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Abstract 

A constraint satisfaction problem involves finding 
values for variables subject to constraints on which 
combinations of values are allowed. In some cases 
it may be impossible or impractical to solve these 
problems completely. We may seek to partially 
solve the problem in an "optimal" or "sufficient" 
sense. A formal model is presented for defining and 
studying such partial constraint satisfaction 
problems. The basic components of this model are 
a constraint satisfaction problem, a problem space, 
and a metric on that space. Algorithms for solving 
partial constraint satisfaction problems are 
discussed. A specific branch and bound algorithm 
is described. Some initial experimental experience 
with this algorithm is presented. 

1 Introduction 

A constraint satisfaction problem (CSP) involves finding 
values for variables subject to constraints on which 
combinations of values are allowed. These problems are 
widely studied in artificial intelligence [Winston, 1984, 
Mackworth, 1977, Haralick and Shapiro, 1979]. The n-
queens problem, place n queens on an n by n chessboard 
such that no two attack one another, is often used as an 
example and for experimental comparison of algorithms 
[Gaschnig, 1978, Haralick and Elliott, 1980, Nadel, 1988]. 

If a CSP is impossible or impractical to solve, we may be 
willing to settle for a solution to a "weaker" version of the 
problem. 1 call this the partial constraint satisfaction 
problem (PCSP). It may be characterized loosely as "do the 
best you can (or at least as well as...)" or "find me the 
closest problem that you can solve (or one at least as close 
as...)". This paper presents a formal model for PCSPs, 
discusses algorithms for solving them and presents some 
initial experimental results with one specific algorithm. 

We will use the 3-queens problem in this paper as one 
source of simple illustrations. The 3-queens problem is 
unsolvable. However, suppose we only require placing two 
queens, or allow one pair of queens to attack each other, or 
allow queens to attack along diagonals, or expand the board 

*This paper is based upon work supported by the National 
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to a 4 by 3 grid. In each case the problem becomes 
solvable. Notice also that the latter two partial problems are 
non-optimal in a set of similar problems: it would be 
enough to allow one pair of queens to attack diagonally or 
add a single additional square to the 3 by 3 board 

As AI increasingly confronts real world problems, in 
expert systems and robotics, for example, we are 
increasingly likely to encounter situations where, rather than 
searching for a solution to a problem, we must, in a sense, 
search for a problem we can solve. Partial constraint 
satisfaction problems have arisen in several contexts. 
Boming uses "constraint hierarchies" to deal with situations 
in which a set of requirements and preferences for the 
graphical display of a physical simulation can not all be 
satisfied. [Borning, et al, 1987]. Descotte and Latombe 
make compromises among antagonist constraints in a 
planner for machining problems [Descotte and Latombe, 
1985]. Fox introduces "relaxations" (alternative values) and 
"importance" to constraint representations to cope with 
conflicting constraints in job-shop scheduling [Fox, 1986]. 
A related problem is the expression of preferences in 
database queries [Lacroix and Lavency, 1987]. 

This paper introduces an abstract model for the study of 
PCSPs and their algorithms. Section 2 of the paper 
presents a model of PCSPs. Section 3 discusses algorithms 
for solving problems which fit this model. 

2 Model 

This section formalizes the notion of "partial constraint 
satisfaction problem." A partial constraint satisfaction 
problem (PCSP) consists of three components 

<(P,U), (PS <), (M,(N,S))> 
where: 
P is a constraint satisfaction problem 
U is a set of "universes", potential values for each 

variable in P 
(PS,<) is a problem space; PS a set of problems, < 

a partial order 
M is a metric on the problem space 
(N,S) are necessary and sufficient bounds on the 

metric distance between a solvable problem in 
the space PS and the given problem P. 

Each of these components will be discussed in turn. A 
solution to a PCSP is a problem P' from the problem space 
PS along with a solution to that problem where the metric 
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distance of F from P is less than N. An optimal solution is 
one where the metric distance of F from P is minimal over 
the problem space. The optimal solution is maximal if 
there is no optimal solution which involves a problem Q 
such that F < Q. 

2.1 The Cons t ra in t Sat is fact ion Prob lem 
A constraint satisfaction problem can in turn be specified as 
a paii where: 

V is a set of variables 
C is a set of constraints, i.e. relations on the 

variables. 
Often attention is restricted to problems with discrete 

finite domains and binary constraints (involving only pairs 
of variables). We shall take these restrictions here for 
simplicity, though the approach should generalize to non 
binary constraints, and to a degree at least, to infinite 
domains. A specific pair of variables (a,b) permitted by a 
constraint C i j; w i l l be called an element of the constraint 

cij. 
Domains of variable values can be specified as unary 

constraints, but to avoid handling variable domains as 
special cases in the exposition below we wi l l treat them as 
binary constraints also, between a variable and itself. The 
value, a, is in the domain of variable v if the constraint C 
between v and v holds for the pair (a,a). 

The 3-queens problem could be represented as follows: 

These constraints specify the variable domains. 
They indicate that for each row i, a queen can be 
placed in any of the three columns (i f permitted by 
the constraints imposed by the placement of the 
other queens). For example, 

means the second queen can be placed in the second 
row, third column. Note that we have taken the 
customary init ial step of reducing the variable 
domains to single rows, rather than the entire 
chessboard. 

i 

These constraints specify combinations of values 
for the variables which are permitted by the 
constraint. For example, ((1,1) (3,2)) says that it 
is all right to put the first queen in the upper left 
hand corner and the third in the middle of the 
bottom row. 

Solving a CSP means finding a set of values one from the 
domain of each variable which simultaneously satisfy all the 
constraints, i.e. the various combinations of values are 
contained in the domains of the corresponding relations. 

U is a set of universes Uj one for each variable. For the 

3-queens problem each U i might be { ( i , l ) (i,2) (i,3) ( i .4) | 

al lowing the possibility of weakening the problem by 
adding additional squares in a fourth column. 

As noted, the 3-queens problems has no solution. As a 
practical matter, even when a CSP is solvable the effort 
required to obtain a solution may be unacceptable. This 
brings us to consider a space of alternative problems, some 
of which may be both solvable, and "close enough" to the 
original problem for our purpose. 

2.2 The Problem Space 

A problem space is a partially ordered set, (PS,<), where: 
PS is a set of CSPs 
< is a partial order on PS defined as follows: 

P1 < P2
 i f f the set of solutions to P1 

the set of solutions to P2 

We wi l l say that P1 is equivalent to P2 and write P| = P2 

if the set of solutions to P1 is the same as the set of 
solutions to P2 . , we w i l l write P1 

< P2 and say that P1 is weaker than P2. The problem space 
for a PCSP must contain P, the original problem. 

One natural problem space for a PCSP with problem P 
coasists of all problems Q such that Q < P. This set can be 
obtained by considering all the ways of weakening the 
constraints, i.e. all combinations of added values. 

For example, in the 3-queens problem, the addition of 
another square at the end of row 2 corresponds to enlarging 
the C 2 2 constraint to include ((2,4) (2,4)), and presumably 
adding elements to the C 1 2 and C 2 3 constraints, e.g. ((2,4) 
(3,1)). (We could, alternatively, have included, for example, 
((2,4) (3,1)) in the original problem P, so that adding the 
square in row 2 would not, perhaps, involve moving as far 
from P.) The relaxation of the restriction that the first two 
queens cannot attack each other vertically corresponds to 
adding to C 1 2 the elements ((1,1) (2,1)), ((1,2) (2,2)) and 

((13) (2,3)). 
It may be natural to consider a space which does not 

include all Q < P. We may wish to specify how the 
problem can be weakened. Some weaker problems may 
make more "semantic sense". 

For example, in the 3-queen problem, we might allow 
removal of the restriction that the first two queens be non-
attacking vertically, by adding three elements to C12 as just 
described, and we might allow a similar weakening of C13 

and C 2 3 ; however, we might not allow into the problem 
space the following possibilities: We might prohibit on the 
one hand the problems that removed the vertical attacking 
restrictions on more than one pair of queens at a time. We 
might on the other hand prohibit the problems that only 
allowed a partial weakening of the vertical attacking 
restriction between pairs, e.g. by adding ((1,1) (2,1)) and 
((1,2) (2,2)) but not ((1,3) (2,3)). 

The specification of the problem space PS can clearly 
affect the efficiency of the PCSP search process. One way 
to specify the problem space is to specify generators, or 
operators, that take us from one problem P to a permitted 
set of problems There may be "global" 
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restrictions on these generators, e.g. choose one constraint 
from column A, one from column B. 

The process of weakening CSP's can be naturally viewed 
as involving four options: enlarging a variable domain, 
enlarging a constraint domain, removing a variable, 
removing a constraint. However, all of these can in turn be 
expressed in terms of the basic process of enlarging 
constraint domains. We have already viewed variable 
domains as constraints. Enlarging a constraint Cj , until it 

contains all pairs in U I X U J , all pairs allowed by the specified 
universes for the two variables, is tantamount to removing 
the coastraint. Indeed for constraints Cj j , inot=j, enlarging C i j; 

to contain all pairs (a,b) such that C i i(a,a) and C j j (bb) 

effectively removes Cj j at least until such a time as Cjj or 

Cjj may be enlarged. Removing Cij for all j has the effect 

of removing the variable V I. 
In general, PS could contain problems, Q, which are 

stronger than P, P<Q, or problems, Q, such that neither 
Q<P nor P<Q; < is only a partial order. However, if we 
collect all the constraints in all the problems in PS into a 
single problem M, then all the problems in PS can be 
regarded as weakenings of M 

2.3 The Me t r i c 

An obvious metric derives from the partial order. M(P,P') = 
the number of solutions not shared by P and P' When P' < 
P, this metric measures the number of solutions we have 
added by weakening P. This is a natural measure of how 
"good" our partial solution is likely to be. 

Computing such a metric, however, is not likely to be 
easy. However, after finding a set of optimal solutions with 
another metric we might wish to distinguish among these 
by computing their solutions and determining maximal, 
optimal solutions. We also may wish to consider how well 
an alternative metric does tend to reflect this natural metric. 

Another natural metric is a count of the number of 
constraint elements not shared by P and P' To some extent, 
this metric does reflect the metric based on the partial order. 
If P' is obtained from P by adding elements to the 
constraints then P' < P, because of the monotonic nature of 
constraint satisfaction problems. I.e. if for each constraint 
Cj j associated with P and constraint C j j associated with P'. 

Cij 2 Cij, then P' < P. 
The metric may do more than measure differences in 

constraint size by counting added constraint elements. 
Preferences can be expressed by ordering constraints 
[Descotte and Latombe, 1985] or by representing their 
importance [Fox, 1986]. Preferences could be associated 
with individual constraint elements or sets of elements. The 
metric can combine constraint deviations in a local or global 
manner [Bottl ing et al., 1987]. Given the set of constraints 
Cij associated with P' we might base the difference between 

ij 
P and P' on the maximum difference between Cjj and Cij for 
any i, j, rather than the sum of differences. We might 
consider some kind of average difference or least squares 
measurement. The initial constraints may be viewed as ideal 
points which we seek to approximate by some measure. 

For the 3-queens problem, we might decide that allowing 

diagonal attacks was preferable to allowing vertical attacks, 
and thus count the addition of ((1,1) (2,2)) as moving 2 
units away from the original problem while adding ((1,1) 
(2,1)) only moves I unit away. If a problem P' differed 
from P only in (he constraint: 

C 1 2 = {((1,1) (2,3)) ((1,3) (2,1)) ((1,1) (2,2)) ((1,1) 

(2,1))) 
M(P,P') might be measured as: 1+2=3, or max(l,2)=2 or ave 
(1,2)=1.5. 

N and S provide bounds which can facilitate the search 
process. An acceptable solution must be closer to P than N. 
A search path can terminate when it is clear that it w i l l not 
lead to such a solution. Any solution as close as S to P 
wi l l suffice; all search can terminate when such a solution is 
found. 

If we have no initial guidance of this nature to provide, N 
can be inf ini ty and S can be O. We may know one 
"obvious" partial solution that provides an init ial N. The 
larger we set S the "easier" we make the PCSP. 

For the 3-queens problem we may know that no exact 
solution is possible and thus be wi l l ing to set S = 1. We 
may know that the 4-queens problem is solvable, thus one 
obvious partial solution of 3-queens would involve adding 
squares to make a 4 by 4 board. 

There may be some "hidden agenda" embodied in the 
metric. For example, we may wish to drive a problem 
toward a weaker version that is easily solvable, e.g. by 
removing constraints to yield a problem with a tree-
structured constraint graph [Mackworth and Freuder,1985, 
Dechter and Pearl, 1985]. 

3 Algor i thms 

The first part of this section discusses some general criteria 
for designing PCSP algorithms. The second part presents 
some in i t ia l experimental experience wi th a specific 
algorithm. 

3.1 Design C r i t e r i a 

A search paradigm must be chosen for seeking a PCSP 
solution. The one we w i l l focus on here is branch and 
bound. This is a natural choice in seeking an optimal 
solution where partial solutions may be recognized as 
suboptimal. It is a natural extension of backtracking, which 
is the standard approach to CSPs. A further extension, 
which merits study, would be the A* paradigm. A* may be 
viewed as incorporating branch and bound, while allowing 
more heuristic flexibility in directing the search. 

Branch and bound basically keeps track of the best 
solution found so far and abandons a line of search when it 
becomes clear that it cannot lead to a better solution. The N 
and S bounds provide further opportunity for discontinuing 
search. 

The necessary bound N can be based on a priori knowledge 
of a possible solution, as suggested earlier. As branch and 
bound proceeds, if a solution is found at a distance D closer 
to P than N, N is, in effect, replaced by D. Though in 
general we would expect that changing a CSP problem to a 
PCSP problem by allowing partial solutions increases the 
complexity, if the sufficient bound S is large enough, the 
PCSP problem may be easier. In the 3-queens problem a 
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sufficient bound of just 1 can permit a solution to the 3-
queens problem wi th less backtracking than would be 
required to discover that no exact solution exists. 

Branch and bound may be integrated with CSP 
backtracking to produce a PCSP algorithm. The natural 
points at which to perform this integration are the failure 
points in a standard CSP backtracking algorithm. 

The simplest choice is to add to backtracking upon top 
level failure, when no solution is found. A branch and 
bound loop can be added on the outside of the backtracking 
algorithm. This loop w i l l run through the problems in the 
problem space, keeping track of the closest problem P' to P 
solved so far. Problems no closer to P' than P w i l l be 
rejected immediately. 

At the other extreme, branch and bound can be integrated 
at the lowest level of backtrack failure. As soon as a choice 
of a value, c, for a variable fails alternative problems P can 
be considered. For problems which allow c and which are 
still closer to the original problem P than the best solution 
problem so far, backtrack search can continue to the next 
variable, with a partial solution that includes the value c. A 
version of this approach has been implemented as algorithm 
PCSP1 and is described in more detail below. 

Branch and bound can be integrated at failure points in 
between these extremes. The natural compromise would 
occur at the points where all the values for a given variable 
have been exhausted in standard backtrack search. At these 
times options for alternative problems may be explored. 

There is a tradeoff involved in the choice of how to 
integrate CSP backtrack and PCSP branch and bound. By 
integrating at a lower level we take greater advantage of 
backtrack pruning to avoid unnecessary effort. On the other 
hand by integrating at a higher level we allow greater 
flexibility in heuristically guiding the search through the 
space of alternative problems. 

As usual in branch and bound it is advantageous to order 
the search to heuristically increase the likelihood that a 
good, or ideally optimal, solution wi l l be found early. The 
choice of values for a variable could be ordered, for example, 
so that those that requiring no further weakening of the 
problem were tried first, with the others tried in an order 
which reflected the amount by which the problem would 
have to be changed to accommodate these choices (how far 
the altered problem would be from the original P). For 
example, after placing the first queen in (1,1), the second 
queen can be placed in (2,1) or (2,2) by removing a 
constraint element, or (2,3) without changing the problem at 
all. It may prove desirable to take into consideration how 
many opportunities are opened up by altering a problem in a 
given way. For example, if a queen has been placed in 
(1,2), eliminating the requirement that queens not attack 
vertically adds one new possibil ity for row 2, while 
eliminating the requirement that queens not attack diagonally 
adds two new possibilities. If our metric treated both 
changes equally, the latter might prove preferable. 

Whenever alternative problems are generated in an order 
which reflects their distance from the original problem, 
closest to furthest, generation can stop at that point when 
the necessary bound N is reached. If we have a top level 
integration of branch and bound, this point marks the 
termination of the PCSP algorithm. 

In searching through the problem space for a solvable 
problem, it would be desirable to avoid changing the 
problem in ways that do not facilitate progress. For 
example, if two problems are equivalent, they both do not 
need to be considered. A nice feature of the PCSP1 
algorithm is that for the type of PCSP for which it is 
designed it is able to use only the minimally different 
problem P required to proceed at each problem choice point. 

We might naturally expect that the PCSP problem would 
be considerably harder than the CSP problem, and that its 
worst case complexity would be bounded by the size of the 
problem space PS. An analysis of the top level integration 
of branch and bound with backtracking seems to confirm 
that intuit ion. The top level loop could consider each 
problem in the problem space P. If we consider a problem 
space that allows all possible subsets of the constraint 
elements in the original problem P the size of this space 

n 2 9 
could be roughly 2" d , where we assume d is the size of 
the universes of variable values. The bound on backtracking 
for a solution to each problem is exponential in n, where n 

2 7 
is the number of variables. The resulting bound of 2n d 2 2 n 

for the PCSP suggests that the PCSP problem is indeed 
potentially much worse than the CSP problem. 

However, this is one of those interesting situations where 
our ini t ial view of the problem could lead to false 
expectations that we might be too ready to see verified. The 
PCSP1 algorithm below clearly has worst case behavior no 
worse than CSP backtracking. ( I f the weakening of C i j; 
constraints leads PCSP1 to consider more variable values 
than a CSP algorithm would, PCSP1 can have a higher 
bound; however, it w i l l stil l be only exponential in the 
number of variables, as is the case for CSP backtracking.) 
How can this be? The answer lies in viewing the PCSP 
problem not as a search through a space of problems for a 
solvable one that is closest to the original problem, but as a 
search through the space of potential solutions for one that 
is closest to an exact solution. 

While the former view can be useful, the latter clearly 
demonstrates that even a straightforward generate and test 
algorithm can solve the PCSP problem with no increase in 
the exponent in the worst case complexity bound over CSP 
backtracking. 

On the other hand, the exponential CSP worst case bound 
is bad enough! Clearly we need to consider, as we have 
begun to in this section, how techniques like branch and 
bound and heuristic search may avoid achieving that bound. 

3.2 A Branch and Bound A lgo r i thm 

The PCSP1I algorithm assumes that any weaker version of P 
that it wishes to use is in the problem space PS. It amends 
normal backtracking in a simple manner. Whenever a value 
c for a variable V would be rejected by normal backtracking, 
PCSP determines which constraints were violated, and 
weakens the problem by adding precisely those constraint 
elements needed to permit c. The metric used simply counts 
the number of constraint elements added. The distance of the 
weakened problem P' from the original problem P is 
calculated and used for branch and bound purposes. If the 
distance of P from P warrants, search continues to the next 
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level of the backtrack tree. Otherwise, c is rejected. Search 
continues even when a full solution is found unless the 
sufficient bound S has been reached or no further choices 
remain. PCSP1 does not permit adding new values to the 
variable domains (adding elements to the C i j), though this 
could easily be included. The algorithm could be generalized 
to work with different metrics or problem spaces. 

Algorithm PCSP1 
Free variables: initial-problem, N,S, best-solution, 

best-distance 
PCSP1 (variables, values, solution, distance, 

current-problem) 
If variables = nil 

then 
best-solution <- solution 
N <- distance 
if N < S then exit at top level else return 

else 
if values nil 
then 

solution' <- solution plus the first value, 
c 

current-problem' <- current problem with 
constraint elements added as needed to 
permit c 

distance' <— the distance between the 
initial-problem and the current-
problem 

if distance' <N 
then 

variables <- rest of the variables 
minus the first 

values <- domain of values for 
the First of the rest of the 
variables 

PCSP1 (variables, values, 
solution', distance', current-
problem) 

else 
values <- rest of the values 

minus the first 
PCSP1 (variables, values, 

solution, distance, current-
problem) 

else 
return 

A version of this algorithm was implemented in LISP and 
some tests performed to obtain some initial sense of the 
practical cost incurred by allowing partial solutions. The 
results were encouraging. 

The implementation was tested on the n-queens problem 
and another variation of the n-queens problem devised to 
have no complete solution. The (n+l,n)-queens problem is 
defined here to be the problem of placing n+1 non-attacking 
queens on an n by n board. 

In Figure 1, for the n-queens problem, n=4,5 and 6, the 
effort expended by PCSP1 is shown for different values of 
S. N is set to infinity to provide no assistance. PCSP1 

requires more effort than backtracking for small S, but the 
work decreases as S increases, eventually becoming less than 
that required by backtracking for a complete solution. The 
work done is measured by counting the number of "pair-
tests", i.e. checks to see if a pair (x,y) is an element of a 
constraint. (Cii constraints were not used.) The solutions 
and the number of constraint elements added to permit the 
solutions (the distance from the original problem) are also 
shown. Solution a b c d stands for queens on squares (l,a), 
(2,b),(3,c)and(4,d). 

Figure 1. PCSP1 on n-queens, N=infmity, varying S. 

Figure 2 shows PCSPI data for different values of N, the 
necessary bound, with S=0, on the (n+l,n)-queens problem, 
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for n=4 and n=5. An init ial value of N=5 can easily be 
arrived at for these problems, by considering the four "lines 
of attack" bearing upon the n+1 st queen. Solutions are 
available which add only two elements; if we knew that in 
advance we could benefit from setting N to 3. Solution a b 
c d & (e,f) stands for queens in squares ( l ,a) , (2,b), (3,c), 
(4,d)and(e,f). 
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