states, and 

• operators generate new states by either as-
singing values to variables or further con­
straining or relaxing the problem. 

WRIGHT uses three texture measures for selecting 
constraints. The first measure is from a variable 
perspective, and the last two are from a constraint 
perspective. The texture measures are: 

• Va r i ab le T ightness: is approximated by the 
number of remaining conjunctive constraints 
on each design uni t instance. 

• Cons t ra in t Re l iance: is approximated by 
1/number of disjuncts. Constraints with 
fewer disjunctive cases remaining are 
selected. If the number of disjuncts is 1, the 
constraint is satisfied without needing to 
generate a new state for each disjunct. 

• Cons t ra in t T igh tness : is approximated by 
the reduction in the domains of continuous 
variables involved, as a result of satisfying the 
constraint. Constraints that result in large 
reductions are favored. Types of algebraic 
relations that wi l l be added to the CSP due to 
each of the competing constraints are also 
taken into account. 

Texture measures are applied lexicographically. Ac­
tive constraints are assigned ratings wi th respect to 
a metric, and constraints with lower values are 
eliminated from contention. If there is a single con­
straint wi th the best measure, it is used. If more 
than one constraint remains, the next texture 
measure is applied, or a constraint is selected ran­
domly. 

Figure 5-1 shows the number of search states re­
quired for finding all solutions to five kitchen layout 
problems, under different combinations of texture 
measures. The combinations tested are: method 0: 

312 Search 



selects a constraint at random, method 1: uses var i ­
able tightness, method 2: uses constraint reliance, 
method 3: combines variable tightness and con­
straint reliance, and method 4: uses al l texture 
measures defined above. When a combination of 
more than one measure is used, they are applied in 
the order they are defined above. Each measure 
eliminates some constraints from consideration. If 
more than one constraint remains after applying 
the texture measure(s), specified by the method, a 
constraint is selected at random. The number of 
states given for each problem-method combination 
is the average of three runs. In the second problem, 
method 4 reduces search by more than 80% com­
pared to method 0, and in the th i rd problem by 35%. 

In order to compare our approach to spatial plan­
n ing w i th generate and test, WRIGHT is compared 
w i th two space planning programs, DPS 
[Pfeffercorn 71] and LOOS [Flemming 851. Their 

performances are compared in terms of the number 
of states generated when f inding the f i rst solution 
and when f ind ing al l 24 solutions. The problem 
used in the comparison is arranging six fixed size 
blocks (DPS can only deal wi th polygons of fixed 
size) in a rectangular envelope, such that no blocks 
overlap. Exactly the same objects and constraints 
can be used by al l three programs due to the 
simplicity of the problem. WRIGHT finds the f i rst 
solution using 80% fewer states compared to both 
DPS and LOOS, and finds al l solutions using 50% 
fewer states compared to LOOS (no data available 
for DPS). 

6. Factory Schedul ing 
Factory scheduling involves the assignment of 

start times and resources to a set of activities. Each 
activi ty belongs to an order (i.e. job). Activit ies 
w i th in the same order are subject to precedence con­
straints as specified by a process plan. Addit ionally 
no two activities are allowed to use the same 
resource at the same t ime (we assume resources of 
unary capacity). Each order has a release date and a 
latest acceptable completion date (which may be 
later than the due date), that can be used to deter­
mine an earliest start t ime and a latest start t ime 

for each activity in the order. Addit ionally each ac­
t iv i ty may require one or several resources, for each 
of which there may be several alternatives. For 
each activity, u t i l i ty functions map each possible 
start t ime and each possible resource alternative 
onto a ut i l i ty value (preference). The sum of these 
uti l i t ies over al l the activities to be scheduled 
defines an objective function to be maximized. 
Th ese uti l i t ies [Fox 87, Sadeh & Fox 881 arise from 
organizational goals such as reducing order tar­
diness, reducing order f lowtime, using accurate 
machines, performing some activities dur ing a 
specific shift, etc. 

We view the scheduling problem as an optimiza­
t ion version of the CHS model, where each activity 
is an aggregate variable whose values are reser­
vations. A reservation consists of a start t ime and a 
set of resources to be allocated to the activity. Each 
activity constitutes a variable vertex in the problem 
topology. Act ivi ty precedence constraints are binary 
constraints represented by constraint vertices con­
nected to two activity variable vertices. A capacity 
constraint vertex is associated to each physical 
resource of the domain and connected to all the 
variablevertices representing activities that can 
possibly use the resource. Each capacity constraint 
ensures that the corresponding resource wi l l not be 
allocated to more than one activity at any given 
t ime. Accordingly we distinguish between two types 
of constraint interactions: 

• the intra-order interactions defined by the 
precedence constraint vertices between ac­
tivities belonging to a same order, and 

• the inter-order interactions induced by the 
capacity constraint vertices between activities 
contending for a same resource. 

Both types of interactions contribute to the tight­
ness of each activity. 

Search in our CHS model begins wi th a single 
state where all activities st i l l have to be scheduled 
and all resources are available Scheduling an ac­
t iv i ty in a state with a reservation results in the 
creation of a new search state where new con­
straints result ing from the assignment of the reser­
vation to to the activity are propagated. The 
propagation consists in udpating the domain of start 
times and resources that remain possible for each 
unscheduled activity [Sadeh & Fox 88]. If an incon­
sistency is detected the system backtracks. Next 
the scheduler computes a tightness measure for 
each unscheduled activity. The activity wi th the 
highest tightness measure is selected to be 
scheduled next. A value goodness measure is com­
puted to select the first reservation to be tr ied for 
that activity (among the reservations that are st i l l 
possible). In this paper we assume that the good­
ness of a reservation is simply given by its combined 
ut i l i ty , i.e. the sum of its start t ime ut i l i ty and the 

Fox, Sadeh and Baykan 313 



uti l i t ies of each of the resources selected for the ac­
t iv i ty in that reservation (more sophisticated 
measures of value goodness are discussed in [Sadeh 
& Fox 89] along w i th experimental results). The 
process goes on un t i l a l l activities have been 
scheduled or un t i l a l l search states have been 
visited. 

In order to evaluate the performance of our 
measure of activity tightness, we designed a set of 
45 scheduling problems. The problems contained be­
tween 3 and 5 orders, for a total number of activities 
ranging between 10 and 20. Each activity required 
only one resource, for which there could be alter­
natives. In some examples the resource alternatives 
al l had equal preferences, while in others they had 
different preferences. The scheduling problems 
were bu i l t to reflect a variety of demand profiles: 
localized bottlenecks at the beginning, middle, and 
end of the problem span, global bottlenecks span­
n ing the whole durat ion of the scheduling problems, 
and auxi l iary bottlenecks were al l considered. 
Three different types of start t ime u t i l i t y functions 
were allowed: al l start times (between the earliest 
and latest start times) are equally preferred , late 
start times are preferred, and tr iangular start 
u t i l i t y functions w i th a peak corresponding to the 
due date (minus the durat ion of the activity). T r i ­
angular u t i l i t y functions were only assigned to the 
last activities of some orders. Time was discretized 
and a granular i ty equal to the th i rd of the smallest 
activity durat ion was used. 

The experiments involved two variants of the 
same scheduler. In one var iant the scheduler picked 
the next activi ty to be scheduled according to the 
tightness measure described in the previous subsec­
t ion, while in the other var iant the next activity to 
be scheduled was picked randomly among the 
remaining activities to schedule. 

The performances of the two variants of the 
scheduler were measured along two dimensions: 
search efficiency (i.e. number of activities to 
schedule over number of search states generated) 
and global utility of the solution as defined by a nor­
malized objective function. The normalized objec­
tive functions were bu i l t so that the best possible 
schedules that could be bu i l t wi thout checking for 
constraint violation would have a global value of 1. 
In general the best feasible schedule had a global 
u t i l i ty that was smaller than 1, hence the measures 
of global u t i l i t y should only be used to compare the 
relative performance of the two variants, rather 
than assess their absolute performance. In the best 
case search was performed wi thout backtracking, 
thereby result ing in an efficiency of 1. 

The table in Figure 6-1 reports the average 
search efficiencies and schedule values obtained for 
the two variants of the scheduler. Standard devia­
tions are provided between parentheses. RAND 
denotes the random variable ordering var iant, and 

T IGHT the var iant using our measure of variable 
crit icali ty. The search was stopped when it required 
more than 50 search states. For RAND, this cutoff 
rule had to be used in 18 of the 45 experiments. It 
did not have to be used for T IGHT. The average 
search efficiency of RAND is therefore even worse 
than 0.47. The average schedule values listed in the 
table correspond to the 27 experiments for which 
the RAND var iant found a schedule in less than 50 
search states. 

The results clearly indicate the increase in search 
efficiency obtained by using our measure of variable 
tightness. The micro behavior induced by this tex­
ture measure resulted in a macro behavior that 
focused search attention on bottleneck resources, 
when appropriate. Addit ional ly they show that the 
schedules obtained when using the tightness 
measure are also sl ightly better than the ones ob­
tained w i th the RAND variant. 

7. Conclusion 
The creation of general models for problem solv­

ing has been of continuing interest to Art i f ic ia l In­
telligence researchers. The process is evolutionary, 
elaborating and/or creating new search methods and 
richer representations of knowledge. The SOAR ar­
chitecture, for example, combines both the problem 
space and production system models and extends 
them wi th universal subgoaling and chunking, thus 
achieving a model w i th powerful learning 
capabilities. But w i th in this model, there are two 
aspects of the problem space that remain il l-defined: 
the notion of structure and means of focusing atten­
t ion w i th in a structure. Our model, Constrained 
Heuristic Search, extends the problem space model 
in these directions. Problem topology provides a 
definit ion of structure in the form of a constraint 
graph. Problem textures provide a probablistic, 
graph theoretic definit ion of the complexity and im­
portance of decisions wi th in a topology. Problem ob­
jective defines an objective function that rates 
states that satisfy their constraints. Together they 
enable the problem solver to direct search more 
economically towards a higher quali ty solution. 

We demonstrated the model in two domains: spa­
t ia l p lanning and factory scheduling. In spatial 
p lanning, we demonstrated that HCS is more ef­
ficient in finding solutions than other comparable 

314 Search 



systems. In factory scheduling, we generalized con­
straint graphs to account for preferential temporal 
constraints, mak ing it possible to represent the 
general job shop scheduling problem for the first 
t ime. Texture measures, based upon these 
preferences, enabled the scheduler to opportunis­
tically select the next best decision to make. They 
also provided an explanation of the power of domain 
heuristics l ike bottleneck analysis. 

Current ly, we are exploring additional constraint 
representations and propagation techniques in or-
der to represent a broader set of problems. We also 
hope to explore the creation of methods for 
automatically reformulat ing problem space topol­
ogy. 

References 
[Baykan & Fox 89] Baykan, C, and Fox, M.S., 

"Constraint Satisfaction Techniques for Spa­
t ia l Planning,' ' Third Eurographics Workshop 
on Intelligent CAD Systems, 1989. 

[Davis 87] Davis, E., "Constraint Propagation 
w i th Interval Labels," Artificial 
Intelligence, Vol. 32,1987, pp. 281-331. 

[Dechter & Pearl 87] Dechter, R. and Pearl, J . , 
"Network-based Heuristics for Constraint-
Satisfaction Problems," Artificial 
Intelligence, Vol. 34, No. 1,1987, pp. 1-38. 

[Erman et al 80] Erman, L.D., F. Hayes-Roth, 
V.R. Lesser, & D. Raj Reddy, "The Hearsay-II 
Speech Understanding System: Integrat ing 
Knowledge to Resolve Uncertainty," ACM 
Computing Surveys, Vol. 12,1980, pp. 
213-253. 

[Flemming 85] Flemming, U., "On the represen­
tat ion and generation of loosely packed ar­
rangements of rectangles," Tech. report 
DRC-48-05-85, Carnegie-Mellon University 
Design Research Center, 1985. 

[Fox 87] Fox, M.S., Constraint-Directed Search: 
A Case Study of Job-Shop Scheduling, Mor­
gan Kaufmann Publishers, Inc., 1987. 

[Freuder 82] Freuder, E.C., "A Sufficient Con­
dit ion for Backtrack-free Search," Journal of 
the ACM, Vol. 29, No. 1,1982, pp. 24-32. 

[Haral ick & El l io t t 80] Haral ick, R.M., and El­
l iot t , G.L., "Increasing Tree Search Efficiency 
for Constraint Satisfaction Problems," 
Artificial Intelligence, Vol. 14, No. 3,1980, pp. 
263-313. 

[Lai rd, Newel l & Rosenbloom 87] Laird, J.E., 
Newell , A., Rosenbloom, P.S.„ "SOAR: An Ar­
chitecture for General Intelligence," Artificial 
Intelligence, Vol. 33, No. 

1, September 1987, pp. 1-64. 

fMackworth 77] Mackworth, A.K., "Consistency 
in Networks of Relations," Artificial 
Intelligence, Vol. 8, No. 1,1977, pp. 99-118. 

[Montanari 74] Montanari , U., "Networks of 
Constraints," Proc. IFIP Congress, 1974, pp. 
727-732. 

[Nadel 86] Nadel, B.A., "The General Consistent 
Labeling (or Constraint Satisfaction) 
Problem," Tech. report DCS-TR-170, Depart­
ment of Computer Science, Laboratory for 
Computer Research, Rutgers University, 
1986. 

[Pfeffercorn 71] Pfeffercorn, C, Computer Design 
of Equipment Layouts Using the Design 
Problem Solver, PhD dissertation, Carnegie-
Mellon University, May 1971. 

[Sacerdoti 74] Sacerdoti, E.D., "Planning in a 
Hierarchy of Abstraction Spaces," Artificial 
Intelligence, Vol. 5, No. 2,1974, pp. 115-135. 

[Sadeh & Fox 88] Sadeh, N., and Fox, M.S., 
"Preference Propagation in Temporal Con­
straints Graphs," Tech. report, Intell igent 
Systems Laboratory ,The Robotics Inst i tute, 
1988. 

[Sadeh & Fox 89] Sadeh, N., and Fox, M.S., 
"Focus of Attention in an Activity-Based 
Scheduler," Proceedings of the NASA Con­
ference on Space Telerobotics, NASA, 1989. 

[Simon 83] Simon, H.A., "Search and Reasoning 
in Problem Solving," Artificial 
Intelligence, Vol. 21,1983, pp. 7-29. 

[Smith, Fox & Ow 86] Smith, S., Fox, M.S., and 
Ow, P.S., "Constructing and Mainta in ing 
Detailed Production Plans: Investigations into 
the Development of Knowledge-Based Factory 
Scheduling Systems," AI Magazine, Vol. 7, No. 
4, Fall 1986, pp. 45-61. 

[Stefik 81] Stefik, M., "Planning wi th Con­
straints (MOLGEN: Part 1)," Artificial 
Intelligence, Vol. 16,1981, pp. 111-140. 

Fox, Sadeh and Baykan 315 


