
Abstract

In this paper, we describe a programming language
based on constraints. Unlike former approaches, its
interpreter propagates sets of possible values (rather
than single values) through a network of
constraints. During the propagation process, the
value sets are filtered to obtain consistent subsets,
or new values are computed for the undetermined
variables from the set of given variables.

Constraint relations can be described in several
ways. Finite relations can be represented
straightforwardly by enumerating their extensions.
Infinite relations can be described intensionally by
patterns. More complex relations can be represented
by constraint networks and hierarchies of constraint
networks. Several control strategics are provided
which compute local consistency as well as
globally consistent solutions.

It is sketched how to realize a compiler for the
language, which optimizes constraint descriptions
at definition time. As a result, combinatorical
explosion can be reduced, depending on the number
of variables used in a constraint description.

1CONS-tra in- t
2The author previously worked at the Gesellschaft fuer

Mathematik und Datenverarbeitung, Schloss Birlinghoven,
5205 Sankt Augustin, West Germany. There, his work was
supported in part by the German Federal Ministry for
Research and Technology within the joint project TEX-B,
contract number ITW-8506-D.

1 Introduction

The problem: on the one hand, there are—let us call them—
systems of class alpha and on the other, there are systems of
class beta, but what we really need is a kind of alphabeta
system. What we mean by class alpha and class beta can be
characterized by two historical representatives.

An alpha system: in 1980, G.L. Steele published the
description of a computer programming language based on
constraints [Steele 1980J. It is—as far as we know—the first
approach to a constrained-based programming language
which is independent of a special application. The interpreter
of the language is based on a computational model that is
comparable to data driven machines: undetermined variables
are computed from a set of given variables.

A beta system: D.L. Waltz [1972] suggested a filtering
technique that enables us to solve certain constraint
problems more efficiently. The idea is to avoid
combinatorial explosion by propagating value sets without
computing the Cartesian product between these sets.

Our goal is a kind of alphabeta system, i.e. to combine
the aspects of a domain-independent constraint language with
an efficient problem solving strategy. The result is the
constraint satisfaction system CONSAT which is introduced
in this paper:

CONSAT can be applied to arbitrary domains, i.e.
the constraint variables may be associated with any
kind of values.

• Single values or sets of possible values can be
propagated through a constraint network. Thus,
CONSAT can be used to compute values for the
undetermined variables from the set of given
variables, to test consistency of values, or to filter

60 Tools

the sets of possible values, i.e. to remove
inconsistent values from these sets.

Several ways to represent relations are provided.
Finite relations can be represented straightforwardly
by enumerating the extension of the relation.
Infinite relations can be described intensionally by
patterns. More complex relations can be represented
by constraint networks and hierarchies of constraint
networks.

Besides a standard control strategy based on local
propagation, which computes local consistency,
two further strategies are provided for obtaining
global consistency: one of them is a combination
of local propagation and backtracking, the other
uses (recursive) indices in order to maintain
relationships between values.

CONSAT has been implemented in Common Lisp and
has been integrated into the hybrid knowledge representation
system BABYLON [Guesgen et al. 1987].

2 Underlying Concepts

First, we will give an informal definition of constraints (cf.
[Montanari 1974]): a constraint consists of a set of variables
and a relation on these variables.

In order to maintain transparency, a constraint should
describe only partial aspects of the task to be programmed.
The whole task can then be described by a network of
constraints: a constraint network consists of a set of
constraints with shared variables.

A technique often used to satisfy networks of
constraints is local propagation: the results computed by a
constraint, i.e. the restrictions to the coverings of its
variables, are forwarded to its neighboring constraints in the
network. The result of local propagation is local
consistency, i.e. sets of possible values for the variables.
Local consistency (or arc consistency as defined in
[Mackworth 1977] for binary constraints) means: if you pick
up a constraint from the network and the covering of one of
its variables, you can find values in the other variable
coverings, such that the tuple of these values satisfies the
constraint.

A globally consistent solution is a value assignment to
the variables that satisfies all constraints in the network. If
all variables in a constraint network are uniquely determined
(cf. [Steele 1980]), or if there are no cycles in the network
(cf. [Freuder 1982]), the locally consistent variable covering
is identical with the globally consistent solution of the
constraint network. Thus, computing local consistency is
sufficient in many applications of constraints. Nevertheless,
some mechanisms for obtaining global consistency are
necessary in some cases such as in the example of this
paper.

3 Describing Constraints

In CONSAT, a constraint relation is represented by a finite
set of tuples and/or patterns. For short, we will refer to

such a tuple or pattern as a constraint element. A tuple
represents exactly one possible value combination for the
constraint variables, whereas a pattern in general represents a
class of value combinations, using functional expressions
with references to constraint variables.

In the following, the syntax and semantics of constraint
elements will be explained by an example from the game
world: a puzzle consisting of nine triangles. Figure 1 shows
a sketch of the solved puzzle. Every triangle of the puzzle is
labeled with a part of a figure. Altogether, there are three
different types of figures which are represented in figure 1 by
a single, double and triple arrow, respectively.

Since there are nine fields where a triangle may be put,
and since every triangle has three possible orientations with
respect to the field, solving the puzzle means to struggle
with 9!-39 possible combinations. Only a few solutions
exist for the puzzle. The condition for a solution is obvious:
the parts of two arrows at adjacent edges must fit, i.e. they
both must be parts either of a single, double, or triple arrow.

3.1 Extensional Constraints
The edge labeling of a triangle can be represented in
CONSAT by a pair consisting of a key S,D or T for a
single, double and triple arrow, respectively, and a reference
which determines the part of the arrow (either HEAD or
TAIL). Thus, the possible labelings are:

(SHEAD) (STAIL)
(D HEAD) (D TAIL)
(T HEAD) (T TAIL)

A triangle with its edge labelings as well as its
orientation is described as follows. Looking at a triangle
with one of its vertices upwards, we describe the triangle by
a tuple, the first element representing the labeling of the left
edge, the second one the labeling at the bottom, and the third
element the right edge labeling (see figure 2).

Guesgen 61

If we look at a triangle with a vertex downwards, the
left edge labeling is represented by the third element of the
tuple and the right one by the first element. The second
element corresponds to the upper edge labeling (see again
figure 2).

With these conventions we can uniquely describe a
triangle and the aspects of its orientation relevant for the
puzzle. For example, the tuple

((D HEAD) (D TAIL) (S TAIL))

represents a triangle with the head and the tail of a double
arrow and the tail of a single arrow as labeling. The
orientation in the puzzle may be either with a vertex
upwards and the head of the double arrow at the left edge, the
tail of the double arrow at the bottom, and the tail of a
single arrow at the right, or with a vertex downwards and the
single arrow at the left, the tail of the double arrow at the
top, and the head of the double arrow at the right.

In order to express the fact that a variable is restricted to
one of the above described tuples, the following, extensional
constraint can be defined in CONSAT. It describes the
admissible tuples by enumerating them:

(DEFCONSTRAINT
(:NAME TRIANGLE)
(:TYPE PRIMITIVE)
(: INTERFACE TRIANGLE)
(:RELATION

(:TUPLE (((D HEAD) (D TAIL) (S TAIL))))
(:TUPLE (((S TAIL) (D HEAD) (D TAIL))))
(:TUPLE (((D TAIL) (S TAIL) (D HEAD))))

(:TUPLE (((D HEAD) (S HEAD) (S TAIL))))
(:TUPLE (((S TAIL) (D HEAD) (S HEAD))))
(:TUPLE (((S HEAD) (S TAIL) (D HEAD))))

... further triangles ...))

(We abbreviate most of the constraint definitions for better
transparency.)

3.2 Intensional Constraints
The representation of relations by tuples, where each tuple
specifies an admissible value combination, is impossible if

the relation is infinite (and inadequate for extensive
relations). Thus, another way of defining constraints must
be provided, which—in our opinion—should be compatible
to that described in the previous section. In CONSAT,
patterns can be used as constraint elements to define
constraints intensionally. A pattern consists of expressions
with references to the constraint variables.

For example, we can define intensional constraints with
two variables (each variable representing a triangle) which
are satisfied if the triangles may be placed side by side in the
puzzle, i.e. if the labelings of the adjacent edges are
complementary. In the puzzle, a triangle with vertex
upwards can only be placed beside a triangle with vertex
downwards, and vice versa. Thus, we need three constraints,
declaring that a triangle is connected to another triangle at
the left, bottom or right edge, respectively, where left,
bottom and right refers to the triangle with vertex upwards
(this convention is arbitrary). For example, the constraint
defined by

(DEFCONSTRAINT
(:NAME CONNECTED-LEFT)
(:TYPE PRIMITIVE)
(:INTERFACE TRIANGLE-1 TRIANGLE-2)
(:RELATION

(:PATTERN (TRIANGLE-1 TRIANGLE-2)
:IF (COMPLEMENT-P

(FIRST TRIANGLE-1)
(FIRST TRIANGLE-2))))

(:CONDITION
(CONSTRAINED-P

TRIANGLE-1 TRIANGLE-2)))

is satisfied, if the left edge labeling of the triangle with
vertex upwards matches the right edge labeling of the
triangle with vertex downwards.

The notation of intensional constraints is analogous to
the representation by tuples: The ith expression of a pattern
describes the value of the ith constraint variable, which is
trivial in the case of the CONNECTED-LEFT constraint
since they are equal. In general, it is possible to specify
arbitrary Lisp forms in a pattern (instead of just referring to
variables). In the example, the power of the pattern is
grounded in its additional condition (the expression
following :IF) which determines whether the pattern may be
applied or not.

In order to avoid errors during the pattern matching
process, the evaluation of a constraint can be suppressed
depending on the actual values of the variables. For
example, the CONNECTED-LEFT constraint must not be
evaluated if TRIANGLE-1 or TRIANGLE-2 is equal to the
keyword UNCONSTRAINED, which represents the
(possibly infinite) set of all domain values. This restriction
can be declared by a global condition associated with the
constraint, for instance:

(:CONDITION (CONSTRAINED-P
TRIANGLE-1 TRIANGLE-2)).

62 Tools

4 Evaluating Constraints

When a constraint is activated by the propagation control
unit, by another subsystem, or by the user (via a SATISFY
expression), some of its variables may already be associated
with sets of possible values. The system first computes all
combinations from these lists, setting the unconstrained
variables to UNCONSTRAINED.

Let the variables of the CONNECTED-LEFT constraint
be associated with the following variable coverings:

TRIANGLE-1: (((D TAIL) (S TAIL) (D HEAD)))

TRIANGLE-2: (((D HEAD) (S HEAD) (S TAIL))
((S TAIL) (D HEAD) (S HEAD)))

then two combinations are computed:

(((D TAIL) (S TAIL) (D HEAD))
((D HEAD) (S HEAD) (S TAIL)))

(((D TAIL) (S TAIL) (D HEAD))
((S TAIL) (D HEAD) (S HEAD)))

Each combination of values is matched with the
constraint elements in the following way. If the constraint
element under consideration is a tuple, its values are
compared with the corresponding values in the given
combination. If it is a pattern, its condition (if provided) is
evaluated first. If the condition evaluates to T or if no
condition is provided, then the rest of the pattern is evaluated
as follows: all atoms and expressions in the pattern are
evaluated and the computed values are compared with the
corresponding values in the given value combination.

In both cases, the matching process succeeds if for every
value in the given combination the following holds:

• it is equal to UNCONSTRAINED, or

it is equal to the corresponding value of the
constraint element.

Whenever the matching process succeeds, the computed
values are added to the resulting variable coverings. They are
returned after all value combinations have been matched with
all constraint elements, for example:

(SATISFY CONNECTED-LEFT :WITH
TRIANGLE-1 = ((D TAIL) (S TAIL) (D HEAD))
TRIANGLE-2 = (:ONE-OF

((D HEAD) (S HEAD) (S TAIL))
((S TAIL) (D HEAD) (S HEAD)))

>

((TRIANGLE-1 ((D TAIL) (S TAIL) (D HEAD)))
(TRIANGLE-2 ((D HEAD) (S HEAD) (S TAIL))))

Formally, the result of evaluating a constraint C can be
denoted as follows. Let v1,...,vn be the input variable
coverings for C and R be the set of constraint elements
(tuples or patterns) of C Then, the evaluation of C results
in

where

pr1.... n is used as a short form for the tuple of
projection functions (pr1,...,prn), for example
pr1,2((a,b), (c, d)} = ((a,c), {b,d}),and

R i n s t is the instantiated relation of C which is
obtained from R by evaluating the patterns with the
variables successively bound to elements from

5 Compiling Constraints

First, we wi l l revisit the above evaluation algorithm,
transforming the term which describes the result computed
by the algorithm.

This means that a constraint can be evaluated more
efficiently as it is sketched in the previous section.

Such an improvement presupposes that the constraint
relation is already instantiated. In general, this is not the
case, since patterns may occur as constraint elements. If all
constraint variables are used within at least one of these

Guesgen 63

patterns, one has to compute the Cartesian product between
the variables to obtain an instantiated relation, i.e. the
improvements concerning evaluation are lost.

Our idea to resolve this dilemma can be summarized as
follows: instead of answering the question "How can we
implement a program that evaluates an arbitrary CONSAT
constraint?", we are guided by the question "How can we
implement a program whose input is a constraint and which
produces a program that evaluates this particular constraint
optimally?".

In particular, a constraint is analyzed when it is defined
to determine whether or to which extension the Cartesian
product has to be computed during evaluation. As a result,
we obtain a procedure which minimizes the costs for
evaluating the constraint. For example, consider a constraint
with three variables and constraint elements that use only
two of them. Then, the costs for the evaluation of the
constraint can be reduced up to a factor k, where k is the
number of values in the covering of the non-used variable.

6 Constraint Networks
Constraint networks consist of a set of primitive constraints
or lower level constraint networks which are connected by
shared variables. They have the same i/o behavior as
primitive constraints, i.e. a constraint network is evaluated
with a variable coverings as input, and the result is set of
filtered variable coverings.

In particular, a constraint network contains constraints,
global variables, variable coverings, mappings between the
local constraint variables and the global network variables,
and an interface. The interface is a subset of the global
variables which may be associated with initial values.

For the definition of constraint networks, the same
constructs can be used as for primitive constraints. Consider,
e.g., the puzzle with the variables P1, P2,..., P9, each
variable representing a position where a triangle may be
placed, then the following definition specifies the constraint
network which describes the relationships that must be
maintained in order to solve the puzzle:

(DEFCONSTRAINT
(:NAME NINE-PUZZLE)
(:TYPE COMPOUND)
(:INTERFACE P1 P2 P3 ...)
(:CONSTRAINT-EXPRESSIONS

(TRIANGLE P1) (TRIANGLE P2)...

(CONNECTED-MIDDLE P1 P3)
(CONNECTED-RIGHT P2 P3)...

(DIFFERENT-TRIANGLES P1 P2)
(DIFFERENT-TRIANGLES P1 P3) ...))

The mapping of global network variables to local
constraint variables is given implicitly in the above
definition. Similar to a function call in Lisp, the expression
(CONNECTED-MIDDLE P1 P3), e.g., means that P1 and
P3 are mapped to the local variables TRIANGLE-1 and

TRIANGLE-2 of the CONNECTED-MIDDLE constraint,
respectively.

Since constraint networks work just like primitive
constraints (viewing them just from their i/o behavior),
hierarchies of constraints and constraint networks can be
built straightforwardly by referring to constraint networks
rather than to primitive constraints within another
constraint network. A consequence of this method is that
recursive constraint networks can be defined, e.g. by
referring to a network within the network itself.

7 Satisfying Constraint Networks
The standard control strategy of CONSAT is based on local
propagation: when a constraint network is activated (via the
above introduced SATISFY) with initial values for some
interface variables, the constraints which are imposed on
these variables are evaluated. The result of the evaluation is
propagated to their neighboring constraints, and so on. The
activation process terminates when no further changes of the
variables are carried out. Since the variables arc filtered by
the constraints, the propagation process always stops in the
case of non-recursive constraint networks (cf. [Guesgen,
Hertzberg 1988]). The values of the interface variables are
returned as a result of the local propagation process.

Local propagation computes local consistency which is
insufficient in some cases (as, e.g., for the above introduced
puzzle). Thus, CONSAT provides further control strategies
for obtaining global consistency, one of them is a
combination of local propagation and backtracking (LPB). If
the result of local propagation is not unique, LPB sets a
choice point, i.e. a value is selected from a variable
covering, guided by some simple heuristics. Then, local
propagation is started again, followed by setting another
choice point, and so on. If an inconsistency has been
detected during local propagation, or if a unique solution has
been found but further solutions are requested (the user can
limit the number of solutions to be computed), a choice
point is backtracked and another choice point is set. The
algorithm breaks off when a sufficient number of solutions
has been computed or no further choice points can be set.

The application of the LPB algorithm to the NINE-
PUZZLE constraint network yields the following solution:

(SATISFY NINE-PUZZLE :GLOBALLY 1)

(((P1 ((T TAIL) (D TAIL) (D HEAD)))
(P2 ((D HEAD) (D TAIL) (T TAIL)))
(P3 ((T TAIL) (D HEAD) (T HEAD)))
(P4 ((T HEAD) (S HEAD) (T TAIL)))
(P5 ((D HEAD) (T TAIL) (T HEAD)))
(P6 ((S HEAD) (D HEAD) (T TAIL)))
(P7 ((S TAIL) (D HEAD) (D TAIL)))
(P8 ((S HEAD) (S TAIL) (D HEAD)))
(P9 ((S TAIL) (S HEAD) (T TAIL)))))

A (straightforward) Prolog program seems also to be
adequate to model the puzzle. However, the search space of
such a program is orders of magnitude larger than the search

64 Tools

space CONSAT actually needs. The reason is that local
propagation (applied after setting a choice point) can reduce
the depth of the search tree by a factor 2.

Besides LPB, another control strategy is provided by
CONSAT. This strategy is based on local propagation and
uses indices to maintain relationships between values during
the propagation process. It is beyond the scope of this paper
to describe this method in detail. A more detailed description
can be found in [Guesgen 1989].

8 Conclusion
The purpose of this paper was to introduce the constraint
system CONSAT, which combines the advantages of a
domain-independent programming language a la [Steele
1980] and the efficient problem solving control strategy
from [Waltz 1972].

In particular, CONSAT can handle arbitrary domains,
i.e. the constraint variables may be associated with any kind
of values. Sets of possible values rather than single values
are propagated through constraint networks. Thus, CONSAT
can be applied

to compute values for the undetermined variables
from the set of given variables,

to test consistency of values, or

to filter the sets of possible values, i.e. to remove
inconsistent values from these sets.

Several ways to represent relations are provided. Finite
relations can be represented by enumerating the extension of
the relation. Infinite relations can be described intensionally
by patterns. More complex relations can be represented by
constraint networks and hierarchies of constraint networks.
Besides local propagation as control strategy, CONSAT
provides two mechanisms for obtaining globally consistent
solutions.

CONSAT is used in several applications, for example,
in a system for process diagnosis [Voss 1988], where
constraints arc applied to maintain functional relationships
in physical units, and in the musical domain [Lischka,
Guesgen 1986], where the harmonization of chorals is
supported by constraint propagation.

Beyond that, CONSAT was incorporated into the hybrid
knowledge representation system BABYLON in order to use
constraints together with rules, frames, and Prolog [Guesgen
el al. 1987] which turned out to be most useful.

Acknowledgements
Thanks to the members of the Expert System Research
Group in GMD who contributed to this paper, especially
thanks to Ursula Bernhard and Marc Linster who read former
versions. Ulrich Junker modelled the puzzle and helped to
implement and to test CONSAT. The partners of the TEX-B
project discussed many of the ideas introduced in this paper.

References
[Freuder 1982]

E. C. Freuder: A Sufficient Condition for Backtrack-Free
Search. Journal of the ACM 29 (1982) 24-32.

[Guesgen 1989]
H.W. Guesgen: CONSAT — A System for Constraint
Satisfaction. Research Notes in Artificial Intelligence,
London: Pitman, 1989 (to appear).

[Guesgen etal. 1987]
H.W. Guesgen, U. Junker, A. Voss: Constraints in a
Hybrid Knowledge Representation System. In:
Proceedings of the IJCAI87, Milan, Italy, 1987, 30-33.

[Guesgen, Hertzberg 1988]
H.W. Guesgen, J. Hertzberg: Some Fundamental
Properties of Local Constraint Propagation. Artificial
Intelligence 36 (1988) 237-247.

[Lischka, Guesgen 1986]
C. Lischka, H.W. Guesgen: M v S I C — A
Constrained-Based Approach to Musical Knowledge
Representation. In: Proceedings of the International
Computer Music Conference 86, The Hague, The
Netherlands, 1986, 227-229.

[Mackworth 1977]
A. K. Mackworth: Consistency in Networks of
Relations. Artificial Intelligence 8 (1977) 99-118.

[Steele 1980]
G.L. Steele: The Definition and Implementation of a
Computer Programming Language Based on Constraints.
Technical Report AI-TR-595, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1980.

[Voss 1988]
H. Voss: Architectural Issues for Expert Systems in
Real-Time Control. To appear in: Proceedings of the 1st
IF AC Workshop Artificial Intelligence in Real-Time
Control, 1988.

[Waltz 1972]
D.L. Waltz: Generating Semantic Descriptions from
Drawings of Scenes with Shadows. Technical Report AI-
TR-271, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1972.

Guesgen 65

