
Domain Dependence in Parallel Constraint Satisfaction
Paul R. Cooper and Michael J. Swain

Department of Computer Science
University of Rochester

Rochester, New York 14627
cooper@cs.rochester.edu, swain@cs.rochester.edu

Abst rac t
We describe a general technique for express­
ing domain knowledge in constraint satisfaction
problems, and using it to develop optimized
parallel arc consistency algorithms for the solu­
tion of problems in the domain. The technique
is applied to reduce the space complexity of the
the massively parallel AC Chip algorithm. Re­
sults of the optimizations are shown for an ob­
ject recognition domain in which they reduce
the complexity of the chip by many orders of
magnitude. The technique can be applied anal­
ogously to reduce the time complexity of the
uniprocessor arc consistency algorithm AC-4.

1 In t roduc t ion
When a problem domain is known in advance, it is pos­
sible to exploit characteristics of the domain in order to
simplify algorithms working within that domain. In AI
this approach has often been used to generate unprin­
cipled heuristic solutions whose generality is ill-defined.
But more principled approaches to domain constraint
exploitation also exist. For example, Mackworth et al
[1985] show how hierarchic domains can be exploited in
the solution of constraint satisfaction problems.

In this paper we show how to exploit domain informa­
tion about arbitrary domains to generate improved arc
consistency algorithms for constraint satisfaction prob­
lems (CSP's). A typical CSP is described by a set of
nodes, a set of labels for the nodes, and unary and bi­
nary constraint predicates P and Q. Solving the con­
straint satisfaction problem involves finding a set of
labels for the nodes that is consistent with the con­
straints. Arc consistency is a technique for eliminating
solutions that are locally inconsistent [Mackworth, 1977,
Mackworth and Freuder, 1985, Mohr and Henderson,
1986]. We have previously developed a massively parallel
algorithm for arc consistency that can be implemented
directly in VLSI. This algorithm is called the AC Chip,
and is closely related to the uniprocessor algorithm AC-
4 [Mohr and Henderson, 1986]. The AC Chip finds arc
consistent solutions to constraint satisfaction problems
almost instantaneously, at the cost of a quadratic space
complexity [Swain and Cooper, 1988].

This space complexity can be reduced by specializing

the algorithm to accept problems from a restricted do­
main of all possible CSP's. To accomplish this, domain
knowledge is expressed as meta-constraints on the con­
straint predicates P and Q. We describe a circuit mini­
mization algorithm, Circ-Min, that takes such a domain
description and produces an optimized constraint satis­
faction circuit for that domain. The algorithm performs
a set of optimizations that may reduce the numbers of
gates needed by orders of magnitude. We illustrate the
process with results from an example domain we are
studying, the recognition of Tinkertoy objects from their
compositional structure [Cooper and Hollbach, 1987,
Cooper, 1988, Swain and Cooper, 1988]. Space complex­
ity improvements for the AC Chip algorithm can also be
translated to time complexity improvements in AC-4.

2 Prob lem Formulat ion

A particular problem or class of problems is formulated
as a constraint satisfaction problem by defining the el­
ements of the general constraint satisfaction problem in
terms of the specific application being investigated. That
is, a set of nodes and a set of labels must be defined in
terms of the problem at hand. Likewise, the unary and
binary predicates P and Q must be defined in terms rel­
evant to the application problem.

For illustrative purposes, consider as an example prob­
lem the recognition of Tinkertoy stick figures such as the
"horse" in Figure 1. Tinkertoy objects consist of disks
attached by connecting rods of differing lengths. The
rods are plugged into slots on the junction disks (Fig­
ure 2). In the Tinkertoy recognition problem, structural
descriptions derived from an image must be matched to
stored descriptions in a model base. This matching prob­
lem is posed as a CSP by using the nodes in the CSP
to represent the parts of the image description, and the
labels in the CSP to represent the parts of the corre­
sponding model description. A unique solution to the
CSP then indicates a unique correspondence between the
parts of the object and model. In the following examples,
we define the rods and slots of the Tinkertoy descriptions
to be the primitive parts.

To complete the formulation of Tinkertoy matching
as a CSP, the unary and binary constraints are de­
fined in terms of properties of the nodes and labels as
follows[Swain and Cooper, 1988]:

54 Tools

3 Domain Descr ipt ion
If the space of input problem instances is in some way
restricted, the potent ia l for specialized and more effi­
cient solut ion algori thms exists. A problem domain is
jus t such a restricted set of problem instances. Domains
can be thought of as classes of problem instances w i th
invariant properties. Consider for example the Tinker-
toy matching problem as framed above. For all problem
instances, it is never the case that a rod can match a
slot. To exploi t such characteristics in general requires
a domain description language.

The purpose of the domain description is to represent
invariant properties that hold over different problem in ­
stances. In constraint satisfaction problems, the nodes
and labels are the entities that can have properties. In a
T inker toy problem instance, the node t might represent a
rod par t , and thus have the property rod{i). If the node
i is used to represent a rod part for al l problem instances,
rod(i) is a property invariant for al l problem instances.
Note that the mapping between Tinker toy parts and the
nodes of the CSP must mainta in the invariant property

Figure 2: Example Slots (Rod Attachment Points) on
Tinker Toy Disk

across problem instances. It is straightforward to ar­
range that a certain subset of nodes represent rods and
a different subset of nodes represent slots for all problem
instances.

Once an invariant is established in this way, it can be
conveniently described w i th a three-valued meta-term.
A meta-term C is defined in terms of an object prop­
erty C as follows. By defining a domain as a (possibly
inf ini te) set 6 and designating problem instances as a,

Invariants in a domain are, of course, represented by
those meta-properties that evaluate to t or f. For exam­
ple, rod'(i) would be t if rod(i) was true for all problem
instances in the domain. Many properties wi l l not be
invariant, and their meta-description wi l l evaluate to u.

Once the meta-terms describing the invariants are de­
fined, it is a simple matter to define meta-predicates P'
and Q'. These are exactly the same as the unary and
binary constraint predicates P and Q, w i t h meta-terms
used in place of the object terms of P and Q. The meta-

!
dedicates are evaluated w i th Kleene's three-valued logic
Turner, 1984]. Consider for example:

Domain invariants can exploited when the meta-
predicates P' or Q' evaluate as invariant on some argu­
ments. As a concrete example, consider the meta unary
predicate P ' (i , x) for some i where rod(i) is always true

Cooper and Swain 55

A solution to the CSP framed in this way constitutes a
correspondence between a T inker toy object and model.
But these definit ions provide no restrictions on the prob­
lem instances that can arise, so the result ing CSP st i l l
requires a solut ion a lgor i thm of complete generality.

(rod'(i) = t) , and for some x where slot(x) is always
true. Because a rod does not correctly correspond to
a slot, the predicate P (i , x) w i l l evaluate to f for all
problem instances (P ' (i , x) = f) . Th is fact is known
in advance of runt ime, and can be exploited in develop­
ing the algor i thms to solve the CSP in this domain. We
demonstrate this opt imizat ion w i th a part icular parallel
a lgor i thm for arc consistency, the AC Chip .

4 The AC Chip
The AC Chip is a massively parallel d ig i ta l circuit that
computes arc consistency in worst case t ime 0(na). The
design is based upon the un i t / va lue principle [Barlow,
1972, Ba l la rd , 1986], and is l imi ted to comput ing prob­
lems of m a x i m u m size n nodes and a labels. In short, the
impor tan t parts of the design are an expl ic i t representa­
t ion of every value of the P and Q predicates in flip-flops,
and combinat ional c i rcui t ry tha t eliminates inconsistent
label candidates by implement ing the equation:

There are two arrays of flip-flops, u(i,x) and v{i,j,x,y)
corresponding to the predicates P and Q respectively.
The circui t for one candidate label ing (one element of
P (i , x)) is given in Figure 3.

The gates that implement the above expression are
designated, f rom the inside of the expression to the out­
side, a n d gates A(i, j, x, y) , or gates B(i, j, x) , a n d gates
C (i , x) and n o t gates D (i , x) . They are labeled in F ig­
ure 3. Identical c i rcui t ry exists for al l na flip flops in the

array representing P. More details concerning the AC
Chip may be found in Swain and Cooper [1988].

For the matching problem we investigate below, a =
n = 29. To solve such a problem the general purpose
AC Chip would require 1.4 mi l l ion gates, already a very
large chip! The domain opt imizat ions described in the
next section reduce this value to 66,000.

5 Opt im iz ing the A l g o r i t h m for the
Domain

If the meta-predicates P' or Q' are t or f for some ar­
guments, this translates to fl ip-flops which are always on
or o f f in the AC Chip arc consistency a lgor i thm. System­
atical ly modi fy ing the circuit to exploi t the ramifications
of these constants constitutes the domain dependent op­
t imizat ion of the a lgor i thm. For example, if for some i
and x P ' (i , x) is f, the entire circui t of Figure 3 is not
required for the u(i, x) element. The a lgor i thm that per­
forms these simpli f ications in general is given in Figure 4,
and is called Circ_Min.

Circ_Min consists of five phases: P elimina­
tion, Q elimination, Replace-By-Hierarchical-Gates,
Merge-WithSame-Inputs, and Flatten-Hierarchies.

P-eliminatton deletes any flip-flops u(i,x) that repre­
sent impossible candidate labels along w i th the trees of
gates that feed into them. Q elimination removes type
A a n d gates that are not necessary and replaces each
one by a wire when Q' == t r u e . These two opt imizat ions
are often the most impor tan t .

The purpose of the remaining three procedures is to
factor out common sub-terms in the circuit and el imi­
nate the redundant c i rcui t ry that computes them. The
procedure Replace_By-HierarchicaLGates replaces a sin-
gle gate by a hierarchy of gates in the pattern set by

56 Tools

the template or_hier (for or gates) or and-hier (for a n d
gates) (Figure 5). These hierarchies are supplied by the
user, and represent addi t ional description of the domain.
The hierarchy must correspond to natural groupings of
the labels for hierarchical gate replacement to enable
more wires to be el iminated in the merge phase. The
procedure Merge-With_Same-Inputs replaces redundant
gates by one gate (thus also e l iminat ing redundant in­
put wires), and wires the output appropriately to the
mul t ip le places it is used (Figure 6). Final ly, the pro-
cedure FIatten-Hierarchy replaces hierarchies of gates
of the same type w i t h funct ional ly equivalent mul t ip le-
input gates. Flatten-Hierarchy thus inverts the funct ion
of Replace.by .Hierarchical-Gates where it is st i l l possible
after common subterms have been el iminated (Figure 7).
It is reasonable to apply this funct ion only to minimize
the number of gates and wires. If other complexity mea­
sures (wire length or wire crossings) are impor tant , the
funct ional i ty of Flatten-Hierarchy might be undesirable.

The procedure Recursive-Delete deletes the gate that
is its argument, and recursively deletes any gates which
become redundant by its deletion because they have no
inputs or no outputs.

A n a l y s i s a n d P e r f o r m a n c e

The correctness of the a lgor i thm can be determined by
not ing tha t each transformat ion converts one or more
gates into an equivalent set of gates. Therefore, the
funct ion of the AC circuit is preserved throughout the
a lgor i thm.

A straight- forward analysis shows that the a lgor i thm
takes 0(a2n2) t ime and space. Since the circuit re­
duct ion a lgor i thm is run offline, the exact value of its
complexity is not impor tant . However, it should be
noted that the a lgor i thm does not need combinatorial
resources; in fact it needs t ime and space linear in the
original size of the AC circui t .

Circ-Min may reduce the complexity of an AC circuit
by orders of magni tude. For instance, for T inker toy do-

Phases of Reduction

Figure 8: Example Circuit Optimization Results
Tinkertoy domain problem: 5 rods, 3 disks, 8 slots
Reduction Phases:
1: P flip-flop el iminat ion
2: Q flip-flop el iminat ion
3: gate merging
4: hierarchical gate subst i tut ion

main problems w i th a number of disks d, number of rods
r, and number of slots per disk s, the number of gates
is reduced from almost 2(r + ds)4 to about 2r2d'2s2. For
the Tinkertoy domain wi th a max imum of 5 rods and
3 disks, each wi th 8 slots, this is a twenty-fold decrease
(see Figure 8).

Figure 9 gives part of the reduced circuit for a Tinker-
toy matching problem w i th at most 3 rods and 3 disks,
w i t h 2 slots per disk. The Figure gives the input circuit
to a single target candidate labeling - the match of slot
1 on disk 1 of the object, to slot 2 of disk 3 of the model.
This candidate labeling is shaded in Figure 9.

In the figure, the square and rectangular boxes repre­
sent the array of flip-flops u(i,x) (holding P(i,x)) and
the array of flip-flops v(i,j, x,y) (holding Q(i,j,x,y))
respectively. W i t h no opt imizat ions, the circuit would
look everywhere as it does in the lower left corner of the
Figure. But all four types of opt imizat ions have been
performed. P-elimination has eliminated u(i, x) flip flops
(and their associated circui try) f rom the upper left-hand
corner and lower r ight-hand corners of the u(i,x) array.
Q el iminat ion has el iminated the v(i,j,x,y) flip flops
associated w i th all of the slot-slot matches. Slot-slot
matches have been be divided into two groups - those
compatible w i th the target candidate labeling (Q' = t) ,
and those incompatible w i th the target candidate label­
ing {Q' = f) . Only those that are compatible have an
output wire and can affect the consistency of the candi­
date labeling. Because of gate merging the same or gates
shown in the diagram that are receiving input from the
slot-slot matches feed to many other slot-slot matches.
Hierarchical gate subst i tut ion has broken these or gates
into a two-level hierarchy, w i th slots f rom the same disk

Cooper and Swain 57

Figure 9: Reduced circuit for slot-slot Tinkertoy match

58 Tools

grouped together at the lower level.
We do not claim to be able to generate the opti­

mal (most reduced) circuit for any problem. Domain
knowledge not expressed in the meta-predicates might
be exploitable [Cooper and Swain, 1988], or subtle opti­
mizations not discovered by Circ_Min might be feasible.
Since, in general, circuit optimization is a difficult prob­
lem and must be approached heuristically [Brayton et
al, 1984], we do not expect there to be a tractable algo­
rithm that finds the optimal circuit.

Because of the close relationship between the sequen­
tial arc consistency algorithm AC-4 [Mohr and Hender­
son, 1986] and the AC-Chip, the domain specific opti­
mizations which reduce the space complexity of the AC
Chip algorithm can be used to reduce the time complex­
ity of AC-4, by modifying AC-4 so that it simulates the
optimized chip [Cooper and Swain, 1988].

6 Conclusions
We have shown how to exploit information about arbi­
trary problem domains in order to generate more effi­
cient arc consistency algorithms for constraint satisfac­
tion problems in the domain. The domain description is
formalized as meta-predicates whose purpose is to rep­
resent invariant properties of domain problem instances.
The meta-predicates are the input to an algorithm that
produces an optimized Arc Consistency (AC) Chip that
may have space complexity many orders of magnitude
lower than the general-purpose AC Chip. Because of
the close relationship between the AC Chip and sequen­
tial arc consistency algorithm AC-4, the time complexity
of AC-4 can be reduced by the same technique.

Acknowledgements
This work was supported by a Canadian NSERC post­
graduate scholarship, by the Air Force Systems Com­
mand, Rome Air Development Center, Griffis Air Force
Base, New York 13441-15700 and the Air Force Office
of Scientific Research, Boiling AFB, DC 20332 under
Contract No. F30602-85-C-0008. The latter contract
support the Northeast Artificial Intelligence Consortium
(NAIC).

References
[Ballard, 1986] Dana H. Ballard. Cortical connections

and parallel processing: An alternative model for cog­
nitive science. Behavioral and Brain Sciences, 9(1):67-
120,1986.

[Barlow, 1972] H. B. Barlow. Single units and sensa­
tion: A neuron doctrine for perceptual psychology?
Perception, 1:371-394, 1972.

[Brayton et al, 1984] Robert K. Brayton, Gary D.
Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algo­
rithms for VLSI Synthesis. Kluwer Academic Pub­
lishers, 1984.

[Cooper and Hollbach, 1987] Paul R. Cooper and Su­
san C. Hollbach. Parallel recognition of objects com­

prised of pure structure. In Proceedings of the Image
Understanding Workshop, pages 381-391, 1987.

[Cooper and Swain, 1988] Paul R. Cooper
and Michael J. Swain. Parallelism and domain de­
pendence in constraint satisfaction. Technical Report
TR 255, Department of Computer Science, University
of Rochester, December 1988.

[Cooper, 1988] Paul R. Cooper. Structure recognition
by connectionist relaxation: Formal analysis. In
Proceedings: Conference of the Canadian Society for
Computational Studies of Intelligence, CSCSI-88, Ed­
monton, Alberta, June 1988.

[Freuder, 1978] Eugene C. Freuder. Synthesizing con­
straint expressions. Communications of the ACM,
21:958-966, 1978.

[Hinton, 1977] Geoffrey E. Hinton. Relaxation and Its
Role in Vision. PhD thesis, University of Edinburgh,
1977.

[Hummel and Zucker, 1983] Robert A. Hummel and
Steven W. Zucker. On the foundations of relaxation la­
beling processes. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, PAMI-5:267-287, 1983.

[Mackworth and Freuder, 1985] Alan K. Mackworth
and Eugene C. Freuder. The complexity of some poly­
nomial network consistency algorithms for constraint
satisfaction problems. Artif icial Intelligence, 25:65-74,
1985.

[Mackworth et al., 1985] Alan K. Mackworth, Jan A.
Mulder, and Will iam S. Havens. Hierarchical arc
consistency: Exploiting structured domains in con­
straint satisfaction problems. Computational Intelli-
gence, 1:118-126, 1985.

[Mackworth, 1977] Alan K. Mackworth. Consistency in
networks of relations. Artif icial Intelligence, 8:99-118,
1977.

[Mohr and Henderson, 1986] R. Mohr and T. C. Hen­
derson. Arc and path consistency revisited. Artificial
Intelligence, 28:225-233, 1986.

[Swain and Cooper, 1988] Michael J. Swain and Paul R.
Cooper. Parallel hardware for constraint satisfaction.
In Proceedings AAAI-88, the American Association
for Artif icial Intelligence Conference, St. Paul, Minn.,
August 1988.

[Turner, 1984] Raymond Turner. Logics for Artificial
Intelligence. Ellis Horwood Ltd., 1984.

[Waltz, 1975] D. Waltz. Understanding line drawings
of scenes with shadows. In P. H. Winston, editor,
The Psychology of Computer Vision, pages 19-91.
McGraw-Hill, 1975.

Cooper and Swain 59

