
Rapid Retrieval Algorithms for Case-Based Reasoning*

Richard H. Stottler and Andrea L. Henke James A. King
Stottler Associates NCR Corporation

2205 Hastings Drive, Suite 38 1700 South Patterson Boulevard
Belmont, CA 94002 Dayton, OH 45479

Abstract

One of the major issues confronting case-based
reasoning (CBR) is rapid retrieval of similar cases from
a large case base. This paper describes three
algorithms which address this problem. The first
algorithm works with quantitative cases using a
graphical paradigm where the hyperspace containing
the cases is divided into smaller and smaller
hypercubes. The retrieval time for this algorithm is
0(Log(N)), where N is the number of cases. The
second algorithm works on qualitative data by
efficiently retrieving cases based on every necessary
combination of case attributes. Its retrieval time varies
only with respect to the number of attributes. The
third algorithm is a combination of the previous two
and allows retrieval of cases consisting of both
quantitative and qualitative information. The
algorithms described in this paper are the first practical
algorithms designed for case based retrieval on very
large numbers of cases. The algorithms easily handle
case bases containing millions of cases or more.

1 Introduction

1.1 Problem Statement

Rapid development of expert systems is hindered by the
well-known knowledge acquisition bottleneck. Case-Based
Reasoning (CBR) overcomes this problem by representing
knowledge as cases, where each case consists of a problem
and its solution. A problem can be solved by remembering
the solution to a similar problem and adjusting it for the
current context [Kolodner et al., 1985J. If a case base contains
enough cases, these adjustments can be very simple. However,
retrieving the most similar cases from a very large case base
can be time-consuming. Our research has focused on
developing efficient algorithms for case-based retrieval.

The fundamental principle of case-based reasoning is
that problems are solved based on a memory of a prior similar
situation. A similar situation is acquired through reminding of
an individual event or an abstraction through long term
memory associations (episodes) [Kolodner and Riesbeck, 1986,
Schank, 1982].

Many issues are raised when discussing reminding, or
retrieval, of prior episodes in a CBR system |Owens, 1988].
CBR system developers have many responsibilities related to

*This research was supported in part by the Defense Advanced
Research Projects Agency under contract number DAAH01-88C-0341, and
in part by the Air Force Weapons Laboratory under contract number
F33-615-87-C-5300.

creation of the case-base and the supporting retrieval functions.
A developer must understand the breadth of knowledge which
must be provided in each case, including case-specific attribute
knowledge and general, or domain-specific, knowledge. A
developer must understand the definition, and application of,
the similarity-metric for the domain. A similarity-metric is the
measuring scheme used to describe how a combination of new
situation's attribute values correspond to a prior case, or case's,
attribute values. A developer must understand what forms of
retrieval can be utilized in the reminding process of the CBR
system, and what scheme should be used for indexing or
classification. In this paper we respond specifically to the
problem of providing efficient retrieval algorithms for
case-base reminding.

We have identified three types of retrieval, quantitative
retrieval, qualitative retrieval, and a combination of the two. In
quantitative retrieval (specifically directed at domains
containing numeric representations of information), the values
of a case's attributes are numeric and the similarity between
any two cases is defined as the inverse of the distance between
them. If two cases are similar, the distance between them is
small. As the difference between their attribute values
increases, their distance increases.

In qualitative retrieval, a case's attributes are qualitative
values, such as colors or names. Similarity is defined as the
number of exact matches between attribute values, perhaps
employing a weighting scheme to emphasize the importance of
a particular attribute. It is important to note that in this
situation it is generally not possible to simply perform a search
using the most important attribute first. The closest case may
not match on the most important attributes but on many less
important ones, especially if the weights are similar for all
attributes.

Combined quantitative and qualitative retrieval is
necessary for cases which have both quantitative and
qualitative attributes.

1.2 Problem Solution

The algorithm developed for quantitative retrieval makes use
of a graphical paradigm. Cases are represented as points in a
hyperspace, where the dimensions of the space correspond to
the attributes of the case. The space is recursively divided
into hypercubes (squares for two dimensions, cubes for three,
etc.). Each cube contains zero or more points up to a small
number. Retrieval of the closest point to a point of interest is
reduced to finding the hypercube that would contain the point
of interest.

The qualitative retrieval algorithm uses a tree and
hashing scheme to efficiently test every possible combination
of attributes to determine exact matches. The combined
retrieval algorithm is a simple combination of these two
algorithms.

Stottler, Henke and King 233

1.3 Related Work

Case-Based Reasoning can only be productive to a user if
prior experiences can be retrieved efficiently to use in the
retrieval process [Martin, 1988]. Martin goes on to state that
the CBR system must continue to perform at an efficient level
of retrieval while the case-base grows considerably. CORA is
described as a system that stores cases in an overlapping
fashion which allows for reconstruction. This is in contrast to
the general method of storing cases as individual portions of
memory. Our paper provides a view of retrieval on
individualized cases and feature sets.

[Owens, 1988] presents the problem that case memory
is not static and does not enjoy advanced ordering of features.
In particular, CBR systems do not always have a static
understanding of the measure of similarity. The similarity
metric wil l change over time and growth of the case-base.
Owens concluded that discrimination trees provide adequate
support if the case-base is static.

[Preparata and Shamos, 1985] describe a well-known
computational geometry algorithm for retrieving from a set of
existing points, the closest point to an arbitrary point. This
algorithm is based on the Voronoi diagram which divides the
space into volumes, one volume for each point. Finding the
closest point reduces to finding the volume which the arbitrary
point falls into. This can be done in 0(Log(N)) time, where
N is the number of points. Unfortunately, the amount of space
required to store the volumes is impracticably large except in
the two dimensional case. However, this retrieval algorithm
was the starting point for the development of our quantitative
retrieval algorithm.

[Corkill et a!., 1986] classify the dimensions which
define a blackboard space into ordered and enumerated. Their
ordered dimensions correspond exactly to our quantitative
dimensions. Their enumerated dimensions correspond with our
qualitative dimensions except that our qualitative dimensions
allow an infinite number of values while theirs assume a finite
set. They also discuss retrieval based on dimensions with
concern for efficiency of the operations.

[Samat, 1988] discusses uses of quadtrees especially
as they relate to storage and retrieval of rectangles. Our
qualitative retrieval algorithm is based on a quadtree
representation.

1.4 Paper Organization

Section 2 describes the three retrieval algorithms in detail.
Section 3 presents an analysis of the algorithms. Section 4
provides empirical results and Section 5 suggests directions
for future research.

2 Description of the Retrieval Algorithms

2.1 Voronoj-Inspired Quantitative Retrieval Algori thm

The graphical nature of the Voronoi retrieval algorithm
prompted us to search for a graphical retrieval algorithm
practical for more than two dimensions. The resulting
algorithm is termed the Voronoi-Inspired (VI) Quantitative
Retrieval algorithm. The VI algorithm performs a
preprocessing step, in which a hypercube containing all the
data points or cases is recursively divided into smaller
hypercubes until no hypercube contains more than a certain
number, m, of points. Note that this means that a hypercube
may be empty, but one of its neighbors must be nonempty.
Figure 1 shows an example of hypercube sub-division where
the maximum number of points per cube is two (this value
would be unrealistically low from an efficiency standpoint).
The retrieval of the closest point (most similar case) consists
first of finding the hypercube that contains the test point.

Then, points in that hypercube and, in some circumstances,
bordering cubes must be examined for proximity.

The integrity of the algorithm depends on the definition
of distance between points. The distance formulation should
treat all dimensions monotonically, symmetrically and
identically. The distance between points depends on the
differences between their attribute values. Treating dimensions
monotonically means that as these differences increase, the
distance increases. The magnitude of the increase cannot
depend on the sign of the difference or on the dimension.
Both the geometric definition of distance (square root of the
sum of the squares) and the sum of the absolute values of the
differences satisfy these criteria.

In many applications, a weighted sum will be necessary
in a definition for distance. However, a weighted sum does
not treat all dimensions identically. In order for the VI
algorithm to be applicable, all the weights must be equal.
This is handled by simply multiplying all the attribute values
of a point by their weights before the point space is
preprocessed into smaller and smaller hypercubes.

In one of our applications, SURVER III [King et al.,
1988], it was clear that differences were not as important as
multiplicative factors. For example, a case with a peak blast
overpressure of 1 Mpa was closer to a case with a peak blast
overpressure of 3 Mpa than to a case with 0.1 Mpa. The
differences are 2 Mpa and 0.9 MPa respectively, but the
multiplicative factors are 3 and 10. Therefore, SURVER I I I
defined distance as the weighted sum of the multiplicative
factors. The multiplicative factors are not symmetric (distance
increases faster as a dimension goes toward 0) so the VI
algorithm was not direcdy applicable. However, by taking the
log of the dimension before the preprocessing step (and
multiplying by the weights), we were able to achieve the
desired results.

2.2 Tree-Hash Qualitative Retrieval Algori thm

The Tree-Hash Qualitative Retrieval algorithm was designed
for retrieval of cases whose attributes have qualitative values.
Retrieval of a qualitative case is very efficient if we know a
priori which dimensions or attributes of the current case wil l
match attributes of cases in the case base. However, this
information is never available ahead of time. The Tree-Hash
algorithm overcomes this problem by maintaining multiple

234 Real-Time and High Performance

pointers to cases - one for each possible combination of the
dimensions. For example, in the two dimensional case with
dimensions dl and d2, the possible dimension combinations
are (d l , d2, d ld2) . The algorithm attempts a retrieval based
on each of these combinations and computes a similarity
measure. In our example, we first perform a retrieve based on
d l , meaning that dl is the only dimension that must produce
an exact match. The same is done for d2. Retrieval based on
dld2 indicates that both dimensions must match the
dimensions of a case in the case base. The algorithm is very
fast when the number of dimensions is low. Retrieval time
does not increase with the number of cases if a hashing
scheme is used. Various versions of the algorithm are
described in detail in the following sections.

2.2.1 Assumptions and Definitions

The Tree-Hash algorithm assumes that there are a large
number of cases in the case base and a possibly infinite set of
possible attribute values. The number of dimensions is
relatively small and finite. Best match of dimensions is
defined as the weighted number of matches of the qualitative
values. In the case of ties for best match, any best match is
acceptable. This requirement is necessary because the number
of ties for best match can be an extremely large number of
cases, especially if all dimensions are weighted equally. In the
discussion below, the following definitions hold:

To provide efficient lookup, a unique pointer is created
for each case and placed in a hash table exp(2JD) - 1 times,
once for each possible combination of attributes, ignoring
order. For each case, every node in the tree is visited. When
a node is visited, the case is hashed using the dimensions
represented by the node. The result of this process is a large
hash table which encompasses all the cases, organized by
every possible ordering of dimensions. Retrieval can now
simply consist of visiting the nodes of the tree and performing
a hash lookup based on the dimensions of the node.

2.2.3 Naive Retrieval

The simplest retrieval scheme involves traversal of the
entire tree in search of a case most similar to the case of
current interest. At every node, an attempt is made to retrieve
a case and a record is kept of its measure of similarity to the
current case. By comparing the similarity measures from the
different nodes, the best match can be found.

2.2.4 Tree Traversal

Instead of visiting every node in the tree, it is more
efficient to search the tree in a specified order to eliminate
many of the hash retrievals. Traversal of the tree begins at
the root. At each node, an attempt is made to hash retrieve a
case based on the dimensions of that node. If the retrieval is
successful, we proceed down the left branch. If unsuccessful,
we proceed down the right branch. This process is continued
until a leaf node is reached. At this point, we store the
similarity measure from the node of the last successful
retrieval. We then backtrack to the last successful node and
follow its right son and proceed as before. This process is
repeated until there are no successful nodes left to backtrack
to. We then compare the stored similarity measures and select
the best one. Using this scheme, a number of unpromising
nodes never have to be visited.

2.2.5 Smart Tree Traversal

While the tree traversal algorithm given above avoids
visiting some of the nodes of the tree, it can be improved.
This is accomplished by computing and storing a score for
each node of the tree during the preprocessing stage. The
highest possible score at any node is the maximum of the
possible scores of its subnodes. At a leaf, the score is
computed, for instance, as the weighted sum of the number of
dimensions. Tree traversal proceeds as in the previous
algorithm, except that at each visited node, we compare the
similarity measure of the retrieved case to the score at that
node. If the similarity measure is equal to or better than the
score at the current node, then the subtree under that node
does not have to be traversed. This further reduces the
number of nodes that have to be examined.

2.3 Combined Quantitative and Qualitative Retrieval
Algorithm

To retrieve similar cases when the case base contains both
qualitative and quantitative dimensions, we use an algorithm
which is a straight-forward combination of the two previously
described algorithms. The dimensions of the case must first
be divided into qualitative and quantitative groups. A tree
should be generated as described above using only the
qualitative dimensions. At each node of the tree, we define
pointers corresponding to each possible value of the qualitative
dimensions at that node. For example, if the values of
dimension dl are {a, b) and the values of dimension d2 are
{c, d}, we would define a set of pointers for the combinations
{ac, ad, be, bd). Each of the pointers is directed toward that

Stottler, Henke and King 235

segment of the case base which has matching dimension
values. Each segment is then divided along its quantitative
dimensions according to the VI algorithm.

To retrieve the most similar case, every node of the
tree is visited. At each node, retrieval is first attempted based
on the qualitative dimensions represented by the node. When
a matching case exists for these dimensions, we perform a VI
retrieval on the segment of the case base with corresponding
dimension values. We must also consider the situation where
none of the qualitative dimensions match. A similarity score
is computed for the node and retrieval proceeds to another
node. The case with the highest similarity score is the closest
match.

3 Analysis of the Retrieval Algorithms

3.1 Analysis of the VI Algori thm

3.1.1 Time and Space Requirements

A best case analysis of the VI algorithm indicates that
the retrieval time can be expressed as:

Kl * Log (N/m) + K2 * m, where
N = the number of cases,
m = the maximum points allowed per atomic
hypercube,
Kl and K2 are constants

The first term is due to the search required to identify the
proper atomic hypercube and the second term is due to a
search through the points in that and nearby cubes. A
probabilistic analysis using random cases shows that the mean
retrieval time is the same expression as that for the best case,
but with larger constants.

The worst case retrieval time can be made arbitrarily
large. This is done by using a very tight cluster of cases with
just a few cases very far away so that the largest hypercube is
arbitrarily larger than the cluster containing most of the cases.
By making this outer cube larger, more divisions are necessary
to get a cube that immediately surrounds the cluster.

The time required to add a new case to the case base
is proportional to the time to retrieve a similar case. The
preprocessing time, which consists of adding N points to the
case-base, is 0(N*Log(N/m)). The required space is O(N).

3.1.2 Advantages and Disadvantages

The obvious advantage of the VI algorithm is that it
is very fast compared to other methods. It is also surprisingly
applicable when combined with preprocessing steps which
manipulate the values of the cases1 attributes through
multiplication by weights, computation of logarithms, etc. The
primary disadvantage of the algorithm is that it treats
similarity identically throughout the case base. A change in
the definition of similarity requires relatively slow
preprocessing before rapid retrieval can again be performed.

3.2 Analysis of the Tree-Hash Algori thm

3.2.1 Time and Space Analysis

The Naive Retrieval strategy requires a hash retrieval
at every node. There are exp(2,D) - 1 nodes in the tree and
the hash retrieval takes constant time, resulting in a retrieval
time of Kl * (exp(2,D) - 1), where D is the number of
dimensions and Kl is a constant.

For Tree Retrieval, the worst case retrieval time is still
0(exp(2,D))), but the best case is O(D). Computation of the

average retrieval time requires additional assumptions and a
probabilistic analysis.

For Smart Tree Retrieval, the worst case retrieval time
is still 0(exp(2,D)). The best case retrieval time is a constant.
The average retrieval time can be calculated from additional
assumptions and probability theory.

To add a new case requires exp(2,D) - 1 hash inserts.
Therefore, to preprocess all of the N cases (add a new case N
times) requires time of 0(N*exp(2,D)). The space required is
also 0(N*exp(2,D).

3.2.2 Advantages and Disadvantages

The biggest advantage of the Tree-Hash algorithm is
its speed. The retrieval time does not increase as the number
of cases increases. A change to the importance of the
dimensions does not require extensive re-preprocessing as long
as the same retrieval dimensions are used. Only the tree itself
must be regenerated, which can be done very rapidly.

The Tree-Hash algorithm has a couple drawbacks. The
retrieval time increases exponentially with the number of
dimensions used for retrieval. For practical use of the
algorithm, the number of dimensions is kept to about ten.
The definition of similarity must be based on exact matches
of the attribute values. This requirement limits the
applicability of the algorithm. However, this can be partially
overcome by defining new retrieval dimensions for the case
base. For example, in a case base containing information
about movies, we may have a dimension called "Country of
Origin". While we recognize that movies from the United
States, England and Australia are in some sense more similar
to each other than to a movie from France, the similarity
definition cannot capture this. We, therefore, add a new
dimension called "Language Spoken" and now have a means
of correlating movies in this manner. If new dimensions are
added to the case base, the preprocessing step must be
performed again.

3.3 Analysis of Combined Retrieval Algori thm

The worst case retrieval time for the combined retrieval
algorithm is:

Kl * exp(2,D) * (K2 * Log(N/m) + K3 * m), where
D = the number of qualitative dimensions,
N = the number of cases,
m is the maximum allowable points per hypercube,
K l , K2 and K3 are constants

The first term results from searching through the tree and the
second term results from performing the VI algorithm on the
segment of the case base at each tree node. Note that in most
circumstances the algorithm wil l perform much better than the
worst case because every segment pointed to from a tree node
will contain only a small fraction of the cases.

4 Empirical Results

4.1 Quantitative Retrieval Empirical Results

A uniform random number generator was used to generate
points in a hypercube of two dimensions (a square box). 100,
1000, and 4000 points were used for three different sets of
experiments. A value of 2 was used for m (the maximum
number of points allowed before a box was quartered). This
was a deliberate attempt to make the algorithm perform badly
by exploiting small variations in the point distribution.

The minimum average depth of nesting for all atomic
boxes is the log of N/m to the base 4. When m = 2, this
produces 3, 5, 6, and 8 for N = 100, 1000, 4000, and 50,000

236 Real-Time and High Performance

respectively. Our experiments suggest that the actual depth of
an atomic box is very rarely greater than one more than this
minimum number. The best case results hold within a
constant factor. The retrieval time is fast enough to allow disk
space to be used to store the indexing, thus keeping local
memory from being a limitation. A random sampling of the
boxes revealed that the boxes are only empty less than 25% of
the time, despite the low value of m.

From the experiments, it is clear that the VI algorithm
wil l work extremely well, when it is applicable. A question
that remains to be answered through development of case
based applications, is how often real data approximates random
data and how limiting the restrictions placed on the distance
definition are.

The VI algorithm has been successfully used in a
practical instance of case based reasoning involving purely
quantitative data. The algorithm was applied after a
preprocessing step in which the logs of the attributes were
taken and those results were multiplied by selected weights.
One attribute of the problem that tended to make the VI
algorithm applicable, was that the ultimate end users were
novices and would not want to frequently redefine the
similarity expression themselves.

4.2 Tree-Hash Algorithm Empirical Results

We are currently working on a manufacturing proposal case
base consisting of fifty thousand cases. It appears at this early
stage that the Tree-Hash algorithm is applicable. The number
of retrieval dimensions is approximately six. Consequently,
the exponential term in the retrieval time expression is not
worrisome.

5 Future Directions

The three retrieval algorithms presented here are part of a
DARPA sponsored case based reasoning shell currently under
development. As part of the shell, these algorithms wil l
compete with other retrieval algorithms for use by developers.
As applications are implemented in this shell, the applicability
and usefulness of these algorithms wi l l be further tested.

References

[Bookstein, 1988] A. Bookstein, "Set Oriented Retrieval".
Proceedings of the 11th International Conference on
Research and Development in Information Retrieval.
(SIGIR-88), Grenoble, France (1988), pp.583-596.

[Corkill et al., 1986] D. D. Corkill, K. Q. Gallagher, K. E.
Murray, GBB: A Generic Blackboard Development
System". Proceedings of the American Association of
Artificial Intelligence (AAAI-86), Philadelphia, PA
(1986), pp. 1008-1013.

[Fox et al., 1989] E. A. Fox, Q. Chen, L. Heath, S. Datta,
"A More Cost Effective Algorithm for Finding Perfect
Hash Functions". To Appear: Proceedings of the ACM
Computer Science Conference (CSC '89). Louisville,
KY. (1989).

[King et al., 1988] J. A. King, G. A. Klein, L. Whitaker,
S. Wiggins, "Application of Case-Based Reasoning:
SURVER III". Proceedings of SOAR-88. Dayton,
OH (1988).

[Kolodner, 1984] J. L. Kolodner, Retrieval and
Organization Strategies in Conceptual Memory: A
Computer Model Lawrence Erlbaum Associates,
Hillsdale, NJ.

[Kolodner et al., 1985] J. Kolodner, R. Simpson, K.
Sycara-Cyranski, "A Process Model of Case-Based
Reasoning in Problem Solving". Proceedings of the
International Joint Conference on Artificial Intelligence,
(JJCAI-85K Los Angeles, CA (1985), pp. 284-290.

[Kolodner and Riesbeck, 1986] J. L. Kolodner, C. K.
Riesbeck, Experience, Memory, and Reasoning. Lawrence
Erlbaum Associates, Hillsdale, NJ. 1986.

[Martin, 1988] J. D. Martin, "CORA: A Best Match
Memory for Case Storage and Retrieval". Proceedings of
the Case-Based Reasoning Workshop AAAJ-88, St. Paul,
MN (1988), pp. 89-94.

[Owens, 1988] C. Owens, "Indexing and Retrieving
Abstract Cases". Proceedings of the Case-Based
Reasoning Workshop AAAI-88, St. Paul, MN (1988), pp.
101-106.

IPreparata and Shamos, 1985] F. P. Preparata, M. I.
Shamos, Computational Geometry. Springer-Verlag, 1985

[Samat, 1988] Hanan Samat, "Hierarchial Representations
of Small Rectangles". ACM Computing Surveys,
December, 1988, pp 271-302.

ISchank, 1982] R. C. Schank, Dynamic Memory: A
Theory of Learning in Computers and People. Cambridge
University Press, New York, 1982.

[Van Rijs, 1979] C. J. Van Rijsbergen, Information
Retrieval. Butterworth, London, 1979.

[Wong, 1987] S. K. M. Wong, Y. Y. Yao, "A Statistical
Similarity Measure", ACM SJGIR (1987), pp. 3-12

Stottler, Henke and King 237

