
Partial Constraint Satisfaction

Eugene C. Freuder*
Computer Science Department
University of New Hampshire

Durham, New Hampshire 03824

Abstract

A constraint satisfaction problem involves finding
values for variables subject to constraints on which
combinations of values are allowed. In some cases
it may be impossible or impractical to solve these
problems completely. We may seek to partially
solve the problem in an "optimal" or "sufficient"
sense. A formal model is presented for defining and
studying such partial constraint satisfaction
problems. The basic components of this model are
a constraint satisfaction problem, a problem space,
and a metric on that space. Algorithms for solving
partial constraint satisfaction problems are
discussed. A specific branch and bound algorithm
is described. Some initial experimental experience
with this algorithm is presented.

1 Introduction

A constraint satisfaction problem (CSP) involves finding
values for variables subject to constraints on which
combinations of values are allowed. These problems are
widely studied in artificial intelligence [Winston, 1984,
Mackworth, 1977, Haralick and Shapiro, 1979]. The n-
queens problem, place n queens on an n by n chessboard
such that no two attack one another, is often used as an
example and for experimental comparison of algorithms
[Gaschnig, 1978, Haralick and Elliott, 1980, Nadel, 1988].

If a CSP is impossible or impractical to solve, we may be
willing to settle for a solution to a "weaker" version of the
problem. 1 call this the partial constraint satisfaction
problem (PCSP). It may be characterized loosely as "do the
best you can (or at least as well as...)" or "find me the
closest problem that you can solve (or one at least as close
as...)". This paper presents a formal model for PCSPs,
discusses algorithms for solving them and presents some
initial experimental results with one specific algorithm.

We will use the 3-queens problem in this paper as one
source of simple illustrations. The 3-queens problem is
unsolvable. However, suppose we only require placing two
queens, or allow one pair of queens to attack each other, or
allow queens to attack along diagonals, or expand the board

*This paper is based upon work supported by the National
Science Foundation under Grant DCR-8601209.

to a 4 by 3 grid. In each case the problem becomes
solvable. Notice also that the latter two partial problems are
non-optimal in a set of similar problems: it would be
enough to allow one pair of queens to attack diagonally or
add a single additional square to the 3 by 3 board

As AI increasingly confronts real world problems, in
expert systems and robotics, for example, we are
increasingly likely to encounter situations where, rather than
searching for a solution to a problem, we must, in a sense,
search for a problem we can solve. Partial constraint
satisfaction problems have arisen in several contexts.
Boming uses "constraint hierarchies" to deal with situations
in which a set of requirements and preferences for the
graphical display of a physical simulation can not all be
satisfied. [Borning, et al, 1987]. Descotte and Latombe
make compromises among antagonist constraints in a
planner for machining problems [Descotte and Latombe,
1985]. Fox introduces "relaxations" (alternative values) and
"importance" to constraint representations to cope with
conflicting constraints in job-shop scheduling [Fox, 1986].
A related problem is the expression of preferences in
database queries [Lacroix and Lavency, 1987].

This paper introduces an abstract model for the study of
PCSPs and their algorithms. Section 2 of the paper
presents a model of PCSPs. Section 3 discusses algorithms
for solving problems which fit this model.

2 Model

This section formalizes the notion of "partial constraint
satisfaction problem." A partial constraint satisfaction
problem (PCSP) consists of three components

<(P,U), (PS <), (M,(N,S))>
where:
P is a constraint satisfaction problem
U is a set of "universes", potential values for each

variable in P
(PS,<) is a problem space; PS a set of problems, <

a partial order
M is a metric on the problem space
(N,S) are necessary and sufficient bounds on the

metric distance between a solvable problem in
the space PS and the given problem P.

Each of these components will be discussed in turn. A
solution to a PCSP is a problem P' from the problem space
PS along with a solution to that problem where the metric

278 Search

distance of F from P is less than N. An optimal solution is
one where the metric distance of F from P is minimal over
the problem space. The optimal solution is maximal if
there is no optimal solution which involves a problem Q
such that F < Q.

2.1 The Cons t ra in t Sat is fact ion Prob lem
A constraint satisfaction problem can in turn be specified as
a paii where:

V is a set of variables
C is a set of constraints, i.e. relations on the

variables.
Often attention is restricted to problems with discrete

finite domains and binary constraints (involving only pairs
of variables). We shall take these restrictions here for
simplicity, though the approach should generalize to non
binary constraints, and to a degree at least, to infinite
domains. A specific pair of variables (a,b) permitted by a
constraint C i j; w i l l be called an element of the constraint

cij.
Domains of variable values can be specified as unary

constraints, but to avoid handling variable domains as
special cases in the exposition below we wi l l treat them as
binary constraints also, between a variable and itself. The
value, a, is in the domain of variable v if the constraint C
between v and v holds for the pair (a,a).

The 3-queens problem could be represented as follows:

These constraints specify the variable domains.
They indicate that for each row i, a queen can be
placed in any of the three columns (i f permitted by
the constraints imposed by the placement of the
other queens). For example,

means the second queen can be placed in the second
row, third column. Note that we have taken the
customary init ial step of reducing the variable
domains to single rows, rather than the entire
chessboard.

i

These constraints specify combinations of values
for the variables which are permitted by the
constraint. For example, ((1,1) (3,2)) says that it
is all right to put the first queen in the upper left
hand corner and the third in the middle of the
bottom row.

Solving a CSP means finding a set of values one from the
domain of each variable which simultaneously satisfy all the
constraints, i.e. the various combinations of values are
contained in the domains of the corresponding relations.

U is a set of universes Uj one for each variable. For the

3-queens problem each U i might be { (i , l) (i,2) (i,3) (i .4) |

al lowing the possibility of weakening the problem by
adding additional squares in a fourth column.

As noted, the 3-queens problems has no solution. As a
practical matter, even when a CSP is solvable the effort
required to obtain a solution may be unacceptable. This
brings us to consider a space of alternative problems, some
of which may be both solvable, and "close enough" to the
original problem for our purpose.

2.2 The Problem Space

A problem space is a partially ordered set, (PS,<), where:
PS is a set of CSPs
< is a partial order on PS defined as follows:

P1 < P2
 i f f the set of solutions to P1

the set of solutions to P2

We wi l l say that P1 is equivalent to P2 and write P| = P2

if the set of solutions to P1 is the same as the set of
solutions to P2 . , we w i l l write P1

< P2 and say that P1 is weaker than P2. The problem space
for a PCSP must contain P, the original problem.

One natural problem space for a PCSP with problem P
coasists of all problems Q such that Q < P. This set can be
obtained by considering all the ways of weakening the
constraints, i.e. all combinations of added values.

For example, in the 3-queens problem, the addition of
another square at the end of row 2 corresponds to enlarging
the C 2 2 constraint to include ((2,4) (2,4)), and presumably
adding elements to the C 1 2 and C 2 3 constraints, e.g. ((2,4)
(3,1)). (We could, alternatively, have included, for example,
((2,4) (3,1)) in the original problem P, so that adding the
square in row 2 would not, perhaps, involve moving as far
from P.) The relaxation of the restriction that the first two
queens cannot attack each other vertically corresponds to
adding to C 1 2 the elements ((1,1) (2,1)), ((1,2) (2,2)) and

((13) (2,3)).
It may be natural to consider a space which does not

include all Q < P. We may wish to specify how the
problem can be weakened. Some weaker problems may
make more "semantic sense".

For example, in the 3-queen problem, we might allow
removal of the restriction that the first two queens be non-
attacking vertically, by adding three elements to C12 as just
described, and we might allow a similar weakening of C13

and C 2 3 ; however, we might not allow into the problem
space the following possibilities: We might prohibit on the
one hand the problems that removed the vertical attacking
restrictions on more than one pair of queens at a time. We
might on the other hand prohibit the problems that only
allowed a partial weakening of the vertical attacking
restriction between pairs, e.g. by adding ((1,1) (2,1)) and
((1,2) (2,2)) but not ((1,3) (2,3)).

The specification of the problem space PS can clearly
affect the efficiency of the PCSP search process. One way
to specify the problem space is to specify generators, or
operators, that take us from one problem P to a permitted
set of problems There may be "global"

Freuder 279

restrictions on these generators, e.g. choose one constraint
from column A, one from column B.

The process of weakening CSP's can be naturally viewed
as involving four options: enlarging a variable domain,
enlarging a constraint domain, removing a variable,
removing a constraint. However, all of these can in turn be
expressed in terms of the basic process of enlarging
constraint domains. We have already viewed variable
domains as constraints. Enlarging a constraint Cj , until it

contains all pairs in U I X U J , all pairs allowed by the specified
universes for the two variables, is tantamount to removing
the coastraint. Indeed for constraints Cj j , inot=j, enlarging C i j;

to contain all pairs (a,b) such that C i i(a,a) and C j j (bb)

effectively removes Cj j at least until such a time as Cjj or

Cjj may be enlarged. Removing Cij for all j has the effect

of removing the variable V I.
In general, PS could contain problems, Q, which are

stronger than P, P<Q, or problems, Q, such that neither
Q<P nor P<Q; < is only a partial order. However, if we
collect all the constraints in all the problems in PS into a
single problem M, then all the problems in PS can be
regarded as weakenings of M

2.3 The Me t r i c

An obvious metric derives from the partial order. M(P,P') =
the number of solutions not shared by P and P' When P' <
P, this metric measures the number of solutions we have
added by weakening P. This is a natural measure of how
"good" our partial solution is likely to be.

Computing such a metric, however, is not likely to be
easy. However, after finding a set of optimal solutions with
another metric we might wish to distinguish among these
by computing their solutions and determining maximal,
optimal solutions. We also may wish to consider how well
an alternative metric does tend to reflect this natural metric.

Another natural metric is a count of the number of
constraint elements not shared by P and P' To some extent,
this metric does reflect the metric based on the partial order.
If P' is obtained from P by adding elements to the
constraints then P' < P, because of the monotonic nature of
constraint satisfaction problems. I.e. if for each constraint
Cj j associated with P and constraint C j j associated with P'.

Cij 2 Cij, then P' < P.
The metric may do more than measure differences in

constraint size by counting added constraint elements.
Preferences can be expressed by ordering constraints
[Descotte and Latombe, 1985] or by representing their
importance [Fox, 1986]. Preferences could be associated
with individual constraint elements or sets of elements. The
metric can combine constraint deviations in a local or global
manner [Bottl ing et al., 1987]. Given the set of constraints
Cij associated with P' we might base the difference between

ij
P and P' on the maximum difference between Cjj and Cij for
any i, j, rather than the sum of differences. We might
consider some kind of average difference or least squares
measurement. The initial constraints may be viewed as ideal
points which we seek to approximate by some measure.

For the 3-queens problem, we might decide that allowing

diagonal attacks was preferable to allowing vertical attacks,
and thus count the addition of ((1,1) (2,2)) as moving 2
units away from the original problem while adding ((1,1)
(2,1)) only moves I unit away. If a problem P' differed
from P only in (he constraint:

C 1 2 = {((1,1) (2,3)) ((1,3) (2,1)) ((1,1) (2,2)) ((1,1)

(2,1)))
M(P,P') might be measured as: 1+2=3, or max(l,2)=2 or ave
(1,2)=1.5.

N and S provide bounds which can facilitate the search
process. An acceptable solution must be closer to P than N.
A search path can terminate when it is clear that it w i l l not
lead to such a solution. Any solution as close as S to P
wi l l suffice; all search can terminate when such a solution is
found.

If we have no initial guidance of this nature to provide, N
can be inf ini ty and S can be O. We may know one
"obvious" partial solution that provides an init ial N. The
larger we set S the "easier" we make the PCSP.

For the 3-queens problem we may know that no exact
solution is possible and thus be wi l l ing to set S = 1. We
may know that the 4-queens problem is solvable, thus one
obvious partial solution of 3-queens would involve adding
squares to make a 4 by 4 board.

There may be some "hidden agenda" embodied in the
metric. For example, we may wish to drive a problem
toward a weaker version that is easily solvable, e.g. by
removing constraints to yield a problem with a tree-
structured constraint graph [Mackworth and Freuder,1985,
Dechter and Pearl, 1985].

3 Algor i thms

The first part of this section discusses some general criteria
for designing PCSP algorithms. The second part presents
some in i t ia l experimental experience wi th a specific
algorithm.

3.1 Design C r i t e r i a

A search paradigm must be chosen for seeking a PCSP
solution. The one we w i l l focus on here is branch and
bound. This is a natural choice in seeking an optimal
solution where partial solutions may be recognized as
suboptimal. It is a natural extension of backtracking, which
is the standard approach to CSPs. A further extension,
which merits study, would be the A* paradigm. A* may be
viewed as incorporating branch and bound, while allowing
more heuristic flexibility in directing the search.

Branch and bound basically keeps track of the best
solution found so far and abandons a line of search when it
becomes clear that it cannot lead to a better solution. The N
and S bounds provide further opportunity for discontinuing
search.

The necessary bound N can be based on a priori knowledge
of a possible solution, as suggested earlier. As branch and
bound proceeds, if a solution is found at a distance D closer
to P than N, N is, in effect, replaced by D. Though in
general we would expect that changing a CSP problem to a
PCSP problem by allowing partial solutions increases the
complexity, if the sufficient bound S is large enough, the
PCSP problem may be easier. In the 3-queens problem a

280 Search

sufficient bound of just 1 can permit a solution to the 3-
queens problem wi th less backtracking than would be
required to discover that no exact solution exists.

Branch and bound may be integrated with CSP
backtracking to produce a PCSP algorithm. The natural
points at which to perform this integration are the failure
points in a standard CSP backtracking algorithm.

The simplest choice is to add to backtracking upon top
level failure, when no solution is found. A branch and
bound loop can be added on the outside of the backtracking
algorithm. This loop w i l l run through the problems in the
problem space, keeping track of the closest problem P' to P
solved so far. Problems no closer to P' than P w i l l be
rejected immediately.

At the other extreme, branch and bound can be integrated
at the lowest level of backtrack failure. As soon as a choice
of a value, c, for a variable fails alternative problems P can
be considered. For problems which allow c and which are
still closer to the original problem P than the best solution
problem so far, backtrack search can continue to the next
variable, with a partial solution that includes the value c. A
version of this approach has been implemented as algorithm
PCSP1 and is described in more detail below.

Branch and bound can be integrated at failure points in
between these extremes. The natural compromise would
occur at the points where all the values for a given variable
have been exhausted in standard backtrack search. At these
times options for alternative problems may be explored.

There is a tradeoff involved in the choice of how to
integrate CSP backtrack and PCSP branch and bound. By
integrating at a lower level we take greater advantage of
backtrack pruning to avoid unnecessary effort. On the other
hand by integrating at a higher level we allow greater
flexibility in heuristically guiding the search through the
space of alternative problems.

As usual in branch and bound it is advantageous to order
the search to heuristically increase the likelihood that a
good, or ideally optimal, solution wi l l be found early. The
choice of values for a variable could be ordered, for example,
so that those that requiring no further weakening of the
problem were tried first, with the others tried in an order
which reflected the amount by which the problem would
have to be changed to accommodate these choices (how far
the altered problem would be from the original P). For
example, after placing the first queen in (1,1), the second
queen can be placed in (2,1) or (2,2) by removing a
constraint element, or (2,3) without changing the problem at
all. It may prove desirable to take into consideration how
many opportunities are opened up by altering a problem in a
given way. For example, if a queen has been placed in
(1,2), eliminating the requirement that queens not attack
vertically adds one new possibil ity for row 2, while
eliminating the requirement that queens not attack diagonally
adds two new possibilities. If our metric treated both
changes equally, the latter might prove preferable.

Whenever alternative problems are generated in an order
which reflects their distance from the original problem,
closest to furthest, generation can stop at that point when
the necessary bound N is reached. If we have a top level
integration of branch and bound, this point marks the
termination of the PCSP algorithm.

In searching through the problem space for a solvable
problem, it would be desirable to avoid changing the
problem in ways that do not facilitate progress. For
example, if two problems are equivalent, they both do not
need to be considered. A nice feature of the PCSP1
algorithm is that for the type of PCSP for which it is
designed it is able to use only the minimally different
problem P required to proceed at each problem choice point.

We might naturally expect that the PCSP problem would
be considerably harder than the CSP problem, and that its
worst case complexity would be bounded by the size of the
problem space PS. An analysis of the top level integration
of branch and bound with backtracking seems to confirm
that intuit ion. The top level loop could consider each
problem in the problem space P. If we consider a problem
space that allows all possible subsets of the constraint
elements in the original problem P the size of this space

n 2 9
could be roughly 2" d , where we assume d is the size of
the universes of variable values. The bound on backtracking
for a solution to each problem is exponential in n, where n

2 7
is the number of variables. The resulting bound of 2n d 2 2 n

for the PCSP suggests that the PCSP problem is indeed
potentially much worse than the CSP problem.

However, this is one of those interesting situations where
our ini t ial view of the problem could lead to false
expectations that we might be too ready to see verified. The
PCSP1 algorithm below clearly has worst case behavior no
worse than CSP backtracking. (I f the weakening of C i j;
constraints leads PCSP1 to consider more variable values
than a CSP algorithm would, PCSP1 can have a higher
bound; however, it w i l l stil l be only exponential in the
number of variables, as is the case for CSP backtracking.)
How can this be? The answer lies in viewing the PCSP
problem not as a search through a space of problems for a
solvable one that is closest to the original problem, but as a
search through the space of potential solutions for one that
is closest to an exact solution.

While the former view can be useful, the latter clearly
demonstrates that even a straightforward generate and test
algorithm can solve the PCSP problem with no increase in
the exponent in the worst case complexity bound over CSP
backtracking.

On the other hand, the exponential CSP worst case bound
is bad enough! Clearly we need to consider, as we have
begun to in this section, how techniques like branch and
bound and heuristic search may avoid achieving that bound.

3.2 A Branch and Bound A lgo r i thm

The PCSP1I algorithm assumes that any weaker version of P
that it wishes to use is in the problem space PS. It amends
normal backtracking in a simple manner. Whenever a value
c for a variable V would be rejected by normal backtracking,
PCSP determines which constraints were violated, and
weakens the problem by adding precisely those constraint
elements needed to permit c. The metric used simply counts
the number of constraint elements added. The distance of the
weakened problem P' from the original problem P is
calculated and used for branch and bound purposes. If the
distance of P from P warrants, search continues to the next

Freuder 281

level of the backtrack tree. Otherwise, c is rejected. Search
continues even when a full solution is found unless the
sufficient bound S has been reached or no further choices
remain. PCSP1 does not permit adding new values to the
variable domains (adding elements to the C i j), though this
could easily be included. The algorithm could be generalized
to work with different metrics or problem spaces.

Algorithm PCSP1
Free variables: initial-problem, N,S, best-solution,

best-distance
PCSP1 (variables, values, solution, distance,

current-problem)
If variables = nil

then
best-solution <- solution
N <- distance
if N < S then exit at top level else return

else
if values nil
then

solution' <- solution plus the first value,
c

current-problem' <- current problem with
constraint elements added as needed to
permit c

distance' <— the distance between the
initial-problem and the current-
problem

if distance' <N
then

variables <- rest of the variables
minus the first

values <- domain of values for
the First of the rest of the
variables

PCSP1 (variables, values,
solution', distance', current-
problem)

else
values <- rest of the values

minus the first
PCSP1 (variables, values,

solution, distance, current-
problem)

else
return

A version of this algorithm was implemented in LISP and
some tests performed to obtain some initial sense of the
practical cost incurred by allowing partial solutions. The
results were encouraging.

The implementation was tested on the n-queens problem
and another variation of the n-queens problem devised to
have no complete solution. The (n+l,n)-queens problem is
defined here to be the problem of placing n+1 non-attacking
queens on an n by n board.

In Figure 1, for the n-queens problem, n=4,5 and 6, the
effort expended by PCSP1 is shown for different values of
S. N is set to infinity to provide no assistance. PCSP1

requires more effort than backtracking for small S, but the
work decreases as S increases, eventually becoming less than
that required by backtracking for a complete solution. The
work done is measured by counting the number of "pair-
tests", i.e. checks to see if a pair (x,y) is an element of a
constraint. (Cii constraints were not used.) The solutions
and the number of constraint elements added to permit the
solutions (the distance from the original problem) are also
shown. Solution a b c d stands for queens on squares (l,a),
(2,b),(3,c)and(4,d).

Figure 1. PCSP1 on n-queens, N=infmity, varying S.

Figure 2 shows PCSPI data for different values of N, the
necessary bound, with S=0, on the (n+l,n)-queens problem,

282 Search

for n=4 and n=5. An init ial value of N=5 can easily be
arrived at for these problems, by considering the four "lines
of attack" bearing upon the n+1 st queen. Solutions are
available which add only two elements; if we knew that in
advance we could benefit from setting N to 3. Solution a b
c d & (e,f) stands for queens in squares (l ,a) , (2,b), (3,c),
(4,d)and(e,f).

References

[Born ing, et al., 1987] Born ing, A, Duisberg, R.,
Freeman-Benson, B., Kramer, A. , and Wool f , M . ,
Constraint hierarchies, Proceedings of OOPSLA '87,
1987.

[Dechter and Pearl, 1985] Dechter, R. and Pearl J., The
anatomy of easy problems: a constraint-satisfaction
formulation, Proceedings ofIJCAl-85, 1985.

[Descotte and Latombe, 1985] Descorte, Y. and Latombe,
J.C., Mak ing compromises among antagonistic
constraints in a planner, Artificial Intelligence 27, 183-
217, 1985.

[Fox, 1986] Fox, M, Observation on the role of constraints
in problem solving, Proceedings Sixth Canadian
Conference on Artificial Intelligence, 1986.

[Gaschnig, 1978] Gaschnig, J., Experimental case studies of
backtrack vs. Waltz-type vs. new algorithms for
satisficing assignment problems, Proceedings of the
Second National Conference of the Canadian Society for
Computational Studies of Intelligence, 1978.

[Haralick and Ell iott, 1980] Haralick R. and Ell iott, G.,
Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence 14, 263-313, 1980.

[Haralick and Shapiro, 1979] Haralick, R. and Shapiro, L.,
The consistent labeling problem: part I, IEEE Trans.
Pattern Anal. Machine Intel!. 7, 173-184, 1979.

[Lacroix and Lavency, 1987] Lacroix, M. and Lavency, P.,
Preferences: putting more knowledge into queries,
Proceedings of the 15th International Conference on Very
Large Data Bases, 1987.

[Mackworth, 1977] Mack worth, A. , Consistency in
networks of relations, Artificial Intelligence 8, 99-118,
1977.

[Mackworth and Freuder, 1985] Mackworth, A. and Freuder,
E., The complexity of some polynomial network
consistency algorithms for constraint satisfaction
problems, Artificial Intelligence 25, 65-74, 1985.

[Nadel, 1988] Nadel, B., Tree search and arc consistency in
constraint satisfaction algorithms, in L. Kanal and V.
Kumar (eds.) Search in Artificial Intelligence, New York:
Springer- Verlag, 1988.

[Winston, 1984] Winston, P., Artificial Intelligence,
second edition, Reading, M A : Addison-Wesley, 1984.

These results suggest that the effort required to search for
even optimal partial constraint satisfaction need not be
prohibitive. In the right circumstances we may actually
save effort by settling for partial constraint satisfaction,
while sti l l setting limits on how far we are wil l ing to depart
from the original problem.

Acknowledgments

I wish to thank Ram Kulkarni who implemented the
algorithm and carried out and otherwise assisted with the
experiments.

Freuder 283

