
Generation, Local Receptive Fields and Global Convergence 
Improve Perceptual Learning in Connectionist Networks 

Abstract 
This paper presents and compares results for three types of 
connectionist networks on perceptual learning tasks: 
[A] Multi-layered converging networks of neuron-like 

units, with each unit connected to a small randomly 
chosen subset of units in the adjacent layers, that learn 
by re-weighting of their links; 

[B] Networks of neuron-like units structured into succes­
sively larger modules under brain-like topological 
constraints (such as layered, converging-diverging 
hierarchies and local receptive fields) that learn by 
re-weighting of their links; 

[C] Networks with brain-like structures that learn by 
generation-discovery, which involves the growth of 
links and recruiting of units in addition to re-
weighting of links. 

Preliminary empirical results from simulation of these net­
works for perceptual recognition tasks show significant 
improvements in learning from using brain-like structures 
(e.g., local receptive fields, global convergence) over net­
works that lack such structure; further improvements in 
learning result from the use of generation in addition to 
reweighting of links. 

Introduction 
Connectionist networks are graphs of linked nodes. Each 
node is a simple neuron-like unit. Each link has a weight 
associated with it. The net input to a node is a weighted sum 
of the outputs of the nodes that fire into it. Each node applies 
some form of non-linear function (such as the threshold or 
the sigmoid) to its net input and sends the result to other 
nodes to which it is connected via its output links. The 
receptive field of a node is defined as the set of nodes that 
can directly fire into it. 

It is easy to show that networks of threshold units are 
universal computing engines (McCulloch, 1943) in the sense 
that there exist (sufficiently large) networks of such units 
that can compute any function computable by a Turing 
machine or a system of Post Productions; but the problem of 
finding the necessary, sufficiently powerful, efficient and 
robust networks for perceptual recognition tasks remains, 
just as it does no matter how we try to embody intelligent 
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processes. 
A perceptual recognition system should be capable of 

interacting with constantly changing environments and, 
therefore, capable of learning. Learning can be viewed as a 
process of induction, constrained by the structure of the sys­
tem as well as the input it receives from the environment. 
Given the complexity and the variety present in the real 
world, the number of possible structures relate the different 
inputs is extremely large: Given N inputs, each capable of 
taking V values, the number of possible structures relating 
them is VN. This suggests that a perceptual learning system 
should be constrained, by its structures and processes, to 
learn the meaningful subset of relations between its inputs, 
given its limited resources, and the tasks it has to perform. 

Learning in connectionist networks can involve 
modification of any of the following: 
[1] Processing functions of the nodes (e.g., changes in the 

threshold or the output function), 
[2] The weights associated with the links, 
[3] The topology of the network (addition and deletion of 

links and nodes), and 
[4] The learning rules themselves. 

Most of the work on learning in connectionist net­
works to date has concentrated on [2]. Several algorithms 
for changing weights associated with the links are available 
(Hinton, 1987a). A learning scheme for [3] that employs a 
mechanism for growth of links and recruiting of nodes 
guided by regulatory mechanisms designed to discover 
minimally complex networks has been described in (Hona­
var, 1987; Honavar, 1988a). 

Complexity Issues 
Given the Turing equivalence of (sufficiently large) connec­
tionist networks, the problem of building such networks for 
perceptual recognition tasks is reduced to one of discovering 
the design principles that yield economically feasible 
designs (for machine perception) and/or biologically plausi­
ble designs (for brain modeling). We briefly examine the 
complexity of perceptual recognition and list some observa­
tions on the physics of the environment and the structure of 
the brain that could potentially help us in deriving such 
design principles. 

The complexity of recognition is 0(VN) for an /V-
pixel image where each pixel can range through V values. 
This means that to handle the general recognition problem, 
including the worst case, a network needs at least VN nodes, 
each linked (either directly or via intermediate nodes in 
layers or some other structure) to all nodes in the input 
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retina. This of course is combinatorially explosive, and our 
real problem is the expected case, that is, recognition of 
real-world images. The human brain and its visual system is 
clearly capable of perception of real-world objects in real-
time, yet it does rather poorly at the worst case e.g., telling 
apart two images that differ by a few randomly placed pix­
els. For the expected case E, the number of nodes needed is 
clearly within feasible bounds; otherwise nature could not 
have evolved brains capable of successful recognition. 

If the structure of the human brain and the visual sys­
tem is any indication, the necessary number of nodes, NE, is 
still almost certainly extremely large, and the necessary 
topology GE , of the network is far from random. A great 
deal is known about the human brain and the visual system 
(Peters, 1986; Uhr, 1986; Crick, 1986; Zeki, 1988; DeYoe, 
1988; Livingstone, 1988). Neurons predominantly interact 
with near-neighbors and arc organized into highly ordered 
structures (columns, hypercolumns, areas); Yet a great deal 
is unknown about how the neurons get allocated for comput­
ing specific functions, and how the detailed topology of the 
network of neurons emerges as a result of learning through 
constant exposure to the environment 

If the desired perceptual recognition abilities are to be 
attained by a connectionist network through re-weighting of 
its links alone, it must be initialized to contain a sufficient 
number of appropriately linked nodes. The only way to 
guarantee that this kind of network has enough nodes, each 
with the necessary links, is either to program them in, using 
a priori knowledge, or to make some guess as to NE - and 
use a substantially larger number of nodes and links than 
that to be on the safe side. To handle the full vision problem 
the only completely safe thing to do would appear to be to 
use VN nodes, each with N links - but this is impossibly 
large to actually implement. 

Generation involving the addition of nodes and links 
enables a network to modify its topology, and appears to 
offer a way out of this dilemma. Given mechanisms to gen­
erate, the network can gradually grow, until the number of 
nodes approaches NE and the network topology approaches 
GE - whatever NE and GE may be. Thus there is no need to 
estimate E: this is done constructively by the network itself. 

Rather than hope that some particular random or pre-
programmed connectivity will work, or pay the excessive 
costs of complete connectivity, a system that generates can, 
under the implicit guidance of the environment's inputs and 
feedback, move toward sufficient connectivity. Generation 
works best hand-in-hand with the fine-tuning of functions 
provided by re-weighting of links. In addition, generation 
and re-weighting arc probably best supplemented by 
mechanisms that break links when appropriate. Some of 
these issues, as well as a specific learning scheme combin­
ing generation and re-weighting, have been examined in 
(Honavar, 1988a). 

Connectionist Network Structures Compared 
Experimentally 
The multi-layered converging network structures studied 
include those that learn by re-weighting of their links (with 

Figure 1: Summary of multi-layered, feed-forward, converging 
network structures; CP stands for the connectionist pyramids; R 
for random and L for local receptive fields; G for generation; E for 
built-in edge-detectors; a - in a given position indicates the ab­
sence of the corresponding network property; all use reweighting 
of links as a learning mechanism; only the last two use generation 
in addition to reweighting. 

Figure 2: A Converging pyramid-like structure: Each point in a 
layer has a cluster of nodes; Each node in a cluster computes a 
simple function over the outputs of nodes in the node-clusters in a 
small neighborhood in the layer below. 

no generation), using several types of connectivity - random, 
as well as restricted to near-neighbors, and those that learn 
by a combination of generation and re-weighting (where 
generation takes place within the constraints of near-
neighbor connectivity). A summary of these network struc­
tures is given in figure 1. 

Connectionist Networks That Learn by Re-Weighting 
Several multi-layer, converging connectionist net­

works (using the same number of nodes and links in all the 
cases) were built, with the following structure: 

Layer L contains l/4th the number of node-clusters 
found in the adjacent layer L - l . Each node at layer L con­
tains 4 times as many nodes per cluster as in the layer L - l . 
Each node in a node cluster at layer L receives input from 
2-tuples of nodes drawn from 4 node clusters in layer L - l . 
In the current implementation, layer 2 is an exception in that 
each node in layer 2 receives input from 9 nodes (in a 3x3 
window) in the input layer. This forms an overall pyramid-
like converging-diverging structure (figure 2). In all the 
simulations described in this paper, the input layer (the 
retina) is a 32x32 array of pixels. 

Three variants of the basic multi-layered, converging 
network described above were implemented: 
[CP.L-E] 

With local receptive fields preserving topographic 
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mapping between layers: each node in layer L is 
linked to nodes in the 4 node clusters spatially located 
directly below it in layer L - l ; layer 1 contains 8 pre­
wired edge detectors (these are simplified versions of 
the local spot and edge detectors found in the retina 
and primary visual area (VI) of living primate brains), 

[CP.L--] 
Same as [CP.L-E] above, but without the built-in edge 
detectors in layer 1, and 

[CP.R-] 
With random receptive fields: Each node in layer L is 
linked to nodes in 4 randomly chosen node clusters in 
layer L - l . 
In all the simulations, 8 detectors (either pre-wired or 

learnable) were provided at layer 1. Al l the weights other 
than those corresponding to the built-in edge detectors were 
assigned randomly. 

In all cases, learning involved re-weighting links as a 
function of the back-propagated error signal. Suppose a pat­
tern class Cw is implied by the network with a weight Ww, 
and the pattern class indicated by the feedback, CR is 
implied with a weight WR; the amount of reweighting at the 
output layer is given by (Kx(Ww-WR)) where K is a 
parameter related to the rate of learning. Our current imple­
mentation has K set equal to 0.25. This weight change is 
distributed equally among all the links firing into the node 
implying CW. At internal nodes, the weight changes arc 
computed in a similar fashion. This is similar in spirit to the 
generalized delta rule (Rumelhart, 1986). 

Connectionist Networks That Learn By Generation and 
Discovery As Well As Re-weighting 

Connectionist network structures that learn by genera­
tion and re-weighting of links and recruiting of new nodes 
from a pool of unused nodes were studied. The topological 
constraints on the network structure are the same as those 
present in [CPJL-] and [CP.L-E] described earlier. How­
ever, the networks that learn by generation as well as 
reweighting start with a pool of nodes and no pre-wired 
links. Generation grows new links and adds new nodes to 
the network from the pool of nodes as the network learns 
aided by feedback. The weights associated with the links are 
changed using the same reweighting mechanism as the one 
used in [CP.L-]. A particular implementation of generation 
and reweighting of this sort is described in (Honavar, 
1988a). 

Because generation does not violate the topological 
constraints of the layered, logarithmically converging organ­
ization as well as the local receptive fields, the networks that 
are discovered through generation and reweighting (e.g., 
[CP.LGE] and [CP.LG-]) are topologically similar to 
[CP.L--] and [CP.L-E]. But in contrast to [CP.L-], the 
number of nodes per node-cluster at a given layer in 
[CP.LG-] and [CP.LGE], or the connectivity between node 
clusters in adjacent layers, is not pre-programmed; it is 
determined dynamically through learning. 

Runs were made with pre-wired edge-detectors in the 
first layer - [CP.LGE], and without any pre-wired nodes 
(i.e., having all the nodes added to the network as part of the 
learning process) - [CP.LG-]. In both these cases, the 

reweighting of nodes as a function of feedback proceeds 
according to the same reweighting rule as the one used in 
[CP.L--] and [CP.L-E]. In addition, the network occasion­
ally generates a new node, when it determines this to be 
appropriate - on the basis of information provided by sub-
structures that monitor the network's performance on each 
pattern class on which it is being trained. The design of 
these sub-structures is motivated by the need to discover the 
simplest networks capable of the desired accuracy of recog­
nition. A particular implementation of such structures is 
explained in detail elsewhere (Honavar, 1988a). 

The rationale behind the design is as follows: Con­
tinue to reweight existing links so long as the network's per­
formance is improving. When it is observed that the 
network's performance has leveled off (before reaching the 
desired accuracy of recognition), generate a new transform. 
This is accomplished easily by a simple network of neuron-
like units, using local computations that are performed 
incrementally following each training presentation (Hona­
var, 1988a). 

Generation proceeds as follows: In the 1st layer, a 3-
by-3 sub-array is extracted from the raw input image (this is 
done only when feedback indicates an error was made, and 
the history of the recent past indicates that performance is 
levelling off rather than improving. These 9 links fire into a 
new node placed directly above it in the next layer. 

The extraction is got from a busy part of the input 
image, one where the network judges there may be useful 
information. The present simple system insists that a gra­
dient be present, but potentially more powerful mechanisms 
that enable the system to evaluate a certain region (e.g., a 
3x3 window) of the input for its information content, and 
their possible connectionist network implementations are 
being investigated. 

In layers other than the 1st, extraction randomly links 
into a new node from 2 nodes that actively responded to the 
present (incorrectly identified) input image in the 2-by-2 of 
node-clusters directly below it in the previous layer. 

Whenever a transform is generated, it is put into a 
node-cluster at that location, and also at every other location 
in that layer of the network. This makes translation-invariant 
recognition of patterns possible. Al l the links added to the 
network through generation get tuned through reweighting 
as a function of feedback. 

Experimental Results 
Several runs were made to compare multi-layered connec­
tionist network structures ([CP.R-], [CP.L-], [CP.L-E], 
[CP.LG-] and [CP.LGE]). Simple 2-dimensional patterns 
such as letters of the alphabet (T, D, E) and simple objects 
(apple, cup, banana) were used for training the networks. 
The training and test sets were obtained by randomly divid­
ing the set of drawings of each pattern provided by 3 dif­
ferent volunteers into two subsets. The drawings were made 
using the Xgremlin graphics utility on a Digital 
VAXstation-3200, in a 24x24 subarray of a 32x32 grid. A 
sample subset of patterns used is shown in figure 3. Figure 
4 gives a summary of the pattern classes used in the runs, 
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Figure 4: Summary of pattern sets used in the experiments: the 
pattern sets were obtained from instances provided by 3 volunteers. 
Training and test instances for each class were obtained by ran­
domly partitioning the set of instances for a given class into two 
subsets - one for training and the other for testing. 

i.e., (T, D, E), (apple, banana, cup) and the combined set (T, 
D, E, apple, banana, cup). 

A run consists of several epochs of training inter­
spersed with epochs of testing, repeated until the desired 
accuracy of recognition (currently set to 100%) is attained 
or the performance clearly levels off, as indicated by the 
learning curve. An epoch of training (or testing) involves 
cycling through the entire training set (or test set) once, in 
some arbitrary order. The runs for the structures [CP.R--] 
[CP.L-E] and [CP.L-] were made with several different 
percentages of possible connections (indicated next to the 
corresponding learning curves in figure 5), having fixed the 
number of nodes at each location in the first layer to 8, each 
with 9 connections. 

In all cases, [CP.LGE] (pyramid convergence, local­
ity, generation, built-in edge detectors) gave the best results, 
followed by [CP.LG-] (pyramid convergence, locality, no 
built-in edge detectors). These were both substantially 
better than the networks [CP.L-E] (pyramid convergence, 
locality, and built-in edge detectors), which in turn were 
substantially better than [CP.L-] (pyramid convergence, 
locality, no built-in edge detectors). 

The figures 5 shows the results of these runs on the 
pattern set (T, D, E). The results with pattern sets (apple, 
cup, banana) were qualitatively similar in all the cases (the 
runs were slightly longer (took about 10% more epochs); 
about 10% more links were generated in [CP.LGE] and 
[CP.LG-]). 

The networks [CP.R-] (random connectivity between 
layers, logarithmic convergence) failed to improve beyond 

60% correct recognition given the same maximum number 
of connections that were used in [CP.L--] structures The net­
works [CP.L--] attained 100% accuracy of recognition with 
approximately 16xl03 links, which were distributed equally 
between layers (1,2), (2,3), (3,4) and (4,5) in about 600 
epochs of training, whereas the networks [CP.L-E] attained 
the same perfomance with the same network size, in about 
90 epochs of training. 

The network [CP.LG-] attained 100% accuracy of 
recognition in about 26 epochs with about 8X103 links (14 
new transforms were generated and they were replicated at 

Honavar and Uhr 183 



each location in the corresponding layers). The network 
[CP.LGE] reached 100% correct recognition in about 8 
epochs of training and at about 6xl03 links (6 new 
transforms were generated and they were replicated at each 
location in the corresponding layers). 

The runs were repeated for [CP.LG-] and [CP.LGE] 
with all 6 pattern classes (T, D, E, apple, banana, cup) and 
the results were qualitatively similar, but there were more 
generations (about twice as many) at the higher layers 
resulting in approximately lOxlO3 and 8xl03 links respec­
tively, and about twice as many epochs of training were 
needed for attaining 100% accuracy of recognition. The 
exact numbers reported here should not be given too much 
importance; however the results do suggest that other factors 
being equal, generation and local structure significantly 
improve learning, both in terms of the number of training 
epochs needed as well as the size of the networks necessary 
to attain the desired accuracy of recognition. 

Discussion and Summary 
Retinotopic mapping and near-neighbor connectivity exploit 
spatio-temporal contiguity present in the environment. 
Pyramid-like layered hierarchies enable the computation of 
complex functions as cascades and compounds of many 
simpler functions. Architectures embodying such topologi­
cal constraints have been studied rather extensively for 
image processing and computer vision (Uhr, 1972; Burt, 
1984; Rosenfeld, 1983; Uhr, 1987; L i , 1987). The results 
presented in this paper suggest that the incorporation of 
similar brain-like constraints on network structure can 
significantly reduce the complexity, and improve the learn­
ing speed, of connectionist networks that learn (as opposed 
to being carefully programmed) to perceive patterns. The 
initial choice of network connectivity is important. Random 
connectivity is unlikely to work in most practical problems. 
Similar conclusions were reached in an experiment to train a 
connectionist network to match random-dot stereograms 
(Qian, 1988). 

Our results suggest that the addition of mechanisms 
that enable the network to grow new links as needed, under 
guidance from feedback, aided by network structures that 
enable it to monitor its own performance over time, yield 
further improvements in learning. 

Intuition suggests that good system performance 
requires a proper match between the entropy of the source 
of external stimuli and the connectivity, both between the 
source and the system (Abu-Mostafa, 1988) as well as 
within the system itself. Generation relies on the environ­
mental stimuli to develop the connectivity of the system. 
The resulting network is therefore likely to have a better 
match with the entropy of the environment than a network 
that starts out with a random subset of the possible connec­
tions and maintains its initial connectivity unchanged, so 
that learning can only adjust the weights associated with the 
links. 

Generation in a multi-layered, converging network 
with local receptive fields ensures that successively more 
complex non-linear relations between features in the input 
encoding of patterns can be discovered at higher layers, to 

be assessed by the new transforms that are added. Thus the 
system is biased such that: learning of simpler features 
preceeds the learning of more complex relations; and suc­
cessively more global relations are learned at successively 
higher layers. An examination of the transforms generated 
in the network simulations supports this intuition. 

The extraction-generation programs described here do 
not discard bad transforms or place any limit on the number 
of nodes generated. Neither capability was needed for the 
test runs reported here, since these programs learned to 
recognize the pattern-sets they were tested on in relatively 
small number of training epochs. But to handle larger sets 
of more complex patterns, the ability to discard is almost 
certainly necessary - otherwise the network will get bogged 
down with many poor or worthless transforms. 

There are a number of promising improvements to be 
made, including the addition of networks that make better 
assessments of potential generations, that learn to improve 
upon these assessments, that evaluate the generations for 
their usefulness for recognition, that discard poor genera­
tions to make room for new ones, that narrow and broaden 
the tolerance-threshold for matching, and that generate sets 
of alternate possible transforms that are placed in competi­
tion with one another. There are a number of other issues to 
be investigated, including the development of good sub­
networks that realize functions for deciding whether to 
further re-weight or to generate, the optimal number of 
nodes in a node-cluster, and the desirability of putting the 
nodes within a cluster into direct competition. 

The extent of generalization, i.e., building of mean­
ingful internal representations by discarding uninteresting 
details, is an important property of connectionist networks 
that learn. More compact representations result from better 
generalization. There is reason to believe that the extent of 
generalization in connectionist networks is sensitive to the 
number of hidden units as well as the connectivity (Hinton, 
1987b). If the hidden units (or connections) are too many, 
the network may generalize rather poorly; if they are too 
few, the network may never learn. Therefore, finding the 
optimal number of hidden units and/or weights is of interest. 
Generation and deletion of links can be seen in this context 
as providing mechanisms that dynamically determine the 
number of hidden units and connections needed in the net­
work. Thus networks that generate only as needed may exhi­
bit good generalization properties as well. Generation makes 
possible the linking up of an adequate number of units to 
solve a given problem; minimal generation favors the 
discovery of the smallest necessary number, and hence, 
better generalization. It would be interesting to examine this 
conjecture experimentally. 

Sub-networks that maintain, update, and transmit as 
appropriate, information about the network's performance 
over time (e.g., a portion of the learning curve, used to 
trigger generation) offer several interesting mechanisms to 
influence learning that may be worth examining. Such struc­
tures may be used to alter learning strategies, rates of learn­
ing, thresholds of firing, each of which has an impact on the 
plasticity of the network. Future work will address some of 
these issues. 
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In connectionist networks that learn, feedback-guided 
reweighting of links in by small amounts effectively per­
forms a gradient descent on a function that represents the 
error between the output desired and the output produced by 
the network so as to minimize that error. However, there is 
always a risk of getting caught in a local minimum, a shal­
low trough, or a valley in the error surface. Generation and 
discarding of transforms can be thought of as providing the 
network some means of climbing out of such local minima. 

Most of the work on learning in connectionist net­
works has to date concentrated on reweighdng schemes for 
modification of weights in a static topology. Recent anatom­
ical and physiological studies suggest that learning may 
involve alteration of the number as well as the pattern of 
synapdc interconnecdons in the brain, in addition to changes 
in synapdc weights (Greenough, 1988; Honavar, 1989). The 
results presented in this paper suggest that there may be 
promising improvements to be realized using addidonal 
learning mechanisms that dynamically alter the network 
topology (e.g., generadon), suitable constraints on the net­
work structure for particular domains (such as local recep-
tive fields and global convergence for vision) and regulatory 
mechanisms that alter the plasticity of the network, choose 
between different learning strategics, and so on. Extensive 
and systemadc evaluadons of networks incorporating one or 
more of these features for perceptual learning of pattern sets 
of varying degrees of complexity are needed in order to 
determine how they perform individually as well as collec­
tively. The experiments and results discussed in this paper 
constitute at best, a preliminary exploration of only a few 
aspects of the problem. Work in progress is directed at exa­
mining some of these issues in greater detail. 
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