
Knowledge Preconditions for Actions and Plans 
Leora Morgenstern 

N e w Y o r k Univers i ty 
Department of Computer Science 

N e w Y o r k , N y . 10012 
(212)781-6539 

morgenst@nyu.csd2.edu.arpa 

Abstract 

Agents who operate in complex environments must 
often construct plans on the basis of incomplete knowledge. 
In such situations, the successful agent must incorporate into 
his plans actions which obtain information. These plans are 
intrinsically sketchy to begin with and become more 
specified as the agent proceeds through his plan. A theory 
which allows for such flexible planning wi l l have to provide 
solutions to two problems: (1) how can an agent reason that 
he knows how to perform an action? (Knowledge Precondi­
tions Problem for Actions) and (2) if an agent must con­
struct an underspecified plan due to incomplete knowledge, 
when can we say that he can successfully execute his plan? 
(Knowledge Preconditions Problem for Plans) 

This paper provides solutions to both these problems. 
We develop a robust and highly expressive theory of action 
and planning which allows for actions of varying granularity, 
primitive as well as complex acts, multi-agent plans, and 
partially specified plans. We demonstrate that this theory 
lends itself in a natural manner to solutions to the 
Knowledge Preconditions Problems. 

1. Introduction 
An agent who operates in a complex environment must 

often construct plans on the basis of incomplete knowledge. 
Agents frequently don't know detailed procedures for the 
tasks they set out to accomplish. They likewise generally 
fail to keep up with a piece of information that is constantly 
changing, such as the location of a moving object. These 
gaps in knowledge mean that an agent may not have enough 
information to do the task that he wishes to perform, or to 
draw up completely detailed plans as he starts the planning 
process. Consider, for example, an agent who enters a chem­
istry lab for the first time and is asked to neutralize an acid. 
It is likely that he wi l l not be able to perform the task. 
Moreover, he cannot even completely specify a simple plan 
such as: 
1) ask a friend to tell him the procedure P 
2) friend tells him P 
3) perform P, that is, neutralize the acid. 
Both 2) and 3) wi l l be unspecified at the start of the plan, 
since the agent doesn't know P. In particular 2) wi l l remain 
unspecified until it is completed. 

Agents who function well in complex environments 
must be able to construct and execute plans despite their lack 
of knowledge. In particular, they should be able to success­
fully plan to get the information that they need to perform 
specific actions. An intelligent agent, for example, should 
realize that the above plan for neutralizing the acid is a rea­
sonable one, while a plan such as 
1) swim the English Channel 
2) neutralize the acid 
makes no sense at all. 

A theory that allows for such flexible planning wil l 
have to provide solutions to at least two problems. Firstly, it 
must explain under what circumstances an agent knows how 
to perform an action. We call this the Knowledge Precondi­
tions Problem for Actions. Secondly, even if an agent does 
not know how to perform an action, it must explain how he 
can execute a plan that gets the action done. We call this the 
Knowledge Preconditions Problem for Plans. 

In this paper, we develop a flexible and expressive 
theory of action and planning, and present solutions to these 
two problems. 

2. Previous Work 
Most AI planners have ignored both of the Knowledge 

Preconditions Problems. This is true both of classic plan-
nine programs such as OPS [Ernst and Newell 1969] and 
STRIPS [Fikes and Nilsson 1971] as well as more recent 
planners such as NOAH [Sacerdoti 1975], Non-Lin [Tate 
1977], and TWEAK [Chapman 1985]. The theories underly­
ing these planners have all implicitly assumed that agents 
always have complete knowledge; planning thus reduces to 
some sort of search through a pre-packaged list of action 
operators, pre-conditions, and post-conditions. 

McCarthy and Hayes [1969] were the first to argue that 
an agent does in fact reason about his ability to perform an 
action, thus addressing themselves to the first of the 
Knowledge Preconditions Problems. They suggested writing 
down explicit knowledge precondition axioms for each 
action, so that a planning program could reason that it knew 
how to do an action if the relevant knowledge precondition 
axioms were true. This proposal however, fails on at least 
two counts: (1) it leads to an explosion of axioms, a large 
search space, and thus unacceptably slow proofs, and (2) it 
provides no explanation as to why or how agents come to 
know how to perform actions. 

In [Moore 1980], Moore presented an elegant solution 
to the first Knowledge Preconditions Problem lor a limited 
class of actions. Moore used the modal logic of knowledge 
S4 with possible worlds semantics and the simple situation 
calculus model of actions, in which actions are regarded as 
functions on situations. Central to Moore's argument were 
two concepts from possible worlds theory: that of the rigid 
designator, an entity such as a name or number denoting the 
same object across possible worlds, and that of the rigid 
function, a function on rigd designators. Moore argued mat 
all actions were (axiomatically composed out of) rigid func­
tions. Furthermore, all agents knew all axioms and knew 
how to perform actions as long as they knew rigid designa­
tors for the actions. An agent thus knew how to perform an 
action if he knew rigid designators for the parameters of the 
action. 
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Unfortunately, Moore's system is insufficiently general 
for the following reasons: (1) The S4 model entails that all 
agents know all axioms and that they thus have the same 
procedural knowledge; this reduces the entire Knowledge 
Preconditions Problem to a toy problem, (2) the first order 
modal logic that Moore uses is severely inexpressive, and 
does not allow us to express an agent's partial knowledge, 
(3) the McCarthy-Hayes situation calculus that Moore uses 
is too rigid to serve as the basis for a flexible theory of plan­
ning. 

Since the first two objections follow from Moore's use 
of a modal logic of knowledge, and the third objection fol­
lows from Moore's use of the McCarthy-Hayes model of 
action, it makes sense to develop a theory which avoids both. 
We will build our theory upon a first order logic of 
knowledge, in which knowledge is represented as a relation 
on strings, and integrate it with an expressive, set-theoretic 
model of action. The resulting theory will lend itself in a 
natural manner to solutions to both of the Knowledge 
Preconditions Problems. 

This paper extends the work of [Morgenstem 1986a] in 
which we first addressed the problem of constructing a first 
order logic of knowledge and action. There, we focussed 
upon developing a first-order logic of knowledge which 
avoids paradox and obeys the classical inference rules, and 
which could be integrated with various models of action. In 
this paper, we construct a detailed theory of action and plan­
ning and present our solution to the Knowledge Precondi­
tions Problems within that context 

3. The Logical Language 
We will be using a language L, which is an instance of 

the first order predicate calculus. V s symbols consist of the 
logical symbols, such as v , - i , and 3 , constants, variables, 
predicates, and functions. We will feel free to substitute the 
English equivalents for logical symbols when it improves 
legibility. Constants are numbers or begin with an upper 
case letter. Predicates begin with upper case; functions and 
variables begin with lower case. Predicates and constants, 
functions and variables, will be disambiguated by context 
In our axioms and definitions, variables will be assumed to 
be universally quantified unless otherwise specified. 

Our logic is sorted; sorts are distinguished by their first 
letters). Some of the more commonly used sorts are s, rang­
ing over situations, i, ranging over intervals, a, ranging over 
agents, act, ranging over actions, str, ranging over strings. 
Other sorts will be introduced as needed, and will be under­
stood from context 

The quotation construct is an important feature of L. 
We assume a meta-function of L, G, which maps distinct 
expressions of L into distinct numbers. G is invemble; the 
analogue of G-1 in L is g-1. In the proper context, a number 
of L is said to 'stand for' the expression of L which maps 
into it When used in this way, numbers are known as 
strings. A string is written as the expression it represents, 
surrounded by quotation marks. For example, the string 
'At(John,NYC,s3)' represents the expression 
At(John,NYC,S3). Strings thus provide us with a way of 
talking about expression of L within L. 

Various predicates of L take strings as their arguments; 
the most important of these are the predicates True and 
Know. Know takes three arguments: an agent, a string 
representing a sentence, and a situation. For example, to say 
that John knows something that Bill doesn't know, we write: 

3 p (Know(John,p,S5) & -i Know(Bill,p,S5)) 
Note that by using strings, we are effectively quantifying 
over sentences while remaining in a first order language; we 

can use this trick to 'quantify' over functions and predicates 
by quantifying over strings which represent them. Note also 
the ease with which we can express partial knowledge. 

Achieving full expressivity in languages with quotation 
can be complicated since the quoted constructs are opaque. 
For example to state the principle of positive introspection, 
that if an agent knows something, he knows that he knows it, 
we cannot simply say: 

V a,p,s Know(a,p,s) ■> Know(a,'Know(a,p,s)',s) 
This would mean that all agents always know the string 
'Know(a,p,s)'. If we try to substitute values for a,p, and s, 
we will not be able to substitute the values within the quoted 
context: a string is a constant To solve this problem, we 
introduce some syntactic abbreviations: a name-of-operator, 
@, where @ applied to an object yields the name of that 
object, ! !, where ! ! applied to a string variable yields the 
string the variable stands for, and * *, where * * applied to a 
string variable yields the string the variable stands for, 
stripped of surrounding quotes. (*) As an example of their 
use, we now write the principle of positive introspection 
correctly: 

V a,p,s Know(a,p,s) «> Know(a,'Know(@a,!p!,@s)',s) 
Our axioms on Know correspond closely to the standard S4 
axiomatization of knowledge. We assume veridicality, posi­
tive introspection, and consequential closure. We do not, 
however, assume necessitation: agents are required to know 
all logical axioms and axioms on knowledge, but not all 
axioms about the world. 

4. Theory of Action 

4.1. Requirements 
Underlying every theory of action is an explicit or 

implicit ontology of action. The ontology of action that we 
choose will be determined by the set of requirements that are 
placed upon the theory. These requirements, in turn, are 
determined by the problems that our theory seeks to solve. 
Below, we briefly list the more salient requirements which 
we place upon our theory: 
[1] Fidelity of Temporal Representation: A theory of 
action must be able to talk about both instants of time and 
intervals of time. Actions take place over intervals of time; 
facts may be true over instants or intervals. Instants are 
necessary so that we can describe what it true at a particular 
moment Time intervals are necessary so that we can 
describe how the world changes over time. 
[2J Granularity: The theory should be able to view actions 
with varying degrees of granularity. That is, the term 
'action' should encompass broadly general as well as 
detailed descriptions of actions. For example, both driving a 
car and driving a red Alfa Romeo with the roof down on a 
hot summer's day should be considered actions. This is 
especially important for the purposes of planning. At the 
start of the planning process, agents often think in general 
terms, about coarse-grained actions. However, these 
coarse-grained actions may become transformed into 
increasingly finer grained actions as the planning process 
continues and plan refinement occurs. 
[3] Interval Dependent Actions: There are many actions 
whose very descriptions depend on the time during which 

(*) These operators are defined in terms of standard features 
of L such as concat For further details, see [Morgenstem 
1986b]. 
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they take place, such as going to the top of the tallest build­
ing in New York. The values of descriptions such as 'the 
tallest building in New York' change with time. We wish to 
have a theory which allows us to describe actions in this 
manner. 
[4] Composability: Most actions are formed by composing 
simpler actions in various ways. For example, the action of 
making blackberry jam can be thought of as a sequence of 
the action of crushing blackberries, mixing with sugar and 
pectin, bringing to a hard boil, and pouring into Mason jars. 
Our theory should provide a mechanism for composing sim­
ple actions to form complex actions, using the standard 
operators of a concurrent programming language, such as 
sequences, conditionals, while loops, and concurrency. 
[5] Multiple Agents: Many of the actions we are interested 
in, such as communicative actions, are interagent actions, 
which involve at least two agents. Our theory must therefore 
be flexible enough to describe how multiple agents act and 
interact. In particular, we should be able to talk about agents 
acting simultaneously. We should also be able to talk about 
individual plans which are constructed out of actions done 
by many agents. 

4.2. Choosing an Ontology 
There are two major questions which must be addressed 

when choosing an ontology: 
1) What arc actions? and 
2) How can we describe actions? 

Mainstream AI research has provided us with two 
answers for each of these two questions. 
1) Actions have been regarded as 

a) functions on states, or 
b) sets of intervals. 

2) Actions have been described using 
c) functional descriptions such as put-on(a,b), or 
d) set theoretic descriptions of the form (i I <(i) } 

where <K0 is a well formed formula free only in i. 
It is important to realize that these approaches can be 

combined in a variety of ways. Three of the four possible 
combinations are coherent and have in fact been incor­
porated into AI theories. McCarthy and Hayes [1969] have 
regarded actions as functions on states and have used func­
tions to describe these actions. Both McDermott [1982] and 
Allen [1984] have argued that actions are sets of intervals. 
However, Allen uses functional descriptions, while McDer­
mott makes use of the set theoretic description of actions. 

These approaches can be contrasted in different ways. 
There is a clear advantage to approach b) over approach a) : 
that of oncological realism. There are many actions, such as 
running around the block or waiting on the corner, which do 
not seem to involve a state change, and which are not the 
null action. 

Each of approaches c) and d), however, has some 
advantage over its rival. It is clear that d) is more expressive 
than c). There are many actions, such as our example of 
driving a red Alfa Romeo with the roof down which cannot 
be described in any natural manner using functional descrip­
tions. However, it is easy to describe such an action using a 
set theoretic description: 
{i 13 a,c Alfa-Romeo(c) and Red(c) and Down(roof(c)i) 

and Drives(a,c,i)) 
If an action cannot be described using function descriptions, 
we say that it is composite. 
In point of fact, however, no researcher using approach d) 

has utilized its expressive potential in any systematic 
manner. Moreover, approach c) has an important advantage 
over approach d): it is less cumbersome and easier to use for 
those actions which are functionally describable, such as 
driving a car (drive(c)) or putting one block on another (put-
on(x,y)). 

We aim to construct a theory which maximizes onto-
logical realism, expressivity, and ease of use. With these 
ends in mind, we will regard actions as sets of intervals. To 
achieve expressivity, we will describe actions using set 
theoretic descriptions. We will show in a systematic manner 
how we can exploit the notation's expressive potential. To 
maximize ease of use, we will identify those classes of 
actions which are functionally describable, and use func­
tional descriptions for these actions whenever possible. 

4.3. Presentation of Theory 
We now present a theory of action which satisfies the 

requirements discussed in section 4.1. The basic building 
block of our theory is the situation or state. States are 
ordered by the < relation, indicating precedence in time. (*) 
An interval is defined as a set of contiguous instants, all of 
which are linearly ordered. It is determined by its beginning 
and end points; these points name the interval. Thus, the 
interval starting at S l l and ending at S25 is denoted 
[SI 1,S25]. Intervals in general are closed. 

We define actions and events as sets of intervals, intui­
tively those in which the action or event takes place. 
Actions are those events in which the performing agent is 
not specified. 

We place in L a set of action functions, such as put-
on(bll,bl2), dial(x) and drive(c). These functions map their 
arguments onto sets of intervals, or actions. We can associ­
ate in a natural manner an n+2-place predicate with each n-
place action function. The extra arguments are used for the 
agent performing the action, and the interval during which 
the action is performed. For example, we associate with the 
action functions above the predicates: Puts-on(a,bll,bl2,i), 
Dials(a,x,i) and Drives(a,c,i). We call these predicates 
action predicates. 

Actions are introduced using these action predicates. 
Since an action is a class, it must be of the form {i I <(>(i)}, 
where $ is a wff free only in i. If Act « {i I ty (i)}, we call <|> 
the descriptive wff of Act. <|>(i) must contain an action 
predicate. 

We can achieve our second requirement, varying granu­
larity of action, by expanding or restricting <|> in a systematic 
manner. We give some examples of this below: 
(1) {i I 3 a Puts-on(a,Bll,B12,i)} - the act of putting block 

Bll on block B12 
(2) {i I 3 a,bll,bl2 Puts-on(a,bll,bl2,i)} - the act of putting 

one block on another 
(3) (i I 3 a,bll,bl2 Red(bll) and Puts-on(a,bll,bl2,i)} - the 

act of putting a red block on some other block 
(4) (i I 3 a,bll,bl2 Equal(bll,favorite-block(Mary)) and 

Equal(bl2,favorite-block(Jane)) and 
Puts-on(a,bll,bl2,i)} - the act of putting Mary's 

favorite block on Jane's favorite block. 
It will be noted that only some of these actions are 

functionally describable. (1), (2), and (4) are: their func-

(*) If this order is total, we have linear time; if it is partial, we 
have branching time. Neither assumption is crucial for the work 
done in this paper. 
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tional descriptions arc, respectively: put-on(Bll,B12), put-
on(bl 1 ,bl2) and put-on(favorite-block(Mary),favorite-
block(Jane)). There is, however, no way to produce a func­
tional description for (3), unless we are will ing to create 
functions such as put-red-block-on on the fly. 

In general, we can show that an action Act 
is functionally describable if <t>(i) is one of the following 
forms: 
[1] contains no quantified variables, other than the vari­

able representing the performing agent(s). 
[2] contains quantified variables; these are all existen-

tially quantified. Furthermore, does not contain any 
predicates involving these variables other than the 
action predicate(s) or the predicate Equal. 

Functionally describable actions can further be subdi­
vided into deterministic and non-deterministic actions. An 
action is said to be deterministic if all the arguments of its 
functional description evaluate to constants; otherwise it is 
non-deterministic. (1) and (4) are deterministic; (2) is not. 
We furthermore say that all composite actions are non-
deterministic. 

We close this section by giving two more examples of 
actions: 
(5) Smallest-block(biU) and Largest-

block(bl24) and Puts-on(a,bIl,bl2,i)) - the act of plac­
ing the smallest block on the largest block 

Note that this is an example of an interval dependent action. 
(6) {i} - the set of all intervals. We wil l call this the null 

action, Null. 

We can easily define such programming language 
operators as sequence(actl,act2), cond(p,actl,act2), 
while(p,act) and concurrent(actl,act2) using standard set 
theoretic notation. In particular, we can recursively define 
while loops in terms of sequences, conditionals, and the null 
act: While(p,act) = cond(p,sequence(act,while(p,act)),Null). 
(see [Moore 1980].) We say that sequence, cond, while, and 
concurrent are action functions. 

4.4. Events 
Events are sets of intervals; intuitively, those intervals 

in which some agent performs an action. Every action is an 
event; thus, examples (1) - (6) above are all events. How­
ever, the following are also events: 

I -
the event of a child placing one block on another 

the event of Bi l l placing one block on another 
These are not actions because the performing agent is in 
some way restricted. 

If the performing agent in deterministically specified, 
we can express an event as do(a,act), where a is the perform­
ing agent, act is the action, and do is the function mapping 
agents and actions onto events. For example, (8) can be 
expressed as do(Bill,put-on(bll,bl2)). 

We introduce the predicates on events R and Occur. If 
Ev is an event R(Ev,Sl,S2) is true if S2 is the result of Ev l ' s 
occurrence in S I . Occur(Ev,Sl,S2) is true if Ev occurs 
between SI and S2. The two predicates are equivalent in a 
model of linear time. Note that the predicate R, while 
superficially similar to the Result predicate of the situation 
calculus, can in fact be defined in terms of our interval based 
ontology: 

Def. 
In a model of branching time, in which only some states are 
actualized, or real states, we define: 

Def. 

5. Solution to the Knowledge Preconditions Problem for 
Actions 

Our solution is based upon five general observations 
about actions, the agents who perform them, and the 
knowledge these agents possess: 
[1] Agents need to have explicit procedural knowledge for 

the actions they perform. Agents often don't have the 
knowledge they need, and thus are not able to perform 
the actions. If an agent does not know the explicit pro-
cedure for making a souffle, he wil l not be able to do it 

[2] A l l agents in a community know how to perform some 
basic actions. This assumption is a necessary precondi­
tion for meaningful teaching to occur. 

[3] An agent needs more than procedural knowledge in 
order to perform an action. He also needs to know 
definite descriptions for the parameters of the action he 
is performing. For example, even if an agent knows 
how to dial a phone number, he wil l not be able to per­
form the action Dial(tclno(Mary)) if he doesn't know 
what Mary's number is. This observation has been the 
major focus of Moore's research on the Knowledge 
Preconditions Problem for Actions. 

[4] Action descriptions make a difference. The same 
action can be described in a number of different ways; 
an agent may be able to reason that he knows how to 
perform the action in only one of its guises. For exam­
ple, an agent might know how to perform 
sequence(beat-cggs,fry-eggs), but not how to perform 
make-omelette; he might know how to perform 
Dial(460-7100) but not Dial(telno(Courant)). 

[5] An agent knows how to compose his knowledge. If an 
agent knows how to perform two actions, for example, 
he wi l l generally know how to perform a sequence of 
those actions. 
Our solution to the Knowledge Preconditions Problem 

for Actions wi l l synthesize and formalize these notions. We 
present our solution in two stages, first giving the solution 
for functionally describable actions, and then giving the 
solution for composite actions. 

5.1. Solution for Functionally Describable Actions 

5.1.1. Deterministic actions 

5.1.1.1. Primitive Actions: 
We begin by designating a class of action functions as 

primitive. This class wi l l include such simple action types as 
move, put-on and dial. In general, an action is primitive if it 
cannot be further decomposed into simpler actions. The 
intuitive idea is that all agents know the basic procedures for 
these simple, non-decomposable acts. 

As mentioned, an agent needs to know more than the 
basic procedure in order to do an action; he must also know 
definite descriptions for the parameters of the action func­
tions. We say that an agent knows a definite description for 
a parameter if he knows some standard identifier e.g., a con­
stant, for the parameter. So, if f(argl...argn) is an action, f is 
primitive, and an agent knows standard identifiers for each 
of argl...argn, he knows how to perform those actions. This 
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principle is expressed in Axiom 1. Note that Stidstr is a 
predicate that ranges over strings; it is true of a string iff the 
string is the quoted form of a standard identifier of L. 

Arinm 1: 

if 

For example, if put-on is a primitive action, then A knows 
how to perform put-on(favorite-block(Mary),favorite-
block(Jane)) if he knows standard identifiers for those 
blocks. 

Note that the argument to the Knows-how-to-perform 
predicate is the string representing the action description in 
question. This is important so that the predicate can be 
opaque with respect to action descriptions: otherwise the 
predicate would be true or false of all action descriptions 
which evaluated to the same action. If an agent knows how 
to perform an action description Actl, and Actl and Act2 
designate the same action, he will be able to perform Act2 
only if he knows they designate the same action. 
Axiom 2: 

5.1.1.2. Complex Actions 
Actions that are composed out of simple actions using 

our four composition operators are designated as complex 
actions. The knowledge preconditions for complex acts 
depend in a straightforward manner on the knowledge 
preconditions for simpler actions. 

Sequence: An agent knows how to perform a sequence 
of two actions if he knows how to perform the first, and 
knows that as a result of performing the first, he will know 
how to perform the second. 
Axiom 3: 

Conditionals: An agent knows how to perform 
cond(p,actl,act2) if he knows p and knows how to perform 
actl or he knows that p is false and he knows how to per­
form act2. 
Axiom 4: 

While Loops: Since while loops are defined in terms of 
conditionals and sequences (4.3), the knowledge precondi­
tion axiom for loops is straightforward: 

Axiom 5: 

Concurrency: An agent who knows how to perform 
concurrent(actl,act2) must know how to perform each of 
actl and act2. In addition, the intersection of the two actions 
must be feasible, and the agent must have sufficient 
resources for both actions. 
Axiom 6: 

The predicates Feasible and Resource-compatible are dis­
cussed in [Morgenstern 1987]. 

5.1.2. Non-deterministic Functionally Describable 
Actions 

A non-deterministic functionally describable action is 
always of the form f(argl...argn) where at least one of the 
argj does not evaluate to a constant. An example is put-
on(bll,bl2). Intuitively, an agent knows how to perform an 
action of this sort if he knows how to perform at least one 
deterministic instantiation of the action. So, for example, if 
B172 and B18 are blocks, and an agent knows how to perform 
put-on(B172,B18), he also knows how to perform put-
on(bll,bl2). The same is true if he knows how to perform 
put-on(B172,favorite-block(Jane)). This intuition is justified 
by the set theoretic structure of non-deterministic function-
allv describable actions, which, we will remember, is (i 13 a 

act-pred(a,argl,...,argn,i)J. The 'existen­
tial generalization' is true as long as we can find some values 
to satisfy it. 

To formalize this rule, we need only add 
Axiom!: 

Assume one of argl... argn does not evaluate to a 
definite description. Suppose further that 3x1 ... xn, 
such that each xi is a deterministic instantiation 
of are 1... aren. and that 

I 
result. 



If an action is of this form, we say it is an REQ (restricted 
existentially quantified) action. Thus, for instance, example 
(3) of Section 4.3 and the action of driving a Red Alfa 
Romeo with the roof down (Section 42) are both examples 
of REQ actions. 

Intuitively, an agent a knows how to perform an REQ 
action if there exist some constants CI ... Cn satisfying the 
restriction, for which he knows how to perform the associ­
ated action . Suppose, for example, that 
Act is example (3) of section 4.3: 

If there is some constant value for M l , say B155, such that 
(i)Red(B155)and 
(ii) K n o w s - h o w - t o - p e r f o r m ( a , P u t s -
on(a3l55,bl24)}^) , 
we say that a knows-how-to-perform Act as well. We for­
malize this notion in the following axiom: 

Axiom 8: 

Let act be of the form described in (•), an REQ action. 
Suppose that there exist n strings, s t r l . . . strn, 
such that Stidstr(strl) and... and Stidstr(strn). 
Suppose further that P i t ( g ' s t r ) for each i in a through n; 
that is, that for each i, the predicate Pi of (•), 
is true of the constant denoted by the standard identifier stri. 
Then, 

if Knows-how-to-oerform 

We defer for the present those composite actions which 
contain universal quantifiers. These cases wi l l be considered 
in future research. 

6. Solution to the Knowledge Preconditions Problem for 
Plana 

6.1. The Concept of a Plan 
Standard AI planning research [Fikes and Nilsson 1971, 

Sacerdoti 1975] has regarded plans as sequences of actions 
that are performed by a single agent (*) This planning para­
digm, while adequate for simple single-agent toy domains 
like the blocks world, is nonetheless inadequate for more 
robust planning systems for at least two reasons: 

(1) Planning may involve interactions between two or 
more agents. Consider even a simple plan such as my pet­
ting to the airport: it consists of my hailing a taxi, the driver 
driving to the airport, and my paying the taxi. The taxi 
driver s action is an essential part of my plan. 

(2) Constructs other than sequence, such as con­
currency, are widely used in real life plans. An army 
general s plan to attack a city might consist of his attacking 
the city's eastern front, while his colonel attacks the city's 
western front 

(*) It is a common misconception that NOAH allows for con­
current and multi-agent plans. In fact, NOAH simply allows for 
the representation of unordered actions during the intermediate 
stages of planning. This is not the same as representing con­
currency: the final output of NO AH is always an ordered sequence 
of actions. Moreover, NOAH has no explicit representation for 
the actions of other agents (although this could conceivably be 
built in). Since in any case, NOAH cannot handle concurrency, 
general multi-agent planning is clearly impossible. 

These observations lead us to define a plan as any struc­
ture of events constructed with our standard event operators 
of sequence, conditionals, while loops, and concurrency. 
For example, we can express the general's plan, above, as: 

Note that this notation permits a particularly flexible kind of 
plan construction in which the planner need not even fully 
specify all the agents who will be performing the actions. 
For example, if the general is simply planning for one of his 
colonels to attack the city's western front, he might construct 
his plan as: 

We introduce the function actors, which applied to a 
plan, yields the set of actors involved in the plan, and the 
function actions, which applied to a plan, yields the set of 
actions involved in the plan. 
6.2. Plan Execution 

To solve the second of the Knowledge Precondition 
Problems, we must explain under what circumstances an 
agent can successfully execute a plan. Intuitively, an agent 
can execute a plan if he can in some sense 'make sure' that 
all the events in the plan get done. More precisely, we can 
say that an agent can execute a plan if he knows that he will 
be able to perform all the actions in the plan for which he is 
the actor, and he can predict that the other events in the plan 
will take place at their proper time. In the taxi plan above, 
for example, I can successfully execute the plan if I know 
that I will be able to perform the actions of hailing a taxi and 
paying the driver, and I can predict that the taxi driver will 
indeed drive me to the airport 

This section is devoted to formalizing this seemingly 
simple concept We will begin by examining how agents 
can execute simple single-agent plans and subsequendy 
extend our analysis to more complex plans. 

We first define the concept of a simple plan. We intro-
duce the predicate Simple-plan, which is true of plans con­
sisting of events done by a single agent Thus, for example, 
Simple-plan(do(Adrive(car))do(A,park(car))) is true; 
Simple-plan(do(Adrive(car)),do(B,park(car))) is false. A 
plan that is a simple plan can always be re-written as a single 
event If Pin is a simple plan, we write ev(Pln) to denote the 
single event associated with this plan. Note that for simple 
plans, the function actors evaluates to a singleton. 

If P is a simple plan, and A is the performing agent in 
this plan, A can execute P if he knows he is able to perform 
the action construct associated with P. We say that an agent 
is able to perform an act if he knows how to perform it and if 
the physical preconditions are satisfied. (++) 

(*+) In our full theory [Morgenstem 1987] we say that an agent is 
able to perform an action if he knows how to perform it, if the 
physical preconditions are satisfied, and if certain social protocols 
are satisfied. These protocols are an important part of our theory 
of communication. We omit this condition here for simplicity. 
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Axiom 9: 

Can-execute-Dlan(a.Dln.s) i f f 

If A is not the performing agent for a simple plan, we say that A 
can execute the plan if he can predict its occurrence. 

Axiom 10: 

6.2.1. Complex Plans 
If a plan is not simple, we say that it is complex. A 

complex plan must always be constructed via our four com­
positional operators. The knowledge preconditions for com­
plex plans turn out to be considerably more difficult to state 
than the knowledge preconditions for complex actions. 

Sequences: Our first attempt at a knowledge precondi­
tion axiom for plan sequences might parallel the axiom for 
action sequences: 

(wrong axiom:) 

This axiom, however, places overly strong demands on the 
knowledge of the executing agent. Suppose Jones, a dying 
man, constructs the plan 

sequence(Do( Jones, 
sequence(write(Will),die)), 

Do(Smith,execute(Will))) 

Jones can conceivably execute the plan if he knows he can 
write a wi l l , knows he wil l die, and can trust his attorney 
Smith. However, if we accept the above axiom attempt, 
Jones wil l not be able to execute the plan because once he is 
dead he does not know that Smith wil l execute the wil l . 
Clearly, what is important here is that Jones know what is 
going on at the beginning of the plan. Once he leaves the 
picture, we do not care what he knows. (*) 

It turns out to be impossible to formalize the Can-
execute-plan axiom for plan sequences in terms of the Can-
execute-plan axioms for simple plans. We must in fact intro­
duce a level of indirection, via the predicate Control. An 
agent is said to control a plan if he can perform the action(s) 
associated with it, or if the plan wil l occur. (**) The axioms 
on Control are self-explanatory: 

(*) The slightly unusual case of a dying man is only one of the 
more salient examples of a basic truth: agents often lose informa­
tion after they construct a plan; they arc nonetheless capable of 
executing the plan. Consider, for example, a busy executive who 
plans a conference in detail, convinces herself that the plan will 
work, delegates the plan to a secretary, and then proceeds to forget 
the details of the plan. At the time she delegates the plan, it makes 
sense to say that she can execute the plan. 
(**) This use of control is unintuitive in some cases; for example, 
I control the plan in which humans land on Mars, if it will occur. 

Controls(a,pln,s) if 

Controls(a,sequence(plnl,pln2),sl) i f f 
Controls(a,plnl,s) and 

Controls(a,while(p,pln),s) i f f 
Controls(a, 
cond(p,sequence(p,pln,while(p,pln)),Null),s) 

Controls(a,concurrent(plnl,pln2),s) i f f 
Controls(a,plnl,s) and Controls(a,pln2,s) 

We now say that an agent can execute a sequence of 
two plans if he knows that he can control the first and he 
knows that as a result of the first plan he wi l l control the 
second. 

Axiom 11: 

In the Jones-Smith example, above, Jones can execute his 
plan because at the beginning he knows that Smith wil l exe­
cute his wi l l . 

Conditionals: As with sequences, it is easy to overstate 
the knowledge preconditions for conditional plans. We 
might say that an agent can execute cond(p,plnl,pln2) if he 
knows p and can-execute plnl or he knows that p is false and 
can execute pln2. It turns out, however, that an agent can 
often successfully execute a plan without knowledge of the 
crucial condition. Consider Smith's plan to play the stock 
market by listening to the advice of his stockbroker Brown. 
Smith knows that Brown is watching out for the earnings 
report of IBM. Smith can construct the following plan: 

cond(Favorable(eamings-rept(IBM)), 
sequence(do(Brown,tell(Smith,'Buy')), 

do(Smith,buy-shares(IBM))), 
sequence(do(Brown,tell(Smith,'Sell)), 

do(Smith,sell-shares(IBM)))) 

Smith can execute this plan even though he doesn't at the 
start know anything about IBM's earnings. Intuitively, this 
is true because he is not involved in the first part of the plan. 
It is Brown who must know IBM's earnings. More pre­
cisely, Smith's actions at the beginning of the plan (here 
Null) are not affected by the conditions of the plan. 

We thus say that an agent executing a conditional plan 
is required to know the condition only if his actions at the 
beginning of the plan would be affected by the condition. 
We introduce the function first-action(a,pln) which returns 
the actions done by a during the first part of pin. 

Axiom 12: 
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While Loops: Since while loops are defined in terms of 
sequence and conditionals, our axiom for while loops is sim­
ply: 

Axiom 13: 
Can-execute-plan(a,while(p,pln),s) i f f 

Can-execute-plan 
(a,cond(p,sequence(pln,while(p,pln)),Null),s) 

Concurrency: We say that an agent can execute a plan 
consisting of two concurrent plans if he can execute each 
plan. In addition, he must know that they are physically 
feasible, and that there are sufficient resources available. 

Axiom 14: 

63. Example 
We now demonstrate how our theory works in practice. 

We consider again the case introduced in Section 1. An 
agent A, entering a chemistry lab for the first time, is asked 
to neutralize an acid; he has no idea how to perform the pro­
cedure. We assume that A knows that some agent B knows 
how to neutralize the acid, and that A and B are cooperative 
agents. For the purposes of this brief paper, we furthermore 
assume that the following is true of our planning domain: 
1) all communicative acts are primitive 
2) friendly agents wish to do what they're asked to do 
3) if an agent wishes to do an act and he can, then he wi l l 
4) friendly agents are constrained to tell the truth. 
Finally, we assume that the physical preconditions for the 
actions here are satisfied. (These assumptions are dropped in 
[Morgenstern 1987], where an isomorphic problem is 
worked out in detail.) We can then show that A can success­
fully execute the following plan. The actions introduced 
below should be self-explanatory. 

The plan consists of a sequence of three steps: 

Equivalently, do(A,neutralize acid) 

Since communicative acts are primitive, A knows that 
he automatically knows enough to ask B to perform the 
requested action. In addition, the physical preconditions for 
this action are satisfied. Thus, A knows mat he is able to 
perform the action of the first step in this plan. Moreover, 
since A and B are friendly, A knows that B wi l l perform the 
favor that he has requested, telling him how to neutralize the 
acid, if B possibly can. In point of fact, since B knows how 
to neutralize the acid, he can tell A how to perform the 

action. Thus, A can predict the occurrence of the second 
step. Once B tells A the procedure, A will know what the 
procedure is. So A can predict that he will be able to per­
form the act of neutralizing the acid. A can thus reason that 
he can successfully execute the plan consisting of the 
sequence of Stepl, Step2, and Step3. 

7. Conclusion 
We have constructed a highly flexible model of action 

and planning, and have demonstrated that it is well suited for 
partially specified plans and for multi-aaent interactions. 
We have presented solutions to both of the Knowledge 
Preconditions Problems within that context, explaining how 
agents can reason about their ability to perform actions and 
execute plans. 

This paper represents the second stage of a three-stage 
research effort to develop a robust logic of knowledge, 
action, and communication. In a future paper, we present a 
logic of communication based upon an Austinian model of 
speech acts [Austin 1962], and discuss how we can integrate 
this theory with our solutions to the Knowledge Precondi­
tions Problems. 
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