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Abstract 

A problem with A* is that it fails to guarantee 
opt imal solutions when its heuristic, h, 
overestimates. Since optimal solutions are often 
desired and an underestimating h is not always 
available, we seek to remedy this. From a non-
admissible h an admissible one is generated using 
h's statistical properties. The new heuristic, hm, 
is obtained by inverting h wi th respect to its own 
least upper bound function. The set of nodes 
expanded when A* uses g + hm as an evaluator is 
compared with the set of nodes expanded using 
other approaches which have been suggested in 
the literature. A considerable potential savings 
in node expansion when using hm is indicated. In 
8-puzzle experiments A* using g +hm expands one 
fifth as many nodes as does the best alternative 
approach. 

1. Introduction 

A problem wi th A* is that it fails to guarantee 
op t ima l solut ions when its heur ist ic, h, 
overestimates. Since optimal solutions are often 
desired and an underestimating h is not always 
available, we seek to remedy this. 

Two approaches to this problem have been 
suggested in the literature. In one [Chakrabarti et 
al, 1988; Pearl, 1984 (p. 205)] an upper bound p on 
the worst case overestimation of h is obtained; ie, p = 
max(h(n)/h*(n): h*(n) > 0), where h* returns the 
optimal distance to goal. Now set hp = h/p so that hp 
underestimates h*. A* wi th evaluator g + hp 

(denoted A*(hp ) is admissible. A problem with this 
is that when p is large, hp is weak; in the extreme 
case hp returns values less than the minimum edge 
length of the state space graph and its effect is only 
to break ties in a breadth-first search. The other 
approach is a two phase variation of Bagchi and 
Mahanti's C-algorithm [1983, 1985]. It requires 
additional information, such as p, above, and is 

called here C'(p). It is described in Appendix B. 
The new approach described here uses a 

statistical sampling to learn more precise information 
about h's overestimation. Namely, one estimates the 
maximum possible value of h(n) as a function of n 's 
true distance from goal. We denote this statistically 
learned function by maxh: 

maxh(x) = max{ h(n): h*(n) = x }, x > 0 . 

If p may be obtained from samplings, then the 
same measurements taken may be used to estimate 
maxh. If p can be obtained from domain specific 
theoretical considerations, then these same 
considerations might enable the upper bound to be a 
function of distance to goal, ie, they may be used to 
ascertain maxh. From h an underestimating heuristic 
hm is built using maxh by defining 

hm(n) = min(x: h(n) < maxh(x)} 

for all nodes n. The heuristic hm is no less informed 
than hp in the sense that hp <hm < h*. If we had hp 

< hm on all non-goal nodes, then we could conclude 
that all nodes expanded by A*(hm) are expanded by 
A*(hp) [Nilsson, 1980]. Unfortunately the inequality 
is not strict. A simplified search model, due to Huyn, 
Pearl and Dechter [Huyn et al, 1980], when applied 
to this situation, implies that the non-strict 
inequality is adequate to assure that the expected 
number of nodes expanded by A*(hp) is greater than 
or equal to the expected number expanded by A*(hm). 
However, we would like a more detailed statement of 
which nodes may be expanded by A*(hp), A*(hm) in 
order to better compare the two algorithms with each 
other and with C'(p). 

In sections 4, 5 we described the nodes expanded 
by A*(hp), A*(hm) and C'(p) by specifying lower and 
upper bounds for them, ie sets of nodes which are 
surely expanded (SE) and possibly expanded (PE) by 
each algorithm. These SE and PE sets are defined in 
terms of whether or not certain "constrained" paths 
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have their nodes expanded. The path constraint for 
each of the three algorithms is expressed in terms of 
the original non-admissible heuristic h; this allows 
a direct comparison of the three node-expansion sets. 
The paths explored by the three algorithms are 
plotted on a single graph. It is seen that, when maxh 
is non-linear, the potential savings in node expansion 
when using A*(hm) instead of A*(hp) is considerable. 
It increases as distance between start and goal 
increases. C'(p) is seen to be substantially slower 
than the other two algorithms. We also show how 
SE and PE set containment may be used in a direct 
way to rank the speed of the algorithms. 

A l l three algorithms were run on the 8-puzzle 
using the enhanced Manhattan distance for an 
overest imating heurist ic. On average A*(hp) 
expanded 5 times as many nodes as did A*(hm). As 
problem d i f f i cu l ty increased the comparative 
behavior of A*(hm) improved. As expected, C'(p) ran 
considerably slower than A*(hp). Details are in 
section 6. Section 7 discusses methods for building hm 

and section 8 concludes. 

2. Notat ion 

s start node 
g*(n) length of cheapest path from s to n 
h*(n) length of cheapest path from n to a goal 
gin) length of cheapest path found so far from 

s to n by a search algorithm; also length 
along a particular specified path in 
section 4 

h(n) estimate of h*(n); assume h(goal) = 0 
C* h*(s) 
p max{ h(n)/h*(n): h*(n) > 0 } 
hp h/p 
maxh(x) max( h(n): h*(n) = x ) 
hm(n) min{ x: h(n) < maxh(x) ) 
A*(h) A* algorithm using g + h as evaluation 

function 
The state space graph is assumed to be a locally 

finite directed graph wi th arc length bounded below 
by a positive number. We assume a solution path 
exists. A heuristic function h is called admissible 
(=underestimating) if 

3. Basic Properties of hm 

Let h be a non-admissible heuristic function. In order 
to build an admissible function from it we first obtain 
maxh: 

This may be learned by doing a statistical sample of 
the values returned by h on nodes a known distance 
from the goal. For example, Figure 1. shows maxh 
when h is the enhanced Manhattan distance in the 8-

Figure 1. 

puzzle. The latter is simply the Manhattan distance 
plus a rotational term see Nilsson [1980]. The data 
were gathered by Gaschnig. (See Gaschnig [1979] 
where the sampling techniques and confidence levels 
are discussed.) 

Define hm on nodes n via 

Since h(n) < maxhih*in)), one of the x-values on the 
right side of (2.1) is h*(n). Thus hm(n) h*(n) so hm 

is admissible. hm is no less informed than hp in the 
sense that To see this, notice that maxh(x) 
px and that the right side of (2.1) defines hp when 
maxh(x) is replaced by px. 

Let MAXH(x) = max(maxhit): t < x) so that 
MAXH is like maxh except that when maxh values 
decrease those of MAXH remain constant; ie, MAXH 
is non-decreasing. If maxh is replaced by MAXH in 
(2.1), the values of hm are unchanged. Hence we may 
assume, without loss of generality, that maxh is non-
decreasing and defined for all x [0,C*]. This is done 
in the sequel. 

4. Nodes Expanded: 

Let P be a path emanating from the start node. Let R 
be some constraint on the nodes of P. For example, R 
might be the requirement that nodes n satisfy gin) < 
C*, where g is understood to mean distance from start 
along P and C* denotes optimal distance from start to 
goal1 . We say P is R-constrained if every node on P 
satisfies R. The set of all nodes n such that there is 

1. As used here, g is a function of P and n. The more precise 
symbol, used in the appendix , is C(P,n) instead of gin). 
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The nodes expanded by the three algorithms may 
be represented as planar regions. As an example we 
take maxh to be a smoothed version of that obtained 
by Gaschnig in Figure 1. From Gaschnig's data we 
calculate p = 10. In Figure 2 the x-axis represents g-
values assumed at nodes n on paths emanating from 
start. The y-axis represents the corresponding g(n) + 
h(n) value. A particular node n may have several 
'coordinates', (g(n), gin) + h(n)), in this scheme, 
depending on which path from s to it is considered. 
Curve eb represents the points ix, x + maxh(C*- x)), 
where 0 < x < C*. Applying the theorem to Figure 2 
shows that PE(A*(hp)) and PE(A*(hm)) are 
represented, respectively, by nodes lying on paths 
from start which stay within abd and abe. The same 
is true for SE(A*(hp)) and SE(A*(hm)), except that 
now, essentially, the paths are not allowed to touch 
bd and be, respectively. Figure 2 shows that the 
saving in node expansion by using hm rather than hp 

is potentially very large when maxh is non-linear. 
Furthermore, it increases as C* increases. 

The theorem also shows that SE(C'(p)) consists of 
the nodes on paths wi th in abCd' along with paths 
wi th in aqf. This area is substantially larger than 
that for PE(A*(hp)*nd PE(A*(hm)), indicating a 
relatively slow algorithm. 

5. Ranking the Algorithms 

In comparing the speeds of two algorithms A and B, 
one would like to show that E(B) E(A) (or vice 
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versa). One then says that A dominates B. Proving 
dominance for large classes of problems is difficult 
and not always achievable. However, in theorem 4.1 
the upper and lower bounds placed on E(A) by PE(A) 
and SE(A) differ only by an '=' or an '£' within a path 
constraint. This considerably restricts possible values 
for E(A). Therefore we propose using PE and SE set 
containment to get an approximate idea of which of 
several competing algorithms is fastest. Algori thm 
A is said to have bounded dominance over B, written 
A > B, if we always have SE(B) ֿב SE(A) and PE(B) ֿב 
PE(A). By the theorem, A*(hm) > A*(hp) > C(p) . 
Accordingly, we expect A*(hm) to expand the least 
number of nodes and C'(p) the most. 

6. Experimental Data 

Al l three algorithms were run on the 8-puzzle using 
the enhanced Manhat tan distance for an 
overestimating heuristic. Gaschnig's statistics 
(Figure 1 and [Gashnig, 1979]) were used for p and 
maxh. Accordingly, p was set to 10. Table 1 shows 
comparative data for nodes expanded by A*(hp) and 
A* (h m ) . In this sample there were 222 problems 
w i th start-goal distances between 3 and 21 . On 
average A*(hp) expanded 5 times as many nodes as 
did A* (h m ) . As problem diff iculty increased, the 
comparative behavior of A* (h m ) improved. For 
example, when start-to-goal distances were 27, 
A*(hp ) expanded 6 times as many nodes as did 
A * (h m ) whi le, for start-goal distances of 17, the 
ratio was 4. These distances can be as large as 29 in 
the 8-puzzle and the most frequent distance is 24. 
However, we ceased sampling when A*(hp) required 
more than one day per problem on our facility (IBM 
3083). 

C'(p) ran considerably slower than A*(hp) so 
statistics were not collected for it. Both A*(hp), 
A * ( h m ) returned only optimal solutions in this 
sample. However, since hp , hm are built from 
statistically gathered data, this need not always 
happen. 

D 

21 
20 
19 
18 
17 

3-16 
3-21 

No. of 
problems 

21 
59 
48 
28 
27 
39 

222 

nodes expanded (avg.) 
A*(hp) A*(hm) 

10377 
6213 
4330 
2588 
1797 
579 

4216 

1766 
1261 
875 
586 
450 
168 
849 

Ratio 

5.88 
4.93 
4.95 
4.42 
3.99 
3.45 
4.96 

Table 1. D = distance from s to goal. 

7. Bui lding hp, hm 

The techniques described in this paper all require 
information about the behavior of the non-admissible 
heuristic ft. 

A*(hp) and C'(p) require p and A*(hm) requires 
maxh. The problem of how to obtain such information 
has never been addressed: Chakrabarti [1988] says 
that 'if the proportional error H / H * is bounded 
above by e, then ...*; Bagchi [1983] says 'suppose Q0PT 

< aQ for some given constant > 1, ...'; and Pearl 
[1984] writes: 'when a heuristic ft, is known to 
overestimate ft* cosistently, ... then the use of h2 = 
aft, with a <1 may be justified ...' However no-one 
has suggested how to obtain the critically needed 
constants (e, a or p). In some cases theoretical insight 
about a problem domain may reveal p, maxh. The 
only general methods of which we are aware involve 
statistical sampling. In this case p, maxh are known 
with imperfect confidence. 

To estimate p, maxh one needs to sample a large 
number of ft(n)-values for each of many possible 
ft*(n)-values. Even when the ft*ffl)-values are known 
with certainty, the critical nodes n may not have 
been examined, consequently the estimates of p, maxh 
may be too low. The corresponding heuristics, may 
overestimate. Confidence in their admissibil ity 
increases with confidence in the estimates of p, maxh. 

There are several possible approaches, some of 
which we mention below. 
( 1 ) A breadth-first expansion of the state space from 
several possible goals provides good information, but 
only for small f t*(n)-values due to l ike ly 
combinatorial explosion. However such limited data 
may suggest that maxh is essentially concave down 
(as in Figure 1), causing p to occur early. (It occurs at 
h*(n) = 1 in Figure 1.) To the extent that this is 
believed, one may wish to build hp from such limited 
data. 
(2) If a weak admissible heuristic is known, then it 
may be used with A* to f ind optimal paths between 
randomly generated start-goal pairs. From these 
paths, desired statistics may be obtaiained . IDA* 
[Korf, 1985] rather than A* could be used. The 
problem here is that a weak heuristic may not enable 
the discovery of long opt imal paths w i th in 
reasonable computer resources. (This method raises 
another question: w i l l the 'admissibilized' heuristic 
expand fewer nodes on average than the admissible 
heuristic used to generate the statistics? In the 8-
puzzle we have created hm 's stronger than this-out-
of place (a weak admissible heuristic), but not 
stronger than the Manhattan distance. Had the 
former been used to generate our statistics, then the 
answer would be 'yes'. Other domains need to be 
studied.) 
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(3) Goals are selected randomly from the state space. 
Random walks are made from each of these goals into 
the state space; from the nodes reached, data are 
collected regarding maximum h-values corresponding 
to apparent h*-values (as measured along the walk). 
The result is an even lower estimate of p or maxh than 
would be the case if accurate h*-values were known2. 
However, one can bui ld up confidence in such 
estimates by taking a sufficiently large sample. This 
method has been suggested in a different context by 
Politowski [1986]. 

A combination of the above methods may be used 
to bui ld better and better estimates of maxh. If a 
domain is to be repeatedly searched, then this 
searching may itself be combined with learning better 
estimates of maxh. 

The problem requires further study. Another 
interesting problem is that of relating statistical 
confidence in the estimate of maxh to statistical 
confidence in the admissibility of A*(hm). 

8. Conclusions 

We have shown that an overestimating heuristic h 
may be made admissible by using a statistically-
learned non-linear transformation. When used with 
A*, the new heuristic enables optimal goals to be 
found while expanding fewer nodes than does any 
previously suggested technique which is also based on 
h. 

Al l previous methods use some additional 
information about h's behavior, namely p. The 
method described here uses more detailed 
i n f o r m a t i o n , namely maxh; but the same 
measurements taken to statistically estimate p may 
be used to estimate maxh. The initial estimation cost 
may pay off if A* is to be run repeatedly in the same 
domain and an acceptable admissible heuristic is not 
available. In all these methods confidence in 
admissibility is based on confidence in the statistical 
estimates of p or maxh. 

Appendix A. Notation for Appendices B, C 

Open nodes which are candidates for expansion in 
A* and similar algorithms 

C(P,n) length of path P from s to n 
M(P) max{C(P,n) + h(n): n is on P) where P is some 

solution path 
Q min{M(P): P is a solution path), called the 

first discriminant 
Qopt min(M(P): P is an optimal solution path), 

called the second discriminant 
The last four terms are from [Bagchi,1983]. 

2. To see this recall from section 3 that maxh = MAXH. 

Appendix B. A two-phase admissible search 
algorithm 

Bagchi and Mahanti [1983] describe an algorithm, C, 
which yelds high solution quality and reexpands 
fewer nodes than A*. They point out that a 2-phase 
variation, which we call C'(p), may be used to find 
optimal solutions when heuristics overestimate. 

The essential control part of C'(p), is shown in 
Figure 3. We use the symbol Open(t) to denote (n: n e 
Open, fin) < t} and call this the focus; t is called the 
focus bound. F in line 3.1, 3.3 is the largest value yet 
of min( fin): n E Open }. In phase 1 C is run to 
completion obtaining a possibly non-optimal goal, 
say n. This phase ends when the test at line 3.5 is 
positive. At this point the value of F is Q, the first 
discriminant. The whole point of phase 1 is to find Q. 

In the second phase an upper bound for QoptlQ is 
required, p works (Lemma C I , in Appendix C) In lines 
3.6,3.7 n is returned to Open and the focus bound is set 
larger than Q0pt (namely pQ ), where it remains for 
the duration of the search. Focused nodes and their 
focused descendants are now breadth-first expanded 
unti l a (second) goal is found. This goal w i l l be 
optimal because the focus bound is large enough to 
assure that nodes on some optimal path can be 
'focused', and a breadth-first selection finds this 
solution path first. If n was optimal, then it wi l l be 
rediscovered, but now w i th knowledge of its 
optimality. The idea of the algori thm is that 
presumably breadth-first expanding only nodes which 
qualify for focus and have g-values less than gin) is 
faster than conducting a bl ind breadth-first search 
from start considering all of Open, 
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