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Abstract 

One of the major issues confronting case-based 
reasoning (CBR) is rapid retrieval of similar cases from 
a large case base. This paper describes three 
algorithms which address this problem. The first 
algorithm works with quantitative cases using a 
graphical paradigm where the hyperspace containing 
the cases is divided into smaller and smaller 
hypercubes. The retrieval time for this algorithm is 
0(Log(N)), where N is the number of cases. The 
second algorithm works on qualitative data by 
efficiently retrieving cases based on every necessary 
combination of case attributes. Its retrieval time varies 
only with respect to the number of attributes. The 
third algorithm is a combination of the previous two 
and allows retrieval of cases consisting of both 
quantitative and qualitative information. The 
algorithms described in this paper are the first practical 
algorithms designed for case based retrieval on very 
large numbers of cases. The algorithms easily handle 
case bases containing millions of cases or more. 

1 Introduction 

1.1 Problem Statement 

Rapid development of expert systems is hindered by the 
well-known knowledge acquisition bottleneck. Case-Based 
Reasoning (CBR) overcomes this problem by representing 
knowledge as cases, where each case consists of a problem 
and its solution. A problem can be solved by remembering 
the solution to a similar problem and adjusting it for the 
current context [Kolodner et al., 1985J. If a case base contains 
enough cases, these adjustments can be very simple. However, 
retrieving the most similar cases from a very large case base 
can be time-consuming. Our research has focused on 
developing efficient algorithms for case-based retrieval. 

The fundamental principle of case-based reasoning is 
that problems are solved based on a memory of a prior similar 
situation. A similar situation is acquired through reminding of 
an individual event or an abstraction through long term 
memory associations (episodes) [Kolodner and Riesbeck, 1986, 
Schank, 1982]. 

Many issues are raised when discussing reminding, or 
retrieval, of prior episodes in a CBR system |Owens, 1988]. 
CBR system developers have many responsibilities related to 
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creation of the case-base and the supporting retrieval functions. 
A developer must understand the breadth of knowledge which 
must be provided in each case, including case-specific attribute 
knowledge and general, or domain-specific, knowledge. A 
developer must understand the definition, and application of, 
the similarity-metric for the domain. A similarity-metric is the 
measuring scheme used to describe how a combination of new 
situation's attribute values correspond to a prior case, or case's, 
attribute values. A developer must understand what forms of 
retrieval can be utilized in the reminding process of the CBR 
system, and what scheme should be used for indexing or 
classification. In this paper we respond specifically to the 
problem of providing efficient retrieval algorithms for 
case-base reminding. 

We have identified three types of retrieval, quantitative 
retrieval, qualitative retrieval, and a combination of the two. In 
quantitative retrieval (specifically directed at domains 
containing numeric representations of information), the values 
of a case's attributes are numeric and the similarity between 
any two cases is defined as the inverse of the distance between 
them. If two cases are similar, the distance between them is 
small. As the difference between their attribute values 
increases, their distance increases. 

In qualitative retrieval, a case's attributes are qualitative 
values, such as colors or names. Similarity is defined as the 
number of exact matches between attribute values, perhaps 
employing a weighting scheme to emphasize the importance of 
a particular attribute. It is important to note that in this 
situation it is generally not possible to simply perform a search 
using the most important attribute first. The closest case may 
not match on the most important attributes but on many less 
important ones, especially if the weights are similar for all 
attributes. 

Combined quantitative and qualitative retrieval is 
necessary for cases which have both quantitative and 
qualitative attributes. 

1.2 Problem Solution 

The algorithm developed for quantitative retrieval makes use 
of a graphical paradigm. Cases are represented as points in a 
hyperspace, where the dimensions of the space correspond to 
the attributes of the case. The space is recursively divided 
into hypercubes (squares for two dimensions, cubes for three, 
etc.). Each cube contains zero or more points up to a small 
number. Retrieval of the closest point to a point of interest is 
reduced to finding the hypercube that would contain the point 
of interest. 

The qualitative retrieval algorithm uses a tree and 
hashing scheme to efficiently test every possible combination 
of attributes to determine exact matches. The combined 
retrieval algorithm is a simple combination of these two 
algorithms. 
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1.3 Related Work 

Case-Based Reasoning can only be productive to a user if 
prior experiences can be retrieved efficiently to use in the 
retrieval process [Martin, 1988]. Martin goes on to state that 
the CBR system must continue to perform at an efficient level 
of retrieval while the case-base grows considerably. CORA is 
described as a system that stores cases in an overlapping 
fashion which allows for reconstruction. This is in contrast to 
the general method of storing cases as individual portions of 
memory. Our paper provides a view of retrieval on 
individualized cases and feature sets. 

[Owens, 1988] presents the problem that case memory 
is not static and does not enjoy advanced ordering of features. 
In particular, CBR systems do not always have a static 
understanding of the measure of similarity. The similarity 
metric wil l change over time and growth of the case-base. 
Owens concluded that discrimination trees provide adequate 
support if the case-base is static. 

[Preparata and Shamos, 1985] describe a well-known 
computational geometry algorithm for retrieving from a set of 
existing points, the closest point to an arbitrary point. This 
algorithm is based on the Voronoi diagram which divides the 
space into volumes, one volume for each point. Finding the 
closest point reduces to finding the volume which the arbitrary 
point falls into. This can be done in 0(Log(N)) time, where 
N is the number of points. Unfortunately, the amount of space 
required to store the volumes is impracticably large except in 
the two dimensional case. However, this retrieval algorithm 
was the starting point for the development of our quantitative 
retrieval algorithm. 

[Corkill et a!., 1986] classify the dimensions which 
define a blackboard space into ordered and enumerated. Their 
ordered dimensions correspond exactly to our quantitative 
dimensions. Their enumerated dimensions correspond with our 
qualitative dimensions except that our qualitative dimensions 
allow an infinite number of values while theirs assume a finite 
set. They also discuss retrieval based on dimensions with 
concern for efficiency of the operations. 

[Samat, 1988] discusses uses of quadtrees especially 
as they relate to storage and retrieval of rectangles. Our 
qualitative retrieval algorithm is based on a quadtree 
representation. 

1.4 Paper Organization 

Section 2 describes the three retrieval algorithms in detail. 
Section 3 presents an analysis of the algorithms. Section 4 
provides empirical results and Section 5 suggests directions 
for future research. 

2 Description of the Retrieval Algorithms 

2.1 Voronoj-Inspired Quantitative Retrieval Algori thm 

The graphical nature of the Voronoi retrieval algorithm 
prompted us to search for a graphical retrieval algorithm 
practical for more than two dimensions. The resulting 
algorithm is termed the Voronoi-Inspired (VI) Quantitative 
Retrieval algorithm. The VI algorithm performs a 
preprocessing step, in which a hypercube containing all the 
data points or cases is recursively divided into smaller 
hypercubes until no hypercube contains more than a certain 
number, m, of points. Note that this means that a hypercube 
may be empty, but one of its neighbors must be nonempty. 
Figure 1 shows an example of hypercube sub-division where 
the maximum number of points per cube is two (this value 
would be unrealistically low from an efficiency standpoint). 
The retrieval of the closest point (most similar case) consists 
first of finding the hypercube that contains the test point. 

Then, points in that hypercube and, in some circumstances, 
bordering cubes must be examined for proximity. 

The integrity of the algorithm depends on the definition 
of distance between points. The distance formulation should 
treat all dimensions monotonically, symmetrically and 
identically. The distance between points depends on the 
differences between their attribute values. Treating dimensions 
monotonically means that as these differences increase, the 
distance increases. The magnitude of the increase cannot 
depend on the sign of the difference or on the dimension. 
Both the geometric definition of distance (square root of the 
sum of the squares) and the sum of the absolute values of the 
differences satisfy these criteria. 

In many applications, a weighted sum will be necessary 
in a definition for distance. However, a weighted sum does 
not treat all dimensions identically. In order for the VI 
algorithm to be applicable, all the weights must be equal. 
This is handled by simply multiplying all the attribute values 
of a point by their weights before the point space is 
preprocessed into smaller and smaller hypercubes. 

In one of our applications, SURVER III [King et al., 
1988], it was clear that differences were not as important as 
multiplicative factors. For example, a case with a peak blast 
overpressure of 1 Mpa was closer to a case with a peak blast 
overpressure of 3 Mpa than to a case with 0.1 Mpa. The 
differences are 2 Mpa and 0.9 MPa respectively, but the 
multiplicative factors are 3 and 10. Therefore, SURVER I I I 
defined distance as the weighted sum of the multiplicative 
factors. The multiplicative factors are not symmetric (distance 
increases faster as a dimension goes toward 0) so the VI 
algorithm was not direcdy applicable. However, by taking the 
log of the dimension before the preprocessing step (and 
multiplying by the weights), we were able to achieve the 
desired results. 

2.2 Tree-Hash Qualitative Retrieval Algori thm 

The Tree-Hash Qualitative Retrieval algorithm was designed 
for retrieval of cases whose attributes have qualitative values. 
Retrieval of a qualitative case is very efficient if we know a 
priori which dimensions or attributes of the current case wil l 
match attributes of cases in the case base. However, this 
information is never available ahead of time. The Tree-Hash 
algorithm overcomes this problem by maintaining multiple 
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pointers to cases - one for each possible combination of the 
dimensions. For example, in the two dimensional case with 
dimensions dl and d2, the possible dimension combinations 
are ( d l , d2, d ld2) . The algorithm attempts a retrieval based 
on each of these combinations and computes a similarity 
measure. In our example, we first perform a retrieve based on 
d l , meaning that dl is the only dimension that must produce 
an exact match. The same is done for d2. Retrieval based on 
dld2 indicates that both dimensions must match the 
dimensions of a case in the case base. The algorithm is very 
fast when the number of dimensions is low. Retrieval time 
does not increase with the number of cases if a hashing 
scheme is used. Various versions of the algorithm are 
described in detail in the following sections. 

2.2.1 Assumptions and Definitions 

The Tree-Hash algorithm assumes that there are a large 
number of cases in the case base and a possibly infinite set of 
possible attribute values. The number of dimensions is 
relatively small and finite. Best match of dimensions is 
defined as the weighted number of matches of the qualitative 
values. In the case of ties for best match, any best match is 
acceptable. This requirement is necessary because the number 
of ties for best match can be an extremely large number of 
cases, especially if all dimensions are weighted equally. In the 
discussion below, the following definitions hold: 

To provide efficient lookup, a unique pointer is created 
for each case and placed in a hash table exp(2JD) - 1 times, 
once for each possible combination of attributes, ignoring 
order. For each case, every node in the tree is visited. When 
a node is visited, the case is hashed using the dimensions 
represented by the node. The result of this process is a large 
hash table which encompasses all the cases, organized by 
every possible ordering of dimensions. Retrieval can now 
simply consist of visiting the nodes of the tree and performing 
a hash lookup based on the dimensions of the node. 

2.2.3 Naive Retrieval 

The simplest retrieval scheme involves traversal of the 
entire tree in search of a case most similar to the case of 
current interest. At every node, an attempt is made to retrieve 
a case and a record is kept of its measure of similarity to the 
current case. By comparing the similarity measures from the 
different nodes, the best match can be found. 

2.2.4 Tree Traversal 

Instead of visiting every node in the tree, it is more 
efficient to search the tree in a specified order to eliminate 
many of the hash retrievals. Traversal of the tree begins at 
the root. At each node, an attempt is made to hash retrieve a 
case based on the dimensions of that node. If the retrieval is 
successful, we proceed down the left branch. If unsuccessful, 
we proceed down the right branch. This process is continued 
until a leaf node is reached. At this point, we store the 
similarity measure from the node of the last successful 
retrieval. We then backtrack to the last successful node and 
follow its right son and proceed as before. This process is 
repeated until there are no successful nodes left to backtrack 
to. We then compare the stored similarity measures and select 
the best one. Using this scheme, a number of unpromising 
nodes never have to be visited. 

2.2.5 Smart Tree Traversal 

While the tree traversal algorithm given above avoids 
visiting some of the nodes of the tree, it can be improved. 
This is accomplished by computing and storing a score for 
each node of the tree during the preprocessing stage. The 
highest possible score at any node is the maximum of the 
possible scores of its subnodes. At a leaf, the score is 
computed, for instance, as the weighted sum of the number of 
dimensions. Tree traversal proceeds as in the previous 
algorithm, except that at each visited node, we compare the 
similarity measure of the retrieved case to the score at that 
node. If the similarity measure is equal to or better than the 
score at the current node, then the subtree under that node 
does not have to be traversed. This further reduces the 
number of nodes that have to be examined. 

2.3 Combined Quantitative and Qualitative Retrieval 
Algorithm 

To retrieve similar cases when the case base contains both 
qualitative and quantitative dimensions, we use an algorithm 
which is a straight-forward combination of the two previously 
described algorithms. The dimensions of the case must first 
be divided into qualitative and quantitative groups. A tree 
should be generated as described above using only the 
qualitative dimensions. At each node of the tree, we define 
pointers corresponding to each possible value of the qualitative 
dimensions at that node. For example, if the values of 
dimension dl are {a, b) and the values of dimension d2 are 
{c, d}, we would define a set of pointers for the combinations 
{ac, ad, be, bd). Each of the pointers is directed toward that 
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segment of the case base which has matching dimension 
values. Each segment is then divided along its quantitative 
dimensions according to the VI algorithm. 

To retrieve the most similar case, every node of the 
tree is visited. At each node, retrieval is first attempted based 
on the qualitative dimensions represented by the node. When 
a matching case exists for these dimensions, we perform a VI 
retrieval on the segment of the case base with corresponding 
dimension values. We must also consider the situation where 
none of the qualitative dimensions match. A similarity score 
is computed for the node and retrieval proceeds to another 
node. The case with the highest similarity score is the closest 
match. 

3 Analysis of the Retrieval Algorithms 

3.1 Analysis of the VI Algori thm 

3.1.1 Time and Space Requirements 

A best case analysis of the VI algorithm indicates that 
the retrieval time can be expressed as: 

Kl * Log (N/m) + K2 * m, where 
N = the number of cases, 
m = the maximum points allowed per atomic 
hypercube, 
Kl and K2 are constants 

The first term is due to the search required to identify the 
proper atomic hypercube and the second term is due to a 
search through the points in that and nearby cubes. A 
probabilistic analysis using random cases shows that the mean 
retrieval time is the same expression as that for the best case, 
but with larger constants. 

The worst case retrieval time can be made arbitrarily 
large. This is done by using a very tight cluster of cases with 
just a few cases very far away so that the largest hypercube is 
arbitrarily larger than the cluster containing most of the cases. 
By making this outer cube larger, more divisions are necessary 
to get a cube that immediately surrounds the cluster. 

The time required to add a new case to the case base 
is proportional to the time to retrieve a similar case. The 
preprocessing time, which consists of adding N points to the 
case-base, is 0(N*Log(N/m)). The required space is O(N). 

3.1.2 Advantages and Disadvantages 

The obvious advantage of the VI algorithm is that it 
is very fast compared to other methods. It is also surprisingly 
applicable when combined with preprocessing steps which 
manipulate the values of the cases1 attributes through 
multiplication by weights, computation of logarithms, etc. The 
primary disadvantage of the algorithm is that it treats 
similarity identically throughout the case base. A change in 
the definition of similarity requires relatively slow 
preprocessing before rapid retrieval can again be performed. 

3.2 Analysis of the Tree-Hash Algori thm 

3.2.1 Time and Space Analysis 

The Naive Retrieval strategy requires a hash retrieval 
at every node. There are exp(2,D) - 1 nodes in the tree and 
the hash retrieval takes constant time, resulting in a retrieval 
time of Kl * (exp(2,D) - 1), where D is the number of 
dimensions and Kl is a constant. 

For Tree Retrieval, the worst case retrieval time is still 
0(exp(2,D))), but the best case is O(D). Computation of the 

average retrieval time requires additional assumptions and a 
probabilistic analysis. 

For Smart Tree Retrieval, the worst case retrieval time 
is still 0(exp(2,D)). The best case retrieval time is a constant. 
The average retrieval time can be calculated from additional 
assumptions and probability theory. 

To add a new case requires exp(2,D) - 1 hash inserts. 
Therefore, to preprocess all of the N cases (add a new case N 
times) requires time of 0(N*exp(2,D)). The space required is 
also 0(N*exp(2,D). 

3.2.2 Advantages and Disadvantages 

The biggest advantage of the Tree-Hash algorithm is 
its speed. The retrieval time does not increase as the number 
of cases increases. A change to the importance of the 
dimensions does not require extensive re-preprocessing as long 
as the same retrieval dimensions are used. Only the tree itself 
must be regenerated, which can be done very rapidly. 

The Tree-Hash algorithm has a couple drawbacks. The 
retrieval time increases exponentially with the number of 
dimensions used for retrieval. For practical use of the 
algorithm, the number of dimensions is kept to about ten. 
The definition of similarity must be based on exact matches 
of the attribute values. This requirement limits the 
applicability of the algorithm. However, this can be partially 
overcome by defining new retrieval dimensions for the case 
base. For example, in a case base containing information 
about movies, we may have a dimension called "Country of 
Origin". While we recognize that movies from the United 
States, England and Australia are in some sense more similar 
to each other than to a movie from France, the similarity 
definition cannot capture this. We, therefore, add a new 
dimension called "Language Spoken" and now have a means 
of correlating movies in this manner. If new dimensions are 
added to the case base, the preprocessing step must be 
performed again. 

3.3 Analysis of Combined Retrieval Algori thm 

The worst case retrieval time for the combined retrieval 
algorithm is: 

Kl * exp(2,D) * (K2 * Log(N/m) + K3 * m), where 
D = the number of qualitative dimensions, 
N = the number of cases, 
m is the maximum allowable points per hypercube, 
K l , K2 and K3 are constants 

The first term results from searching through the tree and the 
second term results from performing the VI algorithm on the 
segment of the case base at each tree node. Note that in most 
circumstances the algorithm wil l perform much better than the 
worst case because every segment pointed to from a tree node 
will contain only a small fraction of the cases. 

4 Empirical Results 

4.1 Quantitative Retrieval Empirical Results 

A uniform random number generator was used to generate 
points in a hypercube of two dimensions (a square box). 100, 
1000, and 4000 points were used for three different sets of 
experiments. A value of 2 was used for m (the maximum 
number of points allowed before a box was quartered). This 
was a deliberate attempt to make the algorithm perform badly 
by exploiting small variations in the point distribution. 

The minimum average depth of nesting for all atomic 
boxes is the log of N/m to the base 4. When m = 2, this 
produces 3, 5, 6, and 8 for N = 100, 1000, 4000, and 50,000 
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respectively. Our experiments suggest that the actual depth of 
an atomic box is very rarely greater than one more than this 
minimum number. The best case results hold within a 
constant factor. The retrieval time is fast enough to allow disk 
space to be used to store the indexing, thus keeping local 
memory from being a limitation. A random sampling of the 
boxes revealed that the boxes are only empty less than 25% of 
the time, despite the low value of m. 

From the experiments, it is clear that the VI algorithm 
wil l work extremely well, when it is applicable. A question 
that remains to be answered through development of case 
based applications, is how often real data approximates random 
data and how limiting the restrictions placed on the distance 
definition are. 

The VI algorithm has been successfully used in a 
practical instance of case based reasoning involving purely 
quantitative data. The algorithm was applied after a 
preprocessing step in which the logs of the attributes were 
taken and those results were multiplied by selected weights. 
One attribute of the problem that tended to make the VI 
algorithm applicable, was that the ultimate end users were 
novices and would not want to frequently redefine the 
similarity expression themselves. 

4.2 Tree-Hash Algorithm Empirical Results 

We are currently working on a manufacturing proposal case 
base consisting of fifty thousand cases. It appears at this early 
stage that the Tree-Hash algorithm is applicable. The number 
of retrieval dimensions is approximately six. Consequently, 
the exponential term in the retrieval time expression is not 
worrisome. 

5 Future Directions 

The three retrieval algorithms presented here are part of a 
DARPA sponsored case based reasoning shell currently under 
development. As part of the shell, these algorithms wil l 
compete with other retrieval algorithms for use by developers. 
As applications are implemented in this shell, the applicability 
and usefulness of these algorithms wi l l be further tested. 
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