
Single-Agent Parallel Window Search:
A Summary of Results *

C u r t Powley and Richard E. K o r f
Computer Science Department

University of California, Los Angeles
Los Angeles, Ca. 90024

Abs t rac t
We show how node ordering can be combined
with parallel window search to quickly find a
nearly optimal solution to single-agent prob­
lems. First, we show how node ordering by
maximum g among nodes with equal / = g + h
values can improve the performance of IDA*.
We then consider a window search where dif­
ferent processes perform IDA* simultaneously
on the same problem but with different cost
thresholds. Finally, we combine the two ideas
to produce a parallel window search algorithm
in which node ordering information is shared
among the different processes. Parallel window
search can be used to find a nearly optimal so­
lution quickly, improve the solution until it is
optimal, and then finally guarantee optimality,
depending on the amount of time available.

1 I n t r o d u c t i o n and Overview

Heuristic search is a fundamental problem-solving
method in artificial intelligence. Common examples of
single-agent search problems are the Eight Puzzle and its
larger relative the Fifteen Puzzle. The Eight Puzzle con­
sists of a 3x3 square frame containing 8 numbered square
tiles and an empty position called the 'blank'. The legal
operators slide any tile horizontally or vertically adjacent
to the blank into the blank position. The task is to re-
arrange the tiles from some random initial configuration
into a particular desired goal configuration. A real world

*This research was supported by an NSF Presidential
Young Investigator Award to the second author, NSF grant
IRI-8801939. Chris Ferguson helped derive the limitation of
pure window search and produced the figure. Bob Felderman
and Othar Hansson's discussions and draft reviews substan­
tially improved the paper. Discussions with Andy Mayer
also contributed. Much of this work was done on machines
provided by an equipment grant to UCLA from Hewlett-
Packard. Earlier work was done on an Intel Hypercube.

example of single-agent search is the traveling salesman
problem of finding the shortest simply connected tour
among a set of cities to be visited.

An optimal-solution algorithm for single-agent heur­
istic search is A* [Hart, 1968]. For each node n, the
cost of a path from the initial state to node n, g(n),
is added to the estimated cost of reaching a goal from
node n, h(n), to arrive at an estimate of the cost of a
path from the initial state to a goal state that passes
through node n, f(n). A* works by always expanding
next a node of minimum / (n) = g(n) + h(n) until a goal
node is chosen for expansion. The solution length found
by A* is guaranteed to be optimal (lowest cost) if the
heuristic function never over-estimates the cost of the
cheapest path to the goal. In practice, however, A* is
not practical because it requires an exponential amount
of memory. This l imitation is overcome by an algorithm
called Iterative-deepcning-A* (IDA*) [Korf, 1988].

IDA* works by iteratively searching in a depth-first
manner. In each iteration, a branch is cut off when the
f(n) value of the last node on the path exceeds a cost
threshold for that iteration. The threshold for the first
iteration is set at the heuristic value of the initial state,
and each succeeding threshold is set at the minimum /
value that exceeded the previous threshold. Successive
iterations continue until a goal node is chosen for expan­
sion. Since at any point it is performing a depth-first
search, IDA*'s memory requirement is only linear in the
solution length, but it guarantees optimal solutions in
every case that A* does.

In this paper, we discuss how global node ordering by
minimum h among nodes with equal / values can reduce
the time complexity of serial IDA* by reducing the time
of the last iteration. This approach, however, is lim­
ited by the time to perform the iterations prior to the
final iteration. We then discuss the notion of pure par­
allel window search in which different processors look
to different thresholds simultaneously. This approach,
however, is limited by the time to perform the final it­
eration. Finally, we show how the combination of node
ordering with pure parallel window search retains the

36 Tools

good qualities of both approaches while ameliorating the
bad. After describing our implementation of an ordered
parallel window search, we analyze the performance of
parallel window search with perfect ordering, and then
present empirical data showing not only high speed, but
high solution quality of the first solution found.

For a more detailed analysis of parallel window search,
the reader is referred to [Powley, 1989].

2 Node Ordering
An obvious strategy for reducing the time of the last iter­
ation is to order the children generated in the depth-first
search in the hope of reducing the nodes generated before
a goal is reached. Given a perfect ordering scheme, the
goal iteration would immediately choose a goal node for
expansion. In this case, the time complexity of the last
iteration would be reduced from exponential to linear in
the depth of solution.

The simplest type of node ordering is to explore the
children of a node in increasing order of their static heur­
istic values, h(n). Experiments with this node ordering
show that the improvement that results does not com­
pensate for the additional overhead incurred by the or­
dering.

A more sophisticated form of node ordering is to or­
der all nodes that are candidates for expansion, not just
the children of a particular node. Since a search frontier
typically consists of a set of nodes with equal / values,
we order the nodes in increasing order of h, or equiva­
lently in decreasing order of g. This is beneficial for two
reasons.

2.1 Advantages of Node Order ing
The main intuition behind this scheme is that we expect
smaller h values to be more accurate. Consider the anal­
ogy of having your car fixed: you would feel somewhat
confident in your car being ready the day after tomorrow
if it has already been in the shop for 28 days (g) and the
mechanic says it will be ready in 2 days (h); however,
you would feel less confident in the car being ready in 28
days (/i), having just brought it in the day before yes­
terday (g = 2). This tie-breaking rule among nodes of
equal / value is probably well-known, but we know of no
work that has studied its effect.

If we think of nodes in the search tree being explored
in a 'left-to-right' manner, our primary motivation for
using node ordering is to shift the first goal found to
the left. However, in addition to this beneficial shift
effect, node ordering also reduces the time to find a goal
through the depth effect.

For each node expanded on the final iteration that
does not lead to a goal within the threshold, a subtree of
nodes must be explored to verify that fact. By picking
a frontier node from the next-to-last iteration of mini­
mum h, we reduce the average size of the subtree beneath

it. This is because the maximum depth we can go be-
low a non-goal node without a change in / is limited
by the magnitude of h. In order for / to stay constant,
as g (depth) increases, h must correspondingly decrease.
The amount that h can decrease without reaching a goal,
however, is limited by its starting value, since if h de­
creases to 0 it indicates a goal node. Thus, nodes with
smaller h values will tend to have smaller subtrees un­
der them within a given iteration. As a result, even if
node ordering did not shift the goal to the left, the nodes
explored to find the goal would still be reduced by the
depth effect.

The shift and depth effects thus combine to reduce the
number of nodes that must be explored unsuccessfully
until a goal is found. This is analogous to the problem of
searching for buried treasure on an island given the prob­
ability of finding treasure in each location as well as the
cost required to dig in each location [Simon, 1975]. The
goal is to maximize the treasure found and minimize the
cost to find it. Thus it is not only important to find a cor­
rect location quickly, but also to minimize the time spent
digging empty holes. Similarly, in a state space search,
nodes should be ordered so that the goal is located under
one of the first few nodes checked (shift effect), while at
the same time minimizing the nodes explored under in­
correct choices (depth effect). Fortuitously, in this case
the same ordering maximizes both effects.

2.2 L i m i t a t i o n o f Serial I D A * Node Order ing

Even though good node ordering in IDA* may dramati­
cally decrease the time spent in the last iteration, it can
have no effect on the previous iterations. The reason
is that if a goal is not found, the entire iteration must
be completed. If we consider nodes to be explored in
a 'left-to-right' manner, the best possible improvement
occurs when the first goal found is the rightmost node
in the unordered case and the leftmost node in the or­
dered case. Then the unordered search explores the en­
tire goal iteration frontier, whereas the ordered search
explores a single path during the goal iteration. This
best case results in a 1/b reduction of the nodes gen­
erated in the unordered case [Powley, 1989], where b is
the heuristic branching factor. 6 is formally defined to
be limd—oo y/T(d), where T(d) is the number of frontier
nodes at threshold d.

Note that even with perfect ordering, in problem in­
stances where the unordered search happens to have a
leftmost goal, there is no improvement with perfect or­
dering. In general, the goal in the unordered case will
be some percentage of the way across the frontier, so
perfect ordering would produce less than a factor of 6
improvement on the average.

Powley and Korf 37

2.3 I m p l e m e n t a t i o n o f N o d e O r d e r i n g
The ideal ordering scheme is to fu l ly exploi t the in forma-
t ion available f rom the next-to-the-last i terat ion. Th is
can be done by saving the entire front ier of nodes f rom
the most recent i terat ion, and then ordering them for
expansion by m a x i m u m g. We collected data f rom 47
15-puzzle problem instances selected f rom [Korf, 1988],
and compared the nodes generated in the ordered and
unordered cases. On the average, the ordered case gen­
erated only 0.2% of the nodes in the f inal i terat ion that
were generated by the unordered case. Unfortunately,
this approach to ordering is impract ica l since it must
store the complete next-to-last i terat ion, requir ing ex­
ponential memory and inordinate ordering overhead. I t
is of interest, however, because it reflects the best that
can be achieved using a l l available in format ion.

In our approach, we instead save an earlier frontier
and dynamical ly reorder it based on later i terations. For
each node in the saved frontier set, the deepest path
achieved in searching under it is recorded. The saved
frontier nodes are searched in decreasing order of the
depth of this pa th (which corresponds to m i n i m u m h).
This approach is used in our paral lel implementat ion of
ordering and is described in more detai l in section 4 .1 .

To evaluate node ordering empir ical ly, we compared
unordered I D A * w i t h ordered I D A * using the ordering
scheme jus t discussed. For 50 problems of moderate dif­
ficulty selected f rom [Korf, 1988], the average rat io of
nodes generated in the unordered case to the nodes gen­
erated in the ordered case was 1.83. Though almost
a factor of two, this improvement is not of practical
use because it is mi t igated by the overhead associated
w i t h ordering. Our ordering program runs about 60%
slower than our serial I D A * program (1.4 mi l l ion ver­
sus 2.4 m i l l i on node expansions per minute on a Hewlett
Packard 9000/350 workstat ion) , result ing in no real-t ime
improvement. However, this technique might s t i l l be
worthwhi le w i t h a better ordering scheme or for prob­
lem domains w i t h a higher branching factor.

In the next section we discuss a complementary ap­
proach to improv ing I D A * which can overcome the l im ­
i tat ions of serial I D A * ordering.

3 Pure Parallel Window Search (P W S)
The idea of paral lel window search is to use different
processes to search to different thresholds (windows) si­
multaneously, hoping that one of them w i l l f ind a solu­
t i on . Because thresholds are not explored sequentially,
the f i rst solut ion found may not be op t ima l . Op t ima l i t y
can st i l l be guaranteed, however, by complet ing al l shal­
lower thresholds than tha t of the best goal found. The
not ion of window search or iginated in two-player game
search and has been considered at length in that appl i ­
cat ion [Baudet, 1978], [Kumar , 1984], but unt i l now it
has not been applied to single-agent search. In game

tree search, the approach is due to Baudet [1978] and
is called parallel aspirat ion search. The two approaches,
though related by the concept of parallel windows, are
fundamental ly different. In single-agent search, having
each process search to a different threshold is equivalent
to having each of them perform a separate i terat ion of
I D A * , except that some may go beyond the goal itera­
t ion .

Unfortunately, this approach by itself produces l im ­
i ted speedup. The reason is that the search t ime wi l l
s t i l l be dominated by the t ime to perform the last itera­
t ion , even if the others are performed in paral lel . In the
next section, we discuss the expected improvement due
to pure parallel window search.

3.1 L i m i t a t i o n o f P u r e P W S

For the moment , assume tha t pure PWS finds only an
op t ima l solut ion. W h a t is the best improvement in
elapsed t ime relative to I D A * tha t we can achieve? As­
sume there are enough processes so tha t the op t ima l so­
lu t ion threshold is being searched. Expected speedup
can be analyzed as a funct ion of goal locat ion. The anal­
ysis [Powley, 1989] shows that speedup relative to I D A *
is approximately

where 6 is the heuristic branching factor, and a is the
fract ion of the frontier nodes that must be searched to
find the first goal. In the extreme case of a r ightmost
goal, a = 1 and this reduces to b/b-1 this represents the
lowest possible speedup of pure paral lel window search.
For example, if 6 is 6, the m i n i m u m speedup is 1.2. If
the goal is midway, a = 1/2 and speedup = 1 + 5/b-1,
or 1.4. As a approaches 0 speedup increases and then
approaches inf in i ty. Th is is because the t ime for window
search to find a leftmost goal is insignif icant compared to
the t ime for I D A * to f ind a leftmost goal. The expected
value of a w i l l depend on the average number of goals,
but in general i t w i l l not be low enough to produce large
speedups. Hence, the t ime to search the goal i terat ion
w i l l l im i t the speedup of pure paral lel window search.

3.2 T h e D e n s i t y Effect

In the previous section we only considered the speedup
to find an op t ima l solut ion. Now we consider whether
a non-opt imal solut ion might be found before an opt i ­
mal solut ion. Consider two identical processors, Po and
P1. Po searches to the op t ima l solut ion threshold and
P1 searches one threshold past op t ima l . If the goal of P1

is located the same fract ion of the way across its f ron­
tier as the goal of Po (that is if ao = a1, where a is as
defined in the previous section), then Po w i l l find a so­
lut ion first because P1 must explore a factor of b t imes
more frontier nodes to find the goal than Po, where 6

38 Tools

is the heuristic branching factor. However, if Pi's goal
is shifted to the left (again exploring in a 'left-to-right'
manner) so that a1 is reduced to less than a0/b, then the
non-optimal solution will be found first.

In general, there may be many solutions, both opti­
mal and non-optimal. If the average non-optimal solu­
tion density is greater than the average optimal solution
density, we would expect to find a non-optimal solution
first. Average solution density is a function of the prob­
lem domain. In the 8 and 15 puzzle problems, for ex­
ample, the average non-optimal solution density appears
to be higher than the optimal solution density, at least
for several thresholds past optimal. In the 8 puzzle, for
1000 random problem instances, we measured the av­
erage ratio of non-optimal goal density to optimal goal
density for each of the first 5 thresholds past optimal.
For thresholds 1, 2, 3, 4, and 5 past optimal, the ratios
were 1.20, 1.37, 1.55, 1.68, and 1.87, respectively.

Because of the size of the search space, we were un­
able to get similar data for the 15-puzzle, but we believe
the corresponding numbers for the 15-puzzle are even
higher because almost all the initial solutions found by
our implementation of PWS are non-optimal.

Thus, solution density also affects the time for paral­
lel window search to find its first solution. In problem
domains which have relatively high non-optimal solution
density, this effect will increase the average speedup pos­
sible from window search.

4 Parallel Window Search W i t h Node
Ordering

Interestingly, the limitations and strengths of node or­
dering and pure window search are completely comple­
mentary. Node ordering is limited by the time to perform
the non-goal iterations but performs the final iteration
very efficiently. Conversely, pure parallel window search
is limited by the final iteration and incurs no additional
cost for the previous iterations. This suggests that a
combination of the two approaches might be effective.
We combine pure parallel window search with node or­
dering and refer to the combination as simply parallel
window search.

4.1 Para l le l W i n d o w Search A l g o r i t h m

Given P processes, our implementation works as follows.
At the start, each process expands the root node to a rel­
atively small, fixed frontier set, on the order of 100-1000
nodes; all processes have an identical fixed frontier set
(ffs). Each process is assigned a different one of the first
P thresholds (windows) to search. A process chooses a
node from its ffs and does a complete search of it to
the assigned threshold. After completing the search of
an ffs node, the process records the minimum h value
of all leaf nodes generated in searching the ffs node;

additionally, the path from the ffs node to the mini­
mum h leaf node is also recorded. This information is
used later for ordering. Then the process selects another
unsearched ffs node and searches it.

When the entire ffs has been searched, the process
broadcasts ordering information to all other processes;
the message consists of the following: (1) a minimum h
value for each of the ffs nodes, and the associated path,
and (2) the value of the threshold on which the ordering
information is based. The process also saves a copy of
the ordering information for itself. Then the process
'leapfrogs over' the other processes to the next threshold
to be searched. When more than one ordering message
is received by a process, only the message associated
with the deepest threshold is saved. A process orders
its search by picking unsearched ffs nodes of minimum
associated h value. The process searches first beneath
the saved path, and then searches the rest of the ffs
nodes.

At some point, a process will find a solution. After
finding a first solution, processes search for better solu­
tions by searching shallower thresholds than that of the
best solution found. This continues until an optimal so­
lution is found and then verified. Verification of optimal­
ly requires completing all thresholds less than optimal;
thus the time between finding an optimal solution and
verifying its optimality can be large.

The overall behavior of the program, then, is to find
a solution quickly, improve it until optimal, and then
guarantee optimality. At program completion PWS ex­
its with a verified optimal solution, just eus IDA* does.
The overall difference is that PWS finds good solutions
quickly in the course of computing the optimal solution.

4.2 Analysis o f P W S A l g o r i t h m W i t h Perfect
Order ing

What is the minimum time required by our PWS algo­
rithm on the average to find a solution in the case of per­
fect ordering? We make the following assumptions: (1)
the number of solutions is not exponential at any depth
(if it were, we could find a solution in linear time), (2) or­
dering information from completed thresholds is perfect,
(3) ordering information below completed thresholds is
random, and (4) when a process receives new ordering
information it restarts its search using the new informa­
tion. Let D be the threshold at which the first solution
is found by any processor, or alternatively, the length of
the first solution found. D may or may not be optimal.

Now consider the process that searches to threshold D
and finds the first solution. When it finds the solution, it
will be using ordering information from some threshold
d. (see Figure 1). Furthermore, since ordering informa­
tion is perfect, it wil l find the solution under the first
frontier node of threshold d\ call this node x. However,
since it has no further ordering information, its search

Powley and Korf 39

below node x is randomly ordered (assumption 3). Thus,
on the average it w i l l have to search 0(bD-d) nodes be-
low node x to find the goal.

Because a process is interrupted and restarts when it
receives new ordering in format ion , each process search­
ing to a depth d w i l l be interrupted by al l processes
searching to a shallower depth. Th is implies that the
t ime to search to depth d is the sum of the t imes to
search to each shallower depth. Since the tree grows ex­
ponential ly, this has no effect on the asymptot ic t ime
complexity, which is st i l l 0(bd).

How long does it take to find a solution under these
assumptions? The to ta l t ime is the t ime for the ordering
process to complete its search to depth d, plus the t ime
for the solut ion process to complete the search below
node x, which is of depth D-d. Th is is 0(bd+bD-d). For
small values of d, the running t ime is dominated by the
t ime to perform the unordered search below depth d. For
large values of d, the running t ime is dominated by the
t ime to determine the ordering in format ion. Note that
ordering in format ion doesn't help the ordering process,
since the entire ordering threshold must be completed.
The running t ime is min imized when d = D/2, which
balances the two searches. Th is results in an overall
complexi ty of 0(bDl2) in the best case.

In the above analysis, we defined D as the length of
the first solut ion found. If we changed the def ini t ion of
D to be the length of an op t ima l solut ion, then the same
result applies to f inding op t ima l solutions.

4 .2 .1 N u m b e r o f Processes

Consider the m i n i m u m number of processes required
to achieve this 0(bDl2) t ime complexity. A l l we need is
enough processes so that the solut ion process can start
as soon as the ordering process completes, or sooner.
Th is is achieved w i t h a m i n i m u m number of processes
when the ordering process leapfrogs direct ly to become

the solut ion process; this requires D/2 processes. Thus,
D/2 processes are sufficient to find a solut ion in 0(bD/2)
t ime. Note that having too few processes w i l l delay the
avai labi l i ty of a process for the solut ion threshold and
thus increase the t ime to find a solut ion.

Wha t is the effect of having more than the m in imum
number of required processes? Let D be the length of the
op t ima l solut ion and consider what happens as we add
more than D/2 processes. As discussed in section 3.2,
i f non-opt imal solut ion density is greater than opt imal
solut ion density, we would find a non-opt imal solution
f irst and reduce the t ime to the f irst solut ion. On the
other hand, if we add processes which search thresholds
w i th relatively low non-opt imal solut ion densities, then
these processes w i l l be unproduct ive since shallower so­
lut ions w i l l generally be found f irst. Th is implies that ,
depending on the problem domain , we may want to l im i t
the number of windows for efficiency.

Even if the benefit of adding deeper windows de­
creases, however, paral lel window search is not l imi ted
in how many processors it can effectively use. Once the
desired window ' length ' has been achieved, extra proces­
sors can be used to share in the search of each window.
Tha t is, more than one processor can search to a given
threshold, for example using the approach of [Rao, 1987].

4.3 E m p i r i c a l R e s u l t s f o r F i r s t S o l u t i o n F o u n d

We ran the in i t ia l 93 of 100 problems of [Korf, 1988] (or­
dered by nodes generated by serial I D A *) using a num­
ber of processors ranging f rom 5 to 9, and measured the
t ime to find the first solut ion. The 7 most dif f icult prob­
lems weren't used because they would take too long to
solve using 5 or 6 processors since this number is less
than the m in imum required as discussed in the previous
section. A l l 100 problems, however were run using 7-9
processors w i th consistent results. In each case, we cal­
culated the average effective heuristic branching factor.
The effective branching factor is one way of measuring
the reduction in nodes generated. It tells how much the
branching factor would have to be reduced in the serial
search to f ind a solut ion in the t ime taken by the par­
allel search. Since the serial search requires 0(bd) t ime
and the paral lel search in the best case requires 0(bD'2)
= 0 (6) = 0 ((6 5) / D) , we expect an effective heuristic
branching factor of at least 6 5.

4 .3 .1 R u n n i n g T i m e R e l a t i v e t o I D A *
For 5, 6, 7, 8, and 9 processors, the corresponding

average exponents of 6 were .8, .78, .75, .75, and .73,
respectively. Tha t is, we see a reduction of the heuristic
branching factor to about b 3 / 4 . We believe 6 monotoni -
cally decreases for two reasons: (1) for the most dif f icult
problems, adding extra processes helps achieve the m in ­
i m u m number of processes required (section 4.2.1); and
(2) adding addi t ional processes reduces the t ime to a so­
lu t ion because of the density effect (section 3.2). The

40 Tools

consistency of this reduction lends support to the claim
that parallel window search reduces the exponential com­
plexity of IDA* for finding non-optimal solutions.

To give an idea of specific performance, when we ran
all 100 problems using seven Hewlett Packard 9000/320
workstations, the average nodes generated in finding a
solution was 1.6 million compared to an average of 357
million nodes generated in IDA*. More specifically, the
most difficult problem IDA* solved required 42 hours
and 6.01 billion node generations. Using 7 processors,
our program found a solution to this problem that was
4 moves from optimal (6%) in 4 minutes and 6.5 million
node generations (by the process finding the solution). If
total processor effort is considered and not just elapsed
real time, this corresponds to 28 minutes and 45 mil­
lion nodes generated; this is the time a single processor
running PWS with 7 processes would take.

4.3.2 So lu t ion Qua l i t y
The relative speed of the program is only one measure

of its performance, with the quality of solutions being
the other primary measure. For seven processors, the
solution lengths range from optimal to twelve moves over
optimal, with the mode and average being six moves over
optimal. Since the average optimal solution length for
this puzzle is 53 moves, the first solutions found are on
the average within 11 percent of optimal.

To get a better indication of the strength of PWS in
finding non-optimal solutions, we also compared it to
RTA* [Korf, 1988], a real-time variant of A* in which
optimality is sacrificed in order to make real-time moves
within fixed time limits. In a sense, this is an unfair
comparison since RTA* only searches from its current-
position in the sequence of moves made so far, but it is
still instructive.

We compared the quality of solutions of PWS with
7 processors and RTA* as follows. RTA* was run with
varying search horizons until it generated more nodes in
finding a solution than all 7 processors of PWS. After
removing any cycles from the solution, its length was
compared to the PWS solution length. On the average
the PWS solution lengths were half (47%) of the RTA*
solution lengths. In only three cases was the RTA* solu­
tion shorter than the initial PWS solution, and in those
cases it was 6 moves less in one case and 2 moves less in
the other two cases. These results show that PWS is not
dominated by either IDA* or RTA*, and thus it appears
to be a competitive algorithm in terms of search effort
versus solution quality.

5 Conclusions
The effectiveness of node ordering for improving the ef­
ficiency of IDA* is limited by the time to complete the
previous iterations of the search. Conversely, window
search in which different processes simultaneously per­

form different iterations, is limited by the time to com­
plete the final iteration. Combining effective node order­
ing with window search by sharing ordering information
among processes makes it possible to find nearly optimal
solutions quickly.

If the algorithm continues to run past the first solu­
tion found, it finds increasingly better solutions until an
optimal solution is guaranteed or the available time is
exhausted. Such behavior is important in real problems
since: (1) a quick solution is often more important than
an optimal one, and (2) problem solvers often have lim­
ited resources available to make a decision, and often
cannot predict those resources apriori. In those situa­
tions, a problem solver must always have a plausible so­
lution available. Parallel Window Search provides such
a capability.

References
[Baudet, 1978] Gerard Baudet. 'The Design and Analy­

sis of Algorithms for Asynchronous Multiprocessors'.
Ph.D. dissertation, Computer Science Department,
Carnegie-Mellon Univ., Pittsburgh, Pa., April 1978.

[Hart, 1968] P. E. Hart, N.J. Nilsson, and B. Raphael.
'A Formal Basis For The Heuristic Determination
of Minimum Cost Paths'. IEEE Trans. Systems Sci.
Cybernet, 4(2), pages 100-107, 1968.

[Korf, 1985] Richard E. Korf. 'Depth-First Iterative-
Deepening: An Optimal Admissible Tree Search'.
Artificial Intelligence, Vol. 25, pages 97-109, 1985.

[Korf, 1988] Richard E. Korf. 'Real-time Heuristic
Search: New Results'. Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI
88), 1988. Vol. 25, pages 97-109, 1985.

[Kumar, 1984] Vipin Kumar and Laveen N. Kanal. 'Par­
allel Branch-and-Bound Formulations for AND/OR
Tree Search'. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol. PAMI-6, No. 6,
pages 768-778, November, 1984.

[Simon, 1975] Herbert A. Simon and Joseph B. Kadane.
'Optimal Problem-Solving Search: All-or-None Solu­
tions'. Artificial Intelligence, Vol. 6, pages 235-247,
1975.

[Powley, 1989] Curt Powley and Richard E. Korf.
'Single-Agent Parallel Window Search'. To be pub­
lished in Parallel Algorithms for Machine Intelli-
gence, editors: Kanal, Kumar and Gopalakrishnan.
North Holland, 1989.

[Rao, 1987] Nageshwara V. Rao, Vipin Kumar, and K.
Ramesh. 'A Parallel Implementation of Iterative-
Deepening-A*' Proceedings of the Sixth National
Conference on Artificial Intelligence (AAA! 87),
pages 178-182, July 1987.

Powley and Korf 41

