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Abst rac t 
We describe a general technique for express­
ing domain knowledge in constraint satisfaction 
problems, and using it to develop optimized 
parallel arc consistency algorithms for the solu­
tion of problems in the domain. The technique 
is applied to reduce the space complexity of the 
the massively parallel AC Chip algorithm. Re­
sults of the optimizations are shown for an ob­
ject recognition domain in which they reduce 
the complexity of the chip by many orders of 
magnitude. The technique can be applied anal­
ogously to reduce the time complexity of the 
uniprocessor arc consistency algorithm AC-4. 

1 In t roduc t ion 
When a problem domain is known in advance, it is pos­
sible to exploit characteristics of the domain in order to 
simplify algorithms working within that domain. In AI 
this approach has often been used to generate unprin­
cipled heuristic solutions whose generality is ill-defined. 
But more principled approaches to domain constraint 
exploitation also exist. For example, Mackworth et al 
[1985] show how hierarchic domains can be exploited in 
the solution of constraint satisfaction problems. 

In this paper we show how to exploit domain informa­
tion about arbitrary domains to generate improved arc 
consistency algorithms for constraint satisfaction prob­
lems (CSP's). A typical CSP is described by a set of 
nodes, a set of labels for the nodes, and unary and bi­
nary constraint predicates P and Q. Solving the con­
straint satisfaction problem involves finding a set of 
labels for the nodes that is consistent with the con­
straints. Arc consistency is a technique for eliminating 
solutions that are locally inconsistent [Mackworth, 1977, 
Mackworth and Freuder, 1985, Mohr and Henderson, 
1986]. We have previously developed a massively parallel 
algorithm for arc consistency that can be implemented 
directly in VLSI. This algorithm is called the AC Chip, 
and is closely related to the uniprocessor algorithm AC-
4 [Mohr and Henderson, 1986]. The AC Chip finds arc 
consistent solutions to constraint satisfaction problems 
almost instantaneously, at the cost of a quadratic space 
complexity [Swain and Cooper, 1988]. 

This space complexity can be reduced by specializing 

the algorithm to accept problems from a restricted do­
main of all possible CSP's. To accomplish this, domain 
knowledge is expressed as meta-constraints on the con­
straint predicates P and Q. We describe a circuit mini­
mization algorithm, Circ-Min, that takes such a domain 
description and produces an optimized constraint satis­
faction circuit for that domain. The algorithm performs 
a set of optimizations that may reduce the numbers of 
gates needed by orders of magnitude. We illustrate the 
process with results from an example domain we are 
studying, the recognition of Tinkertoy objects from their 
compositional structure [Cooper and Hollbach, 1987, 
Cooper, 1988, Swain and Cooper, 1988]. Space complex­
ity improvements for the AC Chip algorithm can also be 
translated to time complexity improvements in AC-4. 

2 Prob lem Formulat ion 

A particular problem or class of problems is formulated 
as a constraint satisfaction problem by defining the el­
ements of the general constraint satisfaction problem in 
terms of the specific application being investigated. That 
is, a set of nodes and a set of labels must be defined in 
terms of the problem at hand. Likewise, the unary and 
binary predicates P and Q must be defined in terms rel­
evant to the application problem. 

For illustrative purposes, consider as an example prob­
lem the recognition of Tinkertoy stick figures such as the 
"horse" in Figure 1. Tinkertoy objects consist of disks 
attached by connecting rods of differing lengths. The 
rods are plugged into slots on the junction disks (Fig­
ure 2). In the Tinkertoy recognition problem, structural 
descriptions derived from an image must be matched to 
stored descriptions in a model base. This matching prob­
lem is posed as a CSP by using the nodes in the CSP 
to represent the parts of the image description, and the 
labels in the CSP to represent the parts of the corre­
sponding model description. A unique solution to the 
CSP then indicates a unique correspondence between the 
parts of the object and model. In the following examples, 
we define the rods and slots of the Tinkertoy descriptions 
to be the primitive parts. 

To complete the formulation of Tinkertoy matching 
as a CSP, the unary and binary constraints are de­
fined in terms of properties of the nodes and labels as 
follows[Swain and Cooper, 1988]: 
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3 Domain Descr ipt ion 
If the space of input problem instances is in some way 
restricted, the potent ia l for specialized and more effi­
cient solut ion algori thms exists. A problem domain is 
jus t such a restricted set of problem instances. Domains 
can be thought of as classes of problem instances w i th 
invariant properties. Consider for example the Tinker-
toy matching problem as framed above. For all problem 
instances, it is never the case that a rod can match a 
slot. To exploi t such characteristics in general requires 
a domain description language. 

The purpose of the domain description is to represent 
invariant properties that hold over different problem in ­
stances. In constraint satisfaction problems, the nodes 
and labels are the entities that can have properties. In a 
T inker toy problem instance, the node t might represent a 
rod par t , and thus have the property rod{i). If the node 
i is used to represent a rod part for al l problem instances, 
rod(i) is a property invariant for al l problem instances. 
Note that the mapping between Tinker toy parts and the 
nodes of the CSP must mainta in the invariant property 

Figure 2: Example Slots (Rod Attachment Points) on 
Tinker Toy Disk 

across problem instances. It is straightforward to ar­
range that a certain subset of nodes represent rods and 
a different subset of nodes represent slots for all problem 
instances. 

Once an invariant is established in this way, it can be 
conveniently described w i th a three-valued meta-term. 
A meta-term C is defined in terms of an object prop­
erty C as follows. By defining a domain as a (possibly 
inf ini te) set 6 and designating problem instances as a, 

Invariants in a domain are, of course, represented by 
those meta-properties that evaluate to t or f. For exam­
ple, rod'(i) would be t if rod(i) was true for all problem 
instances in the domain. Many properties wi l l not be 
invariant, and their meta-description wi l l evaluate to u. 

Once the meta-terms describing the invariants are de­
fined, it is a simple matter to define meta-predicates P' 
and Q'. These are exactly the same as the unary and 
binary constraint predicates P and Q, w i t h meta-terms 
used in place of the object terms of P and Q. The meta-

!
dedicates are evaluated w i th Kleene's three-valued logic 
Turner, 1984]. Consider for example: 

Domain invariants can exploited when the meta-
predicates P' or Q' evaluate as invariant on some argu­
ments. As a concrete example, consider the meta unary 
predicate P ' ( i , x) for some i where rod(i) is always true 

Cooper and Swain 55 

A solution to the CSP framed in this way constitutes a 
correspondence between a T inker toy object and model. 
But these definit ions provide no restrictions on the prob­
lem instances that can arise, so the result ing CSP st i l l 
requires a solut ion a lgor i thm of complete generality. 



(rod'(i) = t ) , and for some x where slot(x) is always 
true. Because a rod does not correctly correspond to 
a slot, the predicate P ( i , x) w i l l evaluate to f for all 
problem instances ( P ' ( i , x) = f ) . Th is fact is known 
in advance of runt ime, and can be exploited in develop­
ing the algor i thms to solve the CSP in this domain. We 
demonstrate this opt imizat ion w i th a part icular parallel 
a lgor i thm for arc consistency, the AC Chip . 

4 The AC Chip 
The AC Chip is a massively parallel d ig i ta l circuit that 
computes arc consistency in worst case t ime 0(na). The 
design is based upon the un i t / va lue principle [Barlow, 
1972, Ba l la rd , 1986], and is l imi ted to comput ing prob­
lems of m a x i m u m size n nodes and a labels. In short, the 
impor tan t parts of the design are an expl ic i t representa­
t ion of every value of the P and Q predicates in flip-flops, 
and combinat ional c i rcui t ry tha t eliminates inconsistent 
label candidates by implement ing the equation: 

There are two arrays of flip-flops, u(i,x) and v{i,j,x,y) 
corresponding to the predicates P and Q respectively. 
The circui t for one candidate label ing (one element of 
P ( i , x ) ) is given in Figure 3. 

The gates that implement the above expression are 
designated, f rom the inside of the expression to the out­
side, a n d gates A(i, j, x, y ) , or gates B(i, j, x ) , a n d gates 
C ( i , x ) and n o t gates D ( i , x ) . They are labeled in F ig­
ure 3. Identical c i rcui t ry exists for al l na flip flops in the 

array representing P. More details concerning the AC 
Chip may be found in Swain and Cooper [1988]. 

For the matching problem we investigate below, a = 
n = 29. To solve such a problem the general purpose 
AC Chip would require 1.4 mi l l ion gates, already a very 
large chip! The domain opt imizat ions described in the 
next section reduce this value to 66,000. 

5 Opt im iz ing the A l g o r i t h m for the 
Domain 

If the meta-predicates P' or Q' are t or f for some ar­
guments, this translates to fl ip-flops which are always on 
or o f f in the AC Chip arc consistency a lgor i thm. System­
atical ly modi fy ing the circuit to exploi t the ramifications 
of these constants constitutes the domain dependent op­
t imizat ion of the a lgor i thm. For example, if for some i 
and x P ' ( i , x ) is f, the entire circui t of Figure 3 is not 
required for the u(i, x) element. The a lgor i thm that per­
forms these simpli f ications in general is given in Figure 4, 
and is called Circ_Min. 

Circ_Min consists of five phases: P elimina­
tion, Q elimination, Replace-By-Hierarchical-Gates, 
Merge-WithSame-Inputs, and Flatten-Hierarchies. 

P-eliminatton deletes any flip-flops u(i,x) that repre­
sent impossible candidate labels along w i th the trees of 
gates that feed into them. Q elimination removes type 
A a n d gates that are not necessary and replaces each 
one by a wire when Q' == t r u e . These two opt imizat ions 
are often the most impor tan t . 

The purpose of the remaining three procedures is to 
factor out common sub-terms in the circuit and el imi­
nate the redundant c i rcui t ry that computes them. The 
procedure Replace_By-HierarchicaLGates replaces a sin-
gle gate by a hierarchy of gates in the pattern set by 
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the template or_hier (for or gates) or and-hier (for a n d 
gates) (Figure 5). These hierarchies are supplied by the 
user, and represent addi t ional description of the domain. 
The hierarchy must correspond to natural groupings of 
the labels for hierarchical gate replacement to enable 
more wires to be el iminated in the merge phase. The 
procedure Merge-With_Same-Inputs replaces redundant 
gates by one gate (thus also e l iminat ing redundant in­
put wires), and wires the output appropriately to the 
mul t ip le places it is used (Figure 6). Final ly, the pro-
cedure FIatten-Hierarchy replaces hierarchies of gates 
of the same type w i t h funct ional ly equivalent mul t ip le-
input gates. Flatten-Hierarchy thus inverts the funct ion 
of Replace.by .Hierarchical-Gates where it is st i l l possible 
after common subterms have been el iminated (Figure 7). 
It is reasonable to apply this funct ion only to minimize 
the number of gates and wires. If other complexity mea­
sures (wire length or wire crossings) are impor tant , the 
funct ional i ty of Flatten-Hierarchy might be undesirable. 

The procedure Recursive-Delete deletes the gate that 
is its argument, and recursively deletes any gates which 
become redundant by its deletion because they have no 
inputs or no outputs. 

A n a l y s i s a n d P e r f o r m a n c e 

The correctness of the a lgor i thm can be determined by 
not ing tha t each transformat ion converts one or more 
gates into an equivalent set of gates. Therefore, the 
funct ion of the AC circuit is preserved throughout the 
a lgor i thm. 

A straight- forward analysis shows that the a lgor i thm 
takes 0(a2n2) t ime and space. Since the circuit re­
duct ion a lgor i thm is run offline, the exact value of its 
complexity is not impor tant . However, it should be 
noted that the a lgor i thm does not need combinatorial 
resources; in fact it needs t ime and space linear in the 
original size of the AC circui t . 

Circ-Min may reduce the complexity of an AC circuit 
by orders of magni tude. For instance, for T inker toy do-

Phases of Reduction 

Figure 8: Example Circuit Optimization Results 
Tinkertoy domain problem: 5 rods, 3 disks, 8 slots 
Reduction Phases: 
1: P flip-flop el iminat ion 
2: Q flip-flop el iminat ion 
3: gate merging 
4: hierarchical gate subst i tut ion 

main problems w i th a number of disks d, number of rods 
r, and number of slots per disk s, the number of gates 
is reduced from almost 2(r + ds)4 to about 2r2d'2s2. For 
the Tinkertoy domain wi th a max imum of 5 rods and 
3 disks, each wi th 8 slots, this is a twenty-fold decrease 
(see Figure 8). 

Figure 9 gives part of the reduced circuit for a Tinker-
toy matching problem w i th at most 3 rods and 3 disks, 
w i t h 2 slots per disk. The Figure gives the input circuit 
to a single target candidate labeling - the match of slot 
1 on disk 1 of the object, to slot 2 of disk 3 of the model. 
This candidate labeling is shaded in Figure 9. 

In the figure, the square and rectangular boxes repre­
sent the array of flip-flops u(i,x) (holding P(i,x)) and 
the array of flip-flops v(i,j, x,y) (holding Q(i,j,x,y)) 
respectively. W i t h no opt imizat ions, the circuit would 
look everywhere as it does in the lower left corner of the 
Figure. But all four types of opt imizat ions have been 
performed. P-elimination has eliminated u(i, x) flip flops 
(and their associated circui try) f rom the upper left-hand 
corner and lower r ight-hand corners of the u(i,x) array. 
Q el iminat ion has el iminated the v(i,j,x,y) flip flops 
associated w i th all of the slot-slot matches. Slot-slot 
matches have been be divided into two groups - those 
compatible w i th the target candidate labeling (Q' = t ) , 
and those incompatible w i th the target candidate label­
ing {Q' = f ) . Only those that are compatible have an 
output wire and can affect the consistency of the candi­
date labeling. Because of gate merging the same or gates 
shown in the diagram that are receiving input from the 
slot-slot matches feed to many other slot-slot matches. 
Hierarchical gate subst i tut ion has broken these or gates 
into a two-level hierarchy, w i th slots f rom the same disk 
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Figure 9: Reduced circuit for slot-slot Tinkertoy match 
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grouped together at the lower level. 
We do not claim to be able to generate the opti­

mal (most reduced) circuit for any problem. Domain 
knowledge not expressed in the meta-predicates might 
be exploitable [Cooper and Swain, 1988], or subtle opti­
mizations not discovered by Circ_Min might be feasible. 
Since, in general, circuit optimization is a difficult prob­
lem and must be approached heuristically [Brayton et 
al, 1984], we do not expect there to be a tractable algo­
rithm that finds the optimal circuit. 

Because of the close relationship between the sequen­
tial arc consistency algorithm AC-4 [Mohr and Hender­
son, 1986] and the AC-Chip, the domain specific opti­
mizations which reduce the space complexity of the AC 
Chip algorithm can be used to reduce the time complex­
ity of AC-4, by modifying AC-4 so that it simulates the 
optimized chip [Cooper and Swain, 1988]. 

6 Conclusions 
We have shown how to exploit information about arbi­
trary problem domains in order to generate more effi­
cient arc consistency algorithms for constraint satisfac­
tion problems in the domain. The domain description is 
formalized as meta-predicates whose purpose is to rep­
resent invariant properties of domain problem instances. 
The meta-predicates are the input to an algorithm that 
produces an optimized Arc Consistency (AC) Chip that 
may have space complexity many orders of magnitude 
lower than the general-purpose AC Chip. Because of 
the close relationship between the AC Chip and sequen­
tial arc consistency algorithm AC-4, the time complexity 
of AC-4 can be reduced by the same technique. 
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