
Knowledge Preconditions for Actions and Plans
Leora Morgenstern

N e w Y o r k Univers i ty
Department of Computer Science

N e w Y o r k , N y . 10012
(212)781-6539

morgenst@nyu.csd2.edu.arpa

Abstract

Agents who operate in complex environments must
often construct plans on the basis of incomplete knowledge.
In such situations, the successful agent must incorporate into
his plans actions which obtain information. These plans are
intrinsically sketchy to begin with and become more
specified as the agent proceeds through his plan. A theory
which allows for such flexible planning wi l l have to provide
solutions to two problems: (1) how can an agent reason that
he knows how to perform an action? (Knowledge Precondi­
tions Problem for Actions) and (2) if an agent must con­
struct an underspecified plan due to incomplete knowledge,
when can we say that he can successfully execute his plan?
(Knowledge Preconditions Problem for Plans)

This paper provides solutions to both these problems.
We develop a robust and highly expressive theory of action
and planning which allows for actions of varying granularity,
primitive as well as complex acts, multi-agent plans, and
partially specified plans. We demonstrate that this theory
lends itself in a natural manner to solutions to the
Knowledge Preconditions Problems.

1. Introduction
An agent who operates in a complex environment must

often construct plans on the basis of incomplete knowledge.
Agents frequently don't know detailed procedures for the
tasks they set out to accomplish. They likewise generally
fail to keep up with a piece of information that is constantly
changing, such as the location of a moving object. These
gaps in knowledge mean that an agent may not have enough
information to do the task that he wishes to perform, or to
draw up completely detailed plans as he starts the planning
process. Consider, for example, an agent who enters a chem­
istry lab for the first time and is asked to neutralize an acid.
It is likely that he wi l l not be able to perform the task.
Moreover, he cannot even completely specify a simple plan
such as:
1) ask a friend to tell him the procedure P
2) friend tells him P
3) perform P, that is, neutralize the acid.
Both 2) and 3) wi l l be unspecified at the start of the plan,
since the agent doesn't know P. In particular 2) wi l l remain
unspecified until it is completed.

Agents who function well in complex environments
must be able to construct and execute plans despite their lack
of knowledge. In particular, they should be able to success­
fully plan to get the information that they need to perform
specific actions. An intelligent agent, for example, should
realize that the above plan for neutralizing the acid is a rea­
sonable one, while a plan such as
1) swim the English Channel
2) neutralize the acid
makes no sense at all.

A theory that allows for such flexible planning wil l
have to provide solutions to at least two problems. Firstly, it
must explain under what circumstances an agent knows how
to perform an action. We call this the Knowledge Precondi­
tions Problem for Actions. Secondly, even if an agent does
not know how to perform an action, it must explain how he
can execute a plan that gets the action done. We call this the
Knowledge Preconditions Problem for Plans.

In this paper, we develop a flexible and expressive
theory of action and planning, and present solutions to these
two problems.

2. Previous Work
Most AI planners have ignored both of the Knowledge

Preconditions Problems. This is true both of classic plan-
nine programs such as OPS [Ernst and Newell 1969] and
STRIPS [Fikes and Nilsson 1971] as well as more recent
planners such as NOAH [Sacerdoti 1975], Non-Lin [Tate
1977], and TWEAK [Chapman 1985]. The theories underly­
ing these planners have all implicitly assumed that agents
always have complete knowledge; planning thus reduces to
some sort of search through a pre-packaged list of action
operators, pre-conditions, and post-conditions.

McCarthy and Hayes [1969] were the first to argue that
an agent does in fact reason about his ability to perform an
action, thus addressing themselves to the first of the
Knowledge Preconditions Problems. They suggested writing
down explicit knowledge precondition axioms for each
action, so that a planning program could reason that it knew
how to do an action if the relevant knowledge precondition
axioms were true. This proposal however, fails on at least
two counts: (1) it leads to an explosion of axioms, a large
search space, and thus unacceptably slow proofs, and (2) it
provides no explanation as to why or how agents come to
know how to perform actions.

In [Moore 1980], Moore presented an elegant solution
to the first Knowledge Preconditions Problem lor a limited
class of actions. Moore used the modal logic of knowledge
S4 with possible worlds semantics and the simple situation
calculus model of actions, in which actions are regarded as
functions on situations. Central to Moore's argument were
two concepts from possible worlds theory: that of the rigid
designator, an entity such as a name or number denoting the
same object across possible worlds, and that of the rigid
function, a function on rigd designators. Moore argued mat
all actions were (axiomatically composed out of) rigid func­
tions. Furthermore, all agents knew all axioms and knew
how to perform actions as long as they knew rigid designa­
tors for the actions. An agent thus knew how to perform an
action if he knew rigid designators for the parameters of the
action.

Morgenstern 867

Unfortunately, Moore's system is insufficiently general
for the following reasons: (1) The S4 model entails that all
agents know all axioms and that they thus have the same
procedural knowledge; this reduces the entire Knowledge
Preconditions Problem to a toy problem, (2) the first order
modal logic that Moore uses is severely inexpressive, and
does not allow us to express an agent's partial knowledge,
(3) the McCarthy-Hayes situation calculus that Moore uses
is too rigid to serve as the basis for a flexible theory of plan­
ning.

Since the first two objections follow from Moore's use
of a modal logic of knowledge, and the third objection fol­
lows from Moore's use of the McCarthy-Hayes model of
action, it makes sense to develop a theory which avoids both.
We will build our theory upon a first order logic of
knowledge, in which knowledge is represented as a relation
on strings, and integrate it with an expressive, set-theoretic
model of action. The resulting theory will lend itself in a
natural manner to solutions to both of the Knowledge
Preconditions Problems.

This paper extends the work of [Morgenstem 1986a] in
which we first addressed the problem of constructing a first
order logic of knowledge and action. There, we focussed
upon developing a first-order logic of knowledge which
avoids paradox and obeys the classical inference rules, and
which could be integrated with various models of action. In
this paper, we construct a detailed theory of action and plan­
ning and present our solution to the Knowledge Precondi­
tions Problems within that context

3. The Logical Language
We will be using a language L, which is an instance of

the first order predicate calculus. V s symbols consist of the
logical symbols, such as v , - i , and 3 , constants, variables,
predicates, and functions. We will feel free to substitute the
English equivalents for logical symbols when it improves
legibility. Constants are numbers or begin with an upper
case letter. Predicates begin with upper case; functions and
variables begin with lower case. Predicates and constants,
functions and variables, will be disambiguated by context
In our axioms and definitions, variables will be assumed to
be universally quantified unless otherwise specified.

Our logic is sorted; sorts are distinguished by their first
letters). Some of the more commonly used sorts are s, rang­
ing over situations, i, ranging over intervals, a, ranging over
agents, act, ranging over actions, str, ranging over strings.
Other sorts will be introduced as needed, and will be under­
stood from context

The quotation construct is an important feature of L.
We assume a meta-function of L, G, which maps distinct
expressions of L into distinct numbers. G is invemble; the
analogue of G-1 in L is g-1. In the proper context, a number
of L is said to 'stand for' the expression of L which maps
into it When used in this way, numbers are known as
strings. A string is written as the expression it represents,
surrounded by quotation marks. For example, the string
'At(John,NYC,s3)' represents the expression
At(John,NYC,S3). Strings thus provide us with a way of
talking about expression of L within L.

Various predicates of L take strings as their arguments;
the most important of these are the predicates True and
Know. Know takes three arguments: an agent, a string
representing a sentence, and a situation. For example, to say
that John knows something that Bill doesn't know, we write:

3 p (Know(John,p,S5) & -i Know(Bill,p,S5))
Note that by using strings, we are effectively quantifying
over sentences while remaining in a first order language; we

can use this trick to 'quantify' over functions and predicates
by quantifying over strings which represent them. Note also
the ease with which we can express partial knowledge.

Achieving full expressivity in languages with quotation
can be complicated since the quoted constructs are opaque.
For example to state the principle of positive introspection,
that if an agent knows something, he knows that he knows it,
we cannot simply say:

V a,p,s Know(a,p,s) ■> Know(a,'Know(a,p,s)',s)
This would mean that all agents always know the string
'Know(a,p,s)'. If we try to substitute values for a,p, and s,
we will not be able to substitute the values within the quoted
context: a string is a constant To solve this problem, we
introduce some syntactic abbreviations: a name-of-operator,
@, where @ applied to an object yields the name of that
object, ! !, where ! ! applied to a string variable yields the
string the variable stands for, and * *, where * * applied to a
string variable yields the string the variable stands for,
stripped of surrounding quotes. (*) As an example of their
use, we now write the principle of positive introspection
correctly:

V a,p,s Know(a,p,s) «> Know(a,'Know(@a,!p!,@s)',s)
Our axioms on Know correspond closely to the standard S4
axiomatization of knowledge. We assume veridicality, posi­
tive introspection, and consequential closure. We do not,
however, assume necessitation: agents are required to know
all logical axioms and axioms on knowledge, but not all
axioms about the world.

4. Theory of Action

4.1. Requirements
Underlying every theory of action is an explicit or

implicit ontology of action. The ontology of action that we
choose will be determined by the set of requirements that are
placed upon the theory. These requirements, in turn, are
determined by the problems that our theory seeks to solve.
Below, we briefly list the more salient requirements which
we place upon our theory:
[1] Fidelity of Temporal Representation: A theory of
action must be able to talk about both instants of time and
intervals of time. Actions take place over intervals of time;
facts may be true over instants or intervals. Instants are
necessary so that we can describe what it true at a particular
moment Time intervals are necessary so that we can
describe how the world changes over time.
[2J Granularity: The theory should be able to view actions
with varying degrees of granularity. That is, the term
'action' should encompass broadly general as well as
detailed descriptions of actions. For example, both driving a
car and driving a red Alfa Romeo with the roof down on a
hot summer's day should be considered actions. This is
especially important for the purposes of planning. At the
start of the planning process, agents often think in general
terms, about coarse-grained actions. However, these
coarse-grained actions may become transformed into
increasingly finer grained actions as the planning process
continues and plan refinement occurs.
[3] Interval Dependent Actions: There are many actions
whose very descriptions depend on the time during which

(*) These operators are defined in terms of standard features
of L such as concat For further details, see [Morgenstem
1986b].

868 REASONING

they take place, such as going to the top of the tallest build­
ing in New York. The values of descriptions such as 'the
tallest building in New York' change with time. We wish to
have a theory which allows us to describe actions in this
manner.
[4] Composability: Most actions are formed by composing
simpler actions in various ways. For example, the action of
making blackberry jam can be thought of as a sequence of
the action of crushing blackberries, mixing with sugar and
pectin, bringing to a hard boil, and pouring into Mason jars.
Our theory should provide a mechanism for composing sim­
ple actions to form complex actions, using the standard
operators of a concurrent programming language, such as
sequences, conditionals, while loops, and concurrency.
[5] Multiple Agents: Many of the actions we are interested
in, such as communicative actions, are interagent actions,
which involve at least two agents. Our theory must therefore
be flexible enough to describe how multiple agents act and
interact. In particular, we should be able to talk about agents
acting simultaneously. We should also be able to talk about
individual plans which are constructed out of actions done
by many agents.

4.2. Choosing an Ontology
There are two major questions which must be addressed

when choosing an ontology:
1) What arc actions? and
2) How can we describe actions?

Mainstream AI research has provided us with two
answers for each of these two questions.
1) Actions have been regarded as

a) functions on states, or
b) sets of intervals.

2) Actions have been described using
c) functional descriptions such as put-on(a,b), or
d) set theoretic descriptions of the form (i I <(i) }

where <K0 is a well formed formula free only in i.
It is important to realize that these approaches can be

combined in a variety of ways. Three of the four possible
combinations are coherent and have in fact been incor­
porated into AI theories. McCarthy and Hayes [1969] have
regarded actions as functions on states and have used func­
tions to describe these actions. Both McDermott [1982] and
Allen [1984] have argued that actions are sets of intervals.
However, Allen uses functional descriptions, while McDer­
mott makes use of the set theoretic description of actions.

These approaches can be contrasted in different ways.
There is a clear advantage to approach b) over approach a) :
that of oncological realism. There are many actions, such as
running around the block or waiting on the corner, which do
not seem to involve a state change, and which are not the
null action.

Each of approaches c) and d), however, has some
advantage over its rival. It is clear that d) is more expressive
than c). There are many actions, such as our example of
driving a red Alfa Romeo with the roof down which cannot
be described in any natural manner using functional descrip­
tions. However, it is easy to describe such an action using a
set theoretic description:
{i 13 a,c Alfa-Romeo(c) and Red(c) and Down(roof(c)i)

and Drives(a,c,i))
If an action cannot be described using function descriptions,
we say that it is composite.
In point of fact, however, no researcher using approach d)

has utilized its expressive potential in any systematic
manner. Moreover, approach c) has an important advantage
over approach d): it is less cumbersome and easier to use for
those actions which are functionally describable, such as
driving a car (drive(c)) or putting one block on another (put-
on(x,y)).

We aim to construct a theory which maximizes onto-
logical realism, expressivity, and ease of use. With these
ends in mind, we will regard actions as sets of intervals. To
achieve expressivity, we will describe actions using set
theoretic descriptions. We will show in a systematic manner
how we can exploit the notation's expressive potential. To
maximize ease of use, we will identify those classes of
actions which are functionally describable, and use func­
tional descriptions for these actions whenever possible.

4.3. Presentation of Theory
We now present a theory of action which satisfies the

requirements discussed in section 4.1. The basic building
block of our theory is the situation or state. States are
ordered by the < relation, indicating precedence in time. (*)
An interval is defined as a set of contiguous instants, all of
which are linearly ordered. It is determined by its beginning
and end points; these points name the interval. Thus, the
interval starting at S l l and ending at S25 is denoted
[SI 1,S25]. Intervals in general are closed.

We define actions and events as sets of intervals, intui­
tively those in which the action or event takes place.
Actions are those events in which the performing agent is
not specified.

We place in L a set of action functions, such as put-
on(bll,bl2), dial(x) and drive(c). These functions map their
arguments onto sets of intervals, or actions. We can associ­
ate in a natural manner an n+2-place predicate with each n-
place action function. The extra arguments are used for the
agent performing the action, and the interval during which
the action is performed. For example, we associate with the
action functions above the predicates: Puts-on(a,bll,bl2,i),
Dials(a,x,i) and Drives(a,c,i). We call these predicates
action predicates.

Actions are introduced using these action predicates.
Since an action is a class, it must be of the form {i I <(>(i)},
where $ is a wff free only in i. If Act « {i I ty (i)}, we call <|>
the descriptive wff of Act. <|>(i) must contain an action
predicate.

We can achieve our second requirement, varying granu­
larity of action, by expanding or restricting <|> in a systematic
manner. We give some examples of this below:
(1) {i I 3 a Puts-on(a,Bll,B12,i)} - the act of putting block

Bll on block B12
(2) {i I 3 a,bll,bl2 Puts-on(a,bll,bl2,i)} - the act of putting

one block on another
(3) (i I 3 a,bll,bl2 Red(bll) and Puts-on(a,bll,bl2,i)} - the

act of putting a red block on some other block
(4) (i I 3 a,bll,bl2 Equal(bll,favorite-block(Mary)) and

Equal(bl2,favorite-block(Jane)) and
Puts-on(a,bll,bl2,i)} - the act of putting Mary's

favorite block on Jane's favorite block.
It will be noted that only some of these actions are

functionally describable. (1), (2), and (4) are: their func-

(*) If this order is total, we have linear time; if it is partial, we
have branching time. Neither assumption is crucial for the work
done in this paper.

Morgenstem 869

tional descriptions arc, respectively: put-on(Bll,B12), put-
on(bl 1 ,bl2) and put-on(favorite-block(Mary),favorite-
block(Jane)). There is, however, no way to produce a func­
tional description for (3), unless we are will ing to create
functions such as put-red-block-on on the fly.

In general, we can show that an action Act
is functionally describable if <t>(i) is one of the following
forms:
[1] contains no quantified variables, other than the vari­

able representing the performing agent(s).
[2] contains quantified variables; these are all existen-

tially quantified. Furthermore, does not contain any
predicates involving these variables other than the
action predicate(s) or the predicate Equal.

Functionally describable actions can further be subdi­
vided into deterministic and non-deterministic actions. An
action is said to be deterministic if all the arguments of its
functional description evaluate to constants; otherwise it is
non-deterministic. (1) and (4) are deterministic; (2) is not.
We furthermore say that all composite actions are non-
deterministic.

We close this section by giving two more examples of
actions:
(5) Smallest-block(biU) and Largest-

block(bl24) and Puts-on(a,bIl,bl2,i)) - the act of plac­
ing the smallest block on the largest block

Note that this is an example of an interval dependent action.
(6) {i} - the set of all intervals. We wil l call this the null

action, Null.

We can easily define such programming language
operators as sequence(actl,act2), cond(p,actl,act2),
while(p,act) and concurrent(actl,act2) using standard set
theoretic notation. In particular, we can recursively define
while loops in terms of sequences, conditionals, and the null
act: While(p,act) = cond(p,sequence(act,while(p,act)),Null).
(see [Moore 1980].) We say that sequence, cond, while, and
concurrent are action functions.

4.4. Events
Events are sets of intervals; intuitively, those intervals

in which some agent performs an action. Every action is an
event; thus, examples (1) - (6) above are all events. How­
ever, the following are also events:

I -
the event of a child placing one block on another

the event of Bi l l placing one block on another
These are not actions because the performing agent is in
some way restricted.

If the performing agent in deterministically specified,
we can express an event as do(a,act), where a is the perform­
ing agent, act is the action, and do is the function mapping
agents and actions onto events. For example, (8) can be
expressed as do(Bill,put-on(bll,bl2)).

We introduce the predicates on events R and Occur. If
Ev is an event R(Ev,Sl,S2) is true if S2 is the result of Ev l ' s
occurrence in S I . Occur(Ev,Sl,S2) is true if Ev occurs
between SI and S2. The two predicates are equivalent in a
model of linear time. Note that the predicate R, while
superficially similar to the Result predicate of the situation
calculus, can in fact be defined in terms of our interval based
ontology:

Def.
In a model of branching time, in which only some states are
actualized, or real states, we define:

Def.

5. Solution to the Knowledge Preconditions Problem for
Actions

Our solution is based upon five general observations
about actions, the agents who perform them, and the
knowledge these agents possess:
[1] Agents need to have explicit procedural knowledge for

the actions they perform. Agents often don't have the
knowledge they need, and thus are not able to perform
the actions. If an agent does not know the explicit pro-
cedure for making a souffle, he wil l not be able to do it

[2] A l l agents in a community know how to perform some
basic actions. This assumption is a necessary precondi­
tion for meaningful teaching to occur.

[3] An agent needs more than procedural knowledge in
order to perform an action. He also needs to know
definite descriptions for the parameters of the action he
is performing. For example, even if an agent knows
how to dial a phone number, he wil l not be able to per­
form the action Dial(tclno(Mary)) if he doesn't know
what Mary's number is. This observation has been the
major focus of Moore's research on the Knowledge
Preconditions Problem for Actions.

[4] Action descriptions make a difference. The same
action can be described in a number of different ways;
an agent may be able to reason that he knows how to
perform the action in only one of its guises. For exam­
ple, an agent might know how to perform
sequence(beat-cggs,fry-eggs), but not how to perform
make-omelette; he might know how to perform
Dial(460-7100) but not Dial(telno(Courant)).

[5] An agent knows how to compose his knowledge. If an
agent knows how to perform two actions, for example,
he wi l l generally know how to perform a sequence of
those actions.
Our solution to the Knowledge Preconditions Problem

for Actions wi l l synthesize and formalize these notions. We
present our solution in two stages, first giving the solution
for functionally describable actions, and then giving the
solution for composite actions.

5.1. Solution for Functionally Describable Actions

5.1.1. Deterministic actions

5.1.1.1. Primitive Actions:
We begin by designating a class of action functions as

primitive. This class wi l l include such simple action types as
move, put-on and dial. In general, an action is primitive if it
cannot be further decomposed into simpler actions. The
intuitive idea is that all agents know the basic procedures for
these simple, non-decomposable acts.

As mentioned, an agent needs to know more than the
basic procedure in order to do an action; he must also know
definite descriptions for the parameters of the action func­
tions. We say that an agent knows a definite description for
a parameter if he knows some standard identifier e.g., a con­
stant, for the parameter. So, if f(argl...argn) is an action, f is
primitive, and an agent knows standard identifiers for each
of argl...argn, he knows how to perform those actions. This

870 REASONING

principle is expressed in Axiom 1. Note that Stidstr is a
predicate that ranges over strings; it is true of a string iff the
string is the quoted form of a standard identifier of L.

Arinm 1:

if

For example, if put-on is a primitive action, then A knows
how to perform put-on(favorite-block(Mary),favorite-
block(Jane)) if he knows standard identifiers for those
blocks.

Note that the argument to the Knows-how-to-perform
predicate is the string representing the action description in
question. This is important so that the predicate can be
opaque with respect to action descriptions: otherwise the
predicate would be true or false of all action descriptions
which evaluated to the same action. If an agent knows how
to perform an action description Actl, and Actl and Act2
designate the same action, he will be able to perform Act2
only if he knows they designate the same action.
Axiom 2:

5.1.1.2. Complex Actions
Actions that are composed out of simple actions using

our four composition operators are designated as complex
actions. The knowledge preconditions for complex acts
depend in a straightforward manner on the knowledge
preconditions for simpler actions.

Sequence: An agent knows how to perform a sequence
of two actions if he knows how to perform the first, and
knows that as a result of performing the first, he will know
how to perform the second.
Axiom 3:

Conditionals: An agent knows how to perform
cond(p,actl,act2) if he knows p and knows how to perform
actl or he knows that p is false and he knows how to per­
form act2.
Axiom 4:

While Loops: Since while loops are defined in terms of
conditionals and sequences (4.3), the knowledge precondi­
tion axiom for loops is straightforward:

Axiom 5:

Concurrency: An agent who knows how to perform
concurrent(actl,act2) must know how to perform each of
actl and act2. In addition, the intersection of the two actions
must be feasible, and the agent must have sufficient
resources for both actions.
Axiom 6:

The predicates Feasible and Resource-compatible are dis­
cussed in [Morgenstern 1987].

5.1.2. Non-deterministic Functionally Describable
Actions

A non-deterministic functionally describable action is
always of the form f(argl...argn) where at least one of the
argj does not evaluate to a constant. An example is put-
on(bll,bl2). Intuitively, an agent knows how to perform an
action of this sort if he knows how to perform at least one
deterministic instantiation of the action. So, for example, if
B172 and B18 are blocks, and an agent knows how to perform
put-on(B172,B18), he also knows how to perform put-
on(bll,bl2). The same is true if he knows how to perform
put-on(B172,favorite-block(Jane)). This intuition is justified
by the set theoretic structure of non-deterministic function-
allv describable actions, which, we will remember, is (i 13 a

act-pred(a,argl,...,argn,i)J. The 'existen­
tial generalization' is true as long as we can find some values
to satisfy it.

To formalize this rule, we need only add
Axiom!:

Assume one of argl... argn does not evaluate to a
definite description. Suppose further that 3x1 ... xn,
such that each xi is a deterministic instantiation
of are 1... aren. and that

I
result.

If an action is of this form, we say it is an REQ (restricted
existentially quantified) action. Thus, for instance, example
(3) of Section 4.3 and the action of driving a Red Alfa
Romeo with the roof down (Section 42) are both examples
of REQ actions.

Intuitively, an agent a knows how to perform an REQ
action if there exist some constants CI ... Cn satisfying the
restriction, for which he knows how to perform the associ­
ated action . Suppose, for example, that
Act is example (3) of section 4.3:

If there is some constant value for M l , say B155, such that
(i)Red(B155)and
(ii) K n o w s - h o w - t o - p e r f o r m (a , P u t s -
on(a3l55,bl24)}^) ,
we say that a knows-how-to-perform Act as well. We for­
malize this notion in the following axiom:

Axiom 8:

Let act be of the form described in (•), an REQ action.
Suppose that there exist n strings, s t r l . . . strn,
such that Stidstr(strl) and... and Stidstr(strn).
Suppose further that P i t (g ' s t r) for each i in a through n;
that is, that for each i, the predicate Pi of (•),
is true of the constant denoted by the standard identifier stri.
Then,

if Knows-how-to-oerform

We defer for the present those composite actions which
contain universal quantifiers. These cases wi l l be considered
in future research.

6. Solution to the Knowledge Preconditions Problem for
Plana

6.1. The Concept of a Plan
Standard AI planning research [Fikes and Nilsson 1971,

Sacerdoti 1975] has regarded plans as sequences of actions
that are performed by a single agent (*) This planning para­
digm, while adequate for simple single-agent toy domains
like the blocks world, is nonetheless inadequate for more
robust planning systems for at least two reasons:

(1) Planning may involve interactions between two or
more agents. Consider even a simple plan such as my pet­
ting to the airport: it consists of my hailing a taxi, the driver
driving to the airport, and my paying the taxi. The taxi
driver s action is an essential part of my plan.

(2) Constructs other than sequence, such as con­
currency, are widely used in real life plans. An army
general s plan to attack a city might consist of his attacking
the city's eastern front, while his colonel attacks the city's
western front

(*) It is a common misconception that NOAH allows for con­
current and multi-agent plans. In fact, NOAH simply allows for
the representation of unordered actions during the intermediate
stages of planning. This is not the same as representing con­
currency: the final output of NO AH is always an ordered sequence
of actions. Moreover, NOAH has no explicit representation for
the actions of other agents (although this could conceivably be
built in). Since in any case, NOAH cannot handle concurrency,
general multi-agent planning is clearly impossible.

These observations lead us to define a plan as any struc­
ture of events constructed with our standard event operators
of sequence, conditionals, while loops, and concurrency.
For example, we can express the general's plan, above, as:

Note that this notation permits a particularly flexible kind of
plan construction in which the planner need not even fully
specify all the agents who will be performing the actions.
For example, if the general is simply planning for one of his
colonels to attack the city's western front, he might construct
his plan as:

We introduce the function actors, which applied to a
plan, yields the set of actors involved in the plan, and the
function actions, which applied to a plan, yields the set of
actions involved in the plan.
6.2. Plan Execution

To solve the second of the Knowledge Precondition
Problems, we must explain under what circumstances an
agent can successfully execute a plan. Intuitively, an agent
can execute a plan if he can in some sense 'make sure' that
all the events in the plan get done. More precisely, we can
say that an agent can execute a plan if he knows that he will
be able to perform all the actions in the plan for which he is
the actor, and he can predict that the other events in the plan
will take place at their proper time. In the taxi plan above,
for example, I can successfully execute the plan if I know
that I will be able to perform the actions of hailing a taxi and
paying the driver, and I can predict that the taxi driver will
indeed drive me to the airport

This section is devoted to formalizing this seemingly
simple concept We will begin by examining how agents
can execute simple single-agent plans and subsequendy
extend our analysis to more complex plans.

We first define the concept of a simple plan. We intro-
duce the predicate Simple-plan, which is true of plans con­
sisting of events done by a single agent Thus, for example,
Simple-plan(do(Adrive(car))do(A,park(car))) is true;
Simple-plan(do(Adrive(car)),do(B,park(car))) is false. A
plan that is a simple plan can always be re-written as a single
event If Pin is a simple plan, we write ev(Pln) to denote the
single event associated with this plan. Note that for simple
plans, the function actors evaluates to a singleton.

If P is a simple plan, and A is the performing agent in
this plan, A can execute P if he knows he is able to perform
the action construct associated with P. We say that an agent
is able to perform an act if he knows how to perform it and if
the physical preconditions are satisfied. (++)

(*+) In our full theory [Morgenstem 1987] we say that an agent is
able to perform an action if he knows how to perform it, if the
physical preconditions are satisfied, and if certain social protocols
are satisfied. These protocols are an important part of our theory
of communication. We omit this condition here for simplicity.

872 REASONING

Axiom 9:

Can-execute-Dlan(a.Dln.s) i f f

If A is not the performing agent for a simple plan, we say that A
can execute the plan if he can predict its occurrence.

Axiom 10:

6.2.1. Complex Plans
If a plan is not simple, we say that it is complex. A

complex plan must always be constructed via our four com­
positional operators. The knowledge preconditions for com­
plex plans turn out to be considerably more difficult to state
than the knowledge preconditions for complex actions.

Sequences: Our first attempt at a knowledge precondi­
tion axiom for plan sequences might parallel the axiom for
action sequences:

(wrong axiom:)

This axiom, however, places overly strong demands on the
knowledge of the executing agent. Suppose Jones, a dying
man, constructs the plan

sequence(Do(Jones,
sequence(write(Will),die)),

Do(Smith,execute(Will)))

Jones can conceivably execute the plan if he knows he can
write a wi l l , knows he wil l die, and can trust his attorney
Smith. However, if we accept the above axiom attempt,
Jones wil l not be able to execute the plan because once he is
dead he does not know that Smith wil l execute the wil l .
Clearly, what is important here is that Jones know what is
going on at the beginning of the plan. Once he leaves the
picture, we do not care what he knows. (*)

It turns out to be impossible to formalize the Can-
execute-plan axiom for plan sequences in terms of the Can-
execute-plan axioms for simple plans. We must in fact intro­
duce a level of indirection, via the predicate Control. An
agent is said to control a plan if he can perform the action(s)
associated with it, or if the plan wil l occur. (**) The axioms
on Control are self-explanatory:

(*) The slightly unusual case of a dying man is only one of the
more salient examples of a basic truth: agents often lose informa­
tion after they construct a plan; they arc nonetheless capable of
executing the plan. Consider, for example, a busy executive who
plans a conference in detail, convinces herself that the plan will
work, delegates the plan to a secretary, and then proceeds to forget
the details of the plan. At the time she delegates the plan, it makes
sense to say that she can execute the plan.
(**) This use of control is unintuitive in some cases; for example,
I control the plan in which humans land on Mars, if it will occur.

Controls(a,pln,s) if

Controls(a,sequence(plnl,pln2),sl) i f f
Controls(a,plnl,s) and

Controls(a,while(p,pln),s) i f f
Controls(a,
cond(p,sequence(p,pln,while(p,pln)),Null),s)

Controls(a,concurrent(plnl,pln2),s) i f f
Controls(a,plnl,s) and Controls(a,pln2,s)

We now say that an agent can execute a sequence of
two plans if he knows that he can control the first and he
knows that as a result of the first plan he wi l l control the
second.

Axiom 11:

In the Jones-Smith example, above, Jones can execute his
plan because at the beginning he knows that Smith wil l exe­
cute his wi l l .

Conditionals: As with sequences, it is easy to overstate
the knowledge preconditions for conditional plans. We
might say that an agent can execute cond(p,plnl,pln2) if he
knows p and can-execute plnl or he knows that p is false and
can execute pln2. It turns out, however, that an agent can
often successfully execute a plan without knowledge of the
crucial condition. Consider Smith's plan to play the stock
market by listening to the advice of his stockbroker Brown.
Smith knows that Brown is watching out for the earnings
report of IBM. Smith can construct the following plan:

cond(Favorable(eamings-rept(IBM)),
sequence(do(Brown,tell(Smith,'Buy')),

do(Smith,buy-shares(IBM))),
sequence(do(Brown,tell(Smith,'Sell)),

do(Smith,sell-shares(IBM))))

Smith can execute this plan even though he doesn't at the
start know anything about IBM's earnings. Intuitively, this
is true because he is not involved in the first part of the plan.
It is Brown who must know IBM's earnings. More pre­
cisely, Smith's actions at the beginning of the plan (here
Null) are not affected by the conditions of the plan.

We thus say that an agent executing a conditional plan
is required to know the condition only if his actions at the
beginning of the plan would be affected by the condition.
We introduce the function first-action(a,pln) which returns
the actions done by a during the first part of pin.

Axiom 12:

Morgenstern 873

While Loops: Since while loops are defined in terms of
sequence and conditionals, our axiom for while loops is sim­
ply:

Axiom 13:
Can-execute-plan(a,while(p,pln),s) i f f

Can-execute-plan
(a,cond(p,sequence(pln,while(p,pln)),Null),s)

Concurrency: We say that an agent can execute a plan
consisting of two concurrent plans if he can execute each
plan. In addition, he must know that they are physically
feasible, and that there are sufficient resources available.

Axiom 14:

63. Example
We now demonstrate how our theory works in practice.

We consider again the case introduced in Section 1. An
agent A, entering a chemistry lab for the first time, is asked
to neutralize an acid; he has no idea how to perform the pro­
cedure. We assume that A knows that some agent B knows
how to neutralize the acid, and that A and B are cooperative
agents. For the purposes of this brief paper, we furthermore
assume that the following is true of our planning domain:
1) all communicative acts are primitive
2) friendly agents wish to do what they're asked to do
3) if an agent wishes to do an act and he can, then he wi l l
4) friendly agents are constrained to tell the truth.
Finally, we assume that the physical preconditions for the
actions here are satisfied. (These assumptions are dropped in
[Morgenstern 1987], where an isomorphic problem is
worked out in detail.) We can then show that A can success­
fully execute the following plan. The actions introduced
below should be self-explanatory.

The plan consists of a sequence of three steps:

Equivalently, do(A,neutralize acid)

Since communicative acts are primitive, A knows that
he automatically knows enough to ask B to perform the
requested action. In addition, the physical preconditions for
this action are satisfied. Thus, A knows mat he is able to
perform the action of the first step in this plan. Moreover,
since A and B are friendly, A knows that B wi l l perform the
favor that he has requested, telling him how to neutralize the
acid, if B possibly can. In point of fact, since B knows how
to neutralize the acid, he can tell A how to perform the

action. Thus, A can predict the occurrence of the second
step. Once B tells A the procedure, A will know what the
procedure is. So A can predict that he will be able to per­
form the act of neutralizing the acid. A can thus reason that
he can successfully execute the plan consisting of the
sequence of Stepl, Step2, and Step3.

7. Conclusion
We have constructed a highly flexible model of action

and planning, and have demonstrated that it is well suited for
partially specified plans and for multi-aaent interactions.
We have presented solutions to both of the Knowledge
Preconditions Problems within that context, explaining how
agents can reason about their ability to perform actions and
execute plans.

This paper represents the second stage of a three-stage
research effort to develop a robust logic of knowledge,
action, and communication. In a future paper, we present a
logic of communication based upon an Austinian model of
speech acts [Austin 1962], and discuss how we can integrate
this theory with our solutions to the Knowledge Precondi­
tions Problems.

Acknowledgements: This research was supported in part by
NSF grant DCR-8603758. Thanks to Ernie Davis for many
helpful ideas, suggestions, and discussions.

BIBLIOGRAPHY

Allen, James: Toward a General Theory of Action and
Time', Artificial Intelligence, Vol. 23, No.2,1984
Austin, J.L.: How to Do Things With Words, Harvard
University Press, Cambridge, 1962
Chapman, David: Planning for Conjunctive Goals, MIT TR
83-85,1985
Ernst, G. and Newell, Allan: GPS: A Case Study in Gen-
erality and Problem Solving, Academic Press, New York,
1969
Fikes, R.E. and Nils Nilsson: 'STRIPS: a New Approach to
the Application of Theorem Proving to Problem Solving,'
Artificial Intelligence, Vol 2,1971
McCarthy, John and Patrick Hayes: 'Some Philosophical
Problems from the Standpoint of Artificial Intelligence' in
Bernard Meltzer, ed: Machine Intelligence 4,1969
McDennott, Drew: 'A Temporal Logic for Reasoning
About Processes and Plans,' Cognitive Science, 1982
Moore, Robert: Reasoning About Knowledge and Action,
SRI Technical Note 191,1980
Morgenstern, Leora: 'A First Order Theory of Planning,
Knowledge, and Action', Proceedings of the Conference on
Theoretical Aspects of Reasoning About Knowledge, Morgan
Kaufmann, Los Altos, 1986
Morgenstern, Leora: Foundations of a Logic of
Knowledge, Action, and Communication, forthcoming NYU
PhD. thesis, 1987
Morgenstern, Leora: 'Preliminary Studies for a First Order
Logic of Knowledge and Action; NYU Technical Report
262; 1986
Sacerdoti, Earl: A Structure for Plans and Behavior, Amer­
ican Elsevier, New York 1977
Tate, Austin: 'Generating Project Networks', Proceedings,
Fifth International Conference on Artificial Intelligence,
1977

874 REASONING

