
Abstract 

In this paper, we describe a programming language 
based on constraints. Unlike former approaches, its 
interpreter propagates sets of possible values (rather 
than single values) through a network of 
constraints. During the propagation process, the 
value sets are filtered to obtain consistent subsets, 
or new values are computed for the undetermined 
variables from the set of given variables. 

Constraint relations can be described in several 
ways. Finite relations can be represented 
straightforwardly by enumerating their extensions. 
Infinite relations can be described intensionally by 
patterns. More complex relations can be represented 
by constraint networks and hierarchies of constraint 
networks. Several control strategics are provided 
which compute local consistency as well as 
globally consistent solutions. 

It is sketched how to realize a compiler for the 
language, which optimizes constraint descriptions 
at definition time. As a result, combinatorical 
explosion can be reduced, depending on the number 
of variables used in a constraint description. 
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1 Introduction 

The problem: on the one hand, there are—let us call them— 
systems of class alpha and on the other, there are systems of 
class beta, but what we really need is a kind of alphabeta 
system. What we mean by class alpha and class beta can be 
characterized by two historical representatives. 

An alpha system: in 1980, G.L. Steele published the 
description of a computer programming language based on 
constraints [Steele 1980J. It is—as far as we know—the first 
approach to a constrained-based programming language 
which is independent of a special application. The interpreter 
of the language is based on a computational model that is 
comparable to data driven machines: undetermined variables 
are computed from a set of given variables. 

A beta system: D.L. Waltz [1972] suggested a filtering 
technique that enables us to solve certain constraint 
problems more efficiently. The idea is to avoid 
combinatorial explosion by propagating value sets without 
computing the Cartesian product between these sets. 

Our goal is a kind of alphabeta system, i.e. to combine 
the aspects of a domain-independent constraint language with 
an efficient problem solving strategy. The result is the 
constraint satisfaction system CONSAT which is introduced 
in this paper: 

CONSAT can be applied to arbitrary domains, i.e. 
the constraint variables may be associated with any 
kind of values. 

• Single values or sets of possible values can be 
propagated through a constraint network. Thus, 
CONSAT can be used to compute values for the 
undetermined variables from the set of given 
variables, to test consistency of values, or to filter 
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the sets of possible values, i.e. to remove 
inconsistent values from these sets. 

Several ways to represent relations are provided. 
Finite relations can be represented straightforwardly 
by enumerating the extension of the relation. 
Infinite relations can be described intensionally by 
patterns. More complex relations can be represented 
by constraint networks and hierarchies of constraint 
networks. 

Besides a standard control strategy based on local 
propagation, which computes local consistency, 
two further strategies are provided for obtaining 
global consistency: one of them is a combination 
of local propagation and backtracking, the other 
uses (recursive) indices in order to maintain 
relationships between values. 

CONSAT has been implemented in Common Lisp and 
has been integrated into the hybrid knowledge representation 
system BABYLON [Guesgen et al. 1987]. 

2 Underlying Concepts 

First, we will give an informal definition of constraints (cf. 
[Montanari 1974]): a constraint consists of a set of variables 
and a relation on these variables. 

In order to maintain transparency, a constraint should 
describe only partial aspects of the task to be programmed. 
The whole task can then be described by a network of 
constraints: a constraint network consists of a set of 
constraints with shared variables. 

A technique often used to satisfy networks of 
constraints is local propagation: the results computed by a 
constraint, i.e. the restrictions to the coverings of its 
variables, are forwarded to its neighboring constraints in the 
network. The result of local propagation is local 
consistency, i.e. sets of possible values for the variables. 
Local consistency (or arc consistency as defined in 
[Mackworth 1977] for binary constraints) means: if you pick 
up a constraint from the network and the covering of one of 
its variables, you can find values in the other variable 
coverings, such that the tuple of these values satisfies the 
constraint. 

A globally consistent solution is a value assignment to 
the variables that satisfies all constraints in the network. If 
all variables in a constraint network are uniquely determined 
(cf. [Steele 1980]), or if there are no cycles in the network 
(cf. [Freuder 1982]), the locally consistent variable covering 
is identical with the globally consistent solution of the 
constraint network. Thus, computing local consistency is 
sufficient in many applications of constraints. Nevertheless, 
some mechanisms for obtaining global consistency are 
necessary in some cases such as in the example of this 
paper. 

3 Describing Constraints 

In CONSAT, a constraint relation is represented by a finite 
set of tuples and/or patterns. For short, we will refer to 

such a tuple or pattern as a constraint element. A tuple 
represents exactly one possible value combination for the 
constraint variables, whereas a pattern in general represents a 
class of value combinations, using functional expressions 
with references to constraint variables. 

In the following, the syntax and semantics of constraint 
elements will be explained by an example from the game 
world: a puzzle consisting of nine triangles. Figure 1 shows 
a sketch of the solved puzzle. Every triangle of the puzzle is 
labeled with a part of a figure. Altogether, there are three 
different types of figures which are represented in figure 1 by 
a single, double and triple arrow, respectively. 

Since there are nine fields where a triangle may be put, 
and since every triangle has three possible orientations with 
respect to the field, solving the puzzle means to struggle 
with 9!-39 possible combinations. Only a few solutions 
exist for the puzzle. The condition for a solution is obvious: 
the parts of two arrows at adjacent edges must fit, i.e. they 
both must be parts either of a single, double, or triple arrow. 

3.1 Extensional Constraints 
The edge labeling of a triangle can be represented in 
CONSAT by a pair consisting of a key S,D or T for a 
single, double and triple arrow, respectively, and a reference 
which determines the part of the arrow (either HEAD or 
TAIL). Thus, the possible labelings are: 

(SHEAD) (STAIL) 
(D HEAD) (D TAIL) 
(T HEAD) (T TAIL) 

A triangle with its edge labelings as well as its 
orientation is described as follows. Looking at a triangle 
with one of its vertices upwards, we describe the triangle by 
a tuple, the first element representing the labeling of the left 
edge, the second one the labeling at the bottom, and the third 
element the right edge labeling (see figure 2). 
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If we look at a triangle with a vertex downwards, the 
left edge labeling is represented by the third element of the 
tuple and the right one by the first element. The second 
element corresponds to the upper edge labeling (see again 
figure 2). 

With these conventions we can uniquely describe a 
triangle and the aspects of its orientation relevant for the 
puzzle. For example, the tuple 

((D HEAD) (D TAIL) (S TAIL)) 

represents a triangle with the head and the tail of a double 
arrow and the tail of a single arrow as labeling. The 
orientation in the puzzle may be either with a vertex 
upwards and the head of the double arrow at the left edge, the 
tail of the double arrow at the bottom, and the tail of a 
single arrow at the right, or with a vertex downwards and the 
single arrow at the left, the tail of the double arrow at the 
top, and the head of the double arrow at the right. 

In order to express the fact that a variable is restricted to 
one of the above described tuples, the following, extensional 
constraint can be defined in CONSAT. It describes the 
admissible tuples by enumerating them: 

(DEFCONSTRAINT 
(:NAME TRIANGLE) 
(:TYPE PRIMITIVE) 
(: INTERFACE TRIANGLE) 
(:RELATION 

(:TUPLE (((D HEAD) (D TAIL) (S TAIL)))) 
(:TUPLE (((S TAIL) (D HEAD) (D TAIL)))) 
(:TUPLE (((D TAIL) (S TAIL) (D HEAD)))) 

(:TUPLE (((D HEAD) (S HEAD) (S TAIL)))) 
(:TUPLE (((S TAIL) (D HEAD) (S HEAD)))) 
(:TUPLE (((S HEAD) (S TAIL) (D HEAD)))) 

... further triangles ...)) 

(We abbreviate most of the constraint definitions for better 
transparency.) 

3.2 Intensional Constraints 
The representation of relations by tuples, where each tuple 
specifies an admissible value combination, is impossible if 

the relation is infinite (and inadequate for extensive 
relations). Thus, another way of defining constraints must 
be provided, which—in our opinion—should be compatible 
to that described in the previous section. In CONSAT, 
patterns can be used as constraint elements to define 
constraints intensionally. A pattern consists of expressions 
with references to the constraint variables. 

For example, we can define intensional constraints with 
two variables (each variable representing a triangle) which 
are satisfied if the triangles may be placed side by side in the 
puzzle, i.e. if the labelings of the adjacent edges are 
complementary. In the puzzle, a triangle with vertex 
upwards can only be placed beside a triangle with vertex 
downwards, and vice versa. Thus, we need three constraints, 
declaring that a triangle is connected to another triangle at 
the left, bottom or right edge, respectively, where left, 
bottom and right refers to the triangle with vertex upwards 
(this convention is arbitrary). For example, the constraint 
defined by 

(DEFCONSTRAINT 
(:NAME CONNECTED-LEFT) 
(:TYPE PRIMITIVE) 
(:INTERFACE TRIANGLE-1 TRIANGLE-2) 
(:RELATION 

(:PATTERN (TRIANGLE-1 TRIANGLE-2) 
:IF (COMPLEMENT-P 

(FIRST TRIANGLE-1) 
(FIRST TRIANGLE-2)))) 

(:CONDITION 
(CONSTRAINED-P 

TRIANGLE-1 TRIANGLE-2))) 

is satisfied, if the left edge labeling of the triangle with 
vertex upwards matches the right edge labeling of the 
triangle with vertex downwards. 

The notation of intensional constraints is analogous to 
the representation by tuples: The ith expression of a pattern 
describes the value of the ith constraint variable, which is 
trivial in the case of the CONNECTED-LEFT constraint 
since they are equal. In general, it is possible to specify 
arbitrary Lisp forms in a pattern (instead of just referring to 
variables). In the example, the power of the pattern is 
grounded in its additional condition (the expression 
following :IF) which determines whether the pattern may be 
applied or not. 

In order to avoid errors during the pattern matching 
process, the evaluation of a constraint can be suppressed 
depending on the actual values of the variables. For 
example, the CONNECTED-LEFT constraint must not be 
evaluated if TRIANGLE-1 or TRIANGLE-2 is equal to the 
keyword UNCONSTRAINED, which represents the 
(possibly infinite) set of all domain values. This restriction 
can be declared by a global condition associated with the 
constraint, for instance: 

(:CONDITION (CONSTRAINED-P 
TRIANGLE-1 TRIANGLE-2)). 
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4 Evaluating Constraints 

When a constraint is activated by the propagation control 
unit, by another subsystem, or by the user (via a SATISFY 
expression), some of its variables may already be associated 
with sets of possible values. The system first computes all 
combinations from these lists, setting the unconstrained 
variables to UNCONSTRAINED. 

Let the variables of the CONNECTED-LEFT constraint 
be associated with the following variable coverings: 

TRIANGLE-1: (((D TAIL) (S TAIL) (D HEAD))) 

TRIANGLE-2: (((D HEAD) (S HEAD) (S TAIL)) 
((S TAIL) (D HEAD) (S HEAD))) 

then two combinations are computed: 

(((D TAIL) (S TAIL) (D HEAD)) 
((D HEAD) (S HEAD) (S TAIL))) 

(((D TAIL) (S TAIL) (D HEAD)) 
((S TAIL) (D HEAD) (S HEAD))) 

Each combination of values is matched with the 
constraint elements in the following way. If the constraint 
element under consideration is a tuple, its values are 
compared with the corresponding values in the given 
combination. If it is a pattern, its condition (if provided) is 
evaluated first. If the condition evaluates to T or if no 
condition is provided, then the rest of the pattern is evaluated 
as follows: all atoms and expressions in the pattern are 
evaluated and the computed values are compared with the 
corresponding values in the given value combination. 

In both cases, the matching process succeeds if for every 
value in the given combination the following holds: 

• it is equal to UNCONSTRAINED, or 

it is equal to the corresponding value of the 
constraint element. 

Whenever the matching process succeeds, the computed 
values are added to the resulting variable coverings. They are 
returned after all value combinations have been matched with 
all constraint elements, for example: 

(SATISFY CONNECTED-LEFT :WITH 
TRIANGLE-1 = ((D TAIL) (S TAIL) (D HEAD)) 
TRIANGLE-2 = (:ONE-OF 

((D HEAD) (S HEAD) (S TAIL)) 
((S TAIL) (D HEAD) (S HEAD))) 

> 

((TRIANGLE-1 ((D TAIL) (S TAIL) (D HEAD))) 
(TRIANGLE-2 ((D HEAD) (S HEAD) (S TAIL)))) 

Formally, the result of evaluating a constraint C can be 
denoted as follows. Let v1,...,vn be the input variable 
coverings for C and R be the set of constraint elements 
(tuples or patterns) of C Then, the evaluation of C results 
in 

where 

pr1.... n is used as a short form for the tuple of 
projection functions (pr1,...,prn), for example 
pr1,2((a,b), (c, d)} = ((a,c), {b,d}),and 

R i n s t is the instantiated relation of C which is 
obtained from R by evaluating the patterns with the 
variables successively bound to elements from 

5 Compiling Constraints 

First, we wi l l revisit the above evaluation algorithm, 
transforming the term which describes the result computed 
by the algorithm. 

This means that a constraint can be evaluated more 
efficiently as it is sketched in the previous section. 

Such an improvement presupposes that the constraint 
relation is already instantiated. In general, this is not the 
case, since patterns may occur as constraint elements. If all 
constraint variables are used within at least one of these 
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patterns, one has to compute the Cartesian product between 
the variables to obtain an instantiated relation, i.e. the 
improvements concerning evaluation are lost. 

Our idea to resolve this dilemma can be summarized as 
follows: instead of answering the question "How can we 
implement a program that evaluates an arbitrary CONSAT 
constraint?", we are guided by the question "How can we 
implement a program whose input is a constraint and which 
produces a program that evaluates this particular constraint 
optimally?". 

In particular, a constraint is analyzed when it is defined 
to determine whether or to which extension the Cartesian 
product has to be computed during evaluation. As a result, 
we obtain a procedure which minimizes the costs for 
evaluating the constraint. For example, consider a constraint 
with three variables and constraint elements that use only 
two of them. Then, the costs for the evaluation of the 
constraint can be reduced up to a factor k, where k is the 
number of values in the covering of the non-used variable. 

6 Constraint Networks 
Constraint networks consist of a set of primitive constraints 
or lower level constraint networks which are connected by 
shared variables. They have the same i/o behavior as 
primitive constraints, i.e. a constraint network is evaluated 
with a variable coverings as input, and the result is set of 
filtered variable coverings. 

In particular, a constraint network contains constraints, 
global variables, variable coverings, mappings between the 
local constraint variables and the global network variables, 
and an interface. The interface is a subset of the global 
variables which may be associated with initial values. 

For the definition of constraint networks, the same 
constructs can be used as for primitive constraints. Consider, 
e.g., the puzzle with the variables P1, P2,..., P9, each 
variable representing a position where a triangle may be 
placed, then the following definition specifies the constraint 
network which describes the relationships that must be 
maintained in order to solve the puzzle: 

(DEFCONSTRAINT 
(:NAME NINE-PUZZLE) 
(:TYPE COMPOUND) 
(:INTERFACE P1 P2 P3 ...) 
(:CONSTRAINT-EXPRESSIONS 

(TRIANGLE P1) (TRIANGLE P2)... 

(CONNECTED-MIDDLE P1 P3) 
(CONNECTED-RIGHT P2 P3)... 

(DIFFERENT-TRIANGLES P1 P2) 
(DIFFERENT-TRIANGLES P1 P3) ...)) 

The mapping of global network variables to local 
constraint variables is given implicitly in the above 
definition. Similar to a function call in Lisp, the expression 
(CONNECTED-MIDDLE P1 P3), e.g., means that P1 and 
P3 are mapped to the local variables TRIANGLE-1 and 

TRIANGLE-2 of the CONNECTED-MIDDLE constraint, 
respectively. 

Since constraint networks work just like primitive 
constraints (viewing them just from their i/o behavior), 
hierarchies of constraints and constraint networks can be 
built straightforwardly by referring to constraint networks 
rather than to primitive constraints within another 
constraint network. A consequence of this method is that 
recursive constraint networks can be defined, e.g. by 
referring to a network within the network itself. 

7 Satisfying Constraint Networks 
The standard control strategy of CONSAT is based on local 
propagation: when a constraint network is activated (via the 
above introduced SATISFY) with initial values for some 
interface variables, the constraints which are imposed on 
these variables are evaluated. The result of the evaluation is 
propagated to their neighboring constraints, and so on. The 
activation process terminates when no further changes of the 
variables are carried out. Since the variables arc filtered by 
the constraints, the propagation process always stops in the 
case of non-recursive constraint networks (cf. [Guesgen, 
Hertzberg 1988]). The values of the interface variables are 
returned as a result of the local propagation process. 

Local propagation computes local consistency which is 
insufficient in some cases (as, e.g., for the above introduced 
puzzle). Thus, CONSAT provides further control strategies 
for obtaining global consistency, one of them is a 
combination of local propagation and backtracking (LPB). If 
the result of local propagation is not unique, LPB sets a 
choice point, i.e. a value is selected from a variable 
covering, guided by some simple heuristics. Then, local 
propagation is started again, followed by setting another 
choice point, and so on. If an inconsistency has been 
detected during local propagation, or if a unique solution has 
been found but further solutions are requested (the user can 
limit the number of solutions to be computed), a choice 
point is backtracked and another choice point is set. The 
algorithm breaks off when a sufficient number of solutions 
has been computed or no further choice points can be set. 

The application of the LPB algorithm to the NINE-
PUZZLE constraint network yields the following solution: 

(SATISFY NINE-PUZZLE :GLOBALLY 1) 

(((P1 ((T TAIL) (D TAIL) (D HEAD))) 
(P2 ((D HEAD) (D TAIL) (T TAIL))) 
(P3 ((T TAIL) (D HEAD) (T HEAD))) 
(P4 ((T HEAD) (S HEAD) (T TAIL))) 
(P5 ((D HEAD) (T TAIL) (T HEAD))) 
(P6 ((S HEAD) (D HEAD) (T TAIL))) 
(P7 ((S TAIL) (D HEAD) (D TAIL))) 
(P8 ((S HEAD) (S TAIL) (D HEAD))) 
(P9 ((S TAIL) (S HEAD) (T TAIL))))) 

A (straightforward) Prolog program seems also to be 
adequate to model the puzzle. However, the search space of 
such a program is orders of magnitude larger than the search 
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space CONSAT actually needs. The reason is that local 
propagation (applied after setting a choice point) can reduce 
the depth of the search tree by a factor 2. 

Besides LPB, another control strategy is provided by 
CONSAT. This strategy is based on local propagation and 
uses indices to maintain relationships between values during 
the propagation process. It is beyond the scope of this paper 
to describe this method in detail. A more detailed description 
can be found in [Guesgen 1989]. 

8 Conclusion 
The purpose of this paper was to introduce the constraint 
system CONSAT, which combines the advantages of a 
domain-independent programming language a la [Steele 
1980] and the efficient problem solving control strategy 
from [Waltz 1972]. 

In particular, CONSAT can handle arbitrary domains, 
i.e. the constraint variables may be associated with any kind 
of values. Sets of possible values rather than single values 
are propagated through constraint networks. Thus, CONSAT 
can be applied 

to compute values for the undetermined variables 
from the set of given variables, 

to test consistency of values, or 

to filter the sets of possible values, i.e. to remove 
inconsistent values from these sets. 

Several ways to represent relations are provided. Finite 
relations can be represented by enumerating the extension of 
the relation. Infinite relations can be described intensionally 
by patterns. More complex relations can be represented by 
constraint networks and hierarchies of constraint networks. 
Besides local propagation as control strategy, CONSAT 
provides two mechanisms for obtaining globally consistent 
solutions. 

CONSAT is used in several applications, for example, 
in a system for process diagnosis [Voss 1988], where 
constraints arc applied to maintain functional relationships 
in physical units, and in the musical domain [Lischka, 
Guesgen 1986], where the harmonization of chorals is 
supported by constraint propagation. 

Beyond that, CONSAT was incorporated into the hybrid 
knowledge representation system BABYLON in order to use 
constraints together with rules, frames, and Prolog [Guesgen 
el al. 1987] which turned out to be most useful. 
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