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ABSTRACT: 

In this paper we discuss a semantics for translating natural 
language statements into facts of an underlying expert 
system, replacing the more conventional menu interface for 
gathering data from the user. We describe two issues that 
must be considered when building such an interface for an 
expert system. These issues are semantic processing of the 
user statements and the design of an interpreter for the expert 
system that efficiently utilizes the facts entered by the user. 
The semantic approach is based on verb categorization and 
hierarchical structuring of each category. The parsing 
algorithm based on selectional restriction is directly encoded 
into each verb class hierarchy. Next, we describe Director, 
an interpreter for rule-based expert systems that efficiently 
utilizes these facts for inferencing. Director uses a 
combination of forward and backward chaining that gives 
ful l consideration to each fact entered by the user and enables 
the system to process input in an efficient and focused 
manner. 

1 Introduction 
An expert system often interactively gathers data from a 

user in order to solve a problem. In many expert systems this 
information gathering is done via a menu interface. In this 
paper we describe a natural language interface for expert 
systems that replaces the more conventional menu interface 
for collecting information from the user. One of the tasks of 
a natural language interface is to translate user statements 
into facts of the underlying expert system, which requires a 
sophisticated semantics. Furthermore, such an interface 
places additional requirements on the inference engine of the 
expert system itself, namely to efficiently utilize the facts 
entered by the natural language module. This paper presents 
a semantic approach necessary for the translation as well as 
Director, an interpreter for rule-based expert systems** that 
meets the demands of the natural language interface. (For an 
overview of the system see figure 1.) 

The semantic approach presented relies primarily on verb 
categorization and hierarchical structuring within each verb 
category. This approach differs from previous work in 
semantics by capturing linguistic generalizations of verb 
categories while providing modularity and some domain 
independence. In addition, it offers a semantic mechanism 
for an unstructured underlying system unlike previous 
approaches that made use of an assumed structure to define 
semantics (e.g. data base systems). During parsing, an 
appropriate hierarchy is selected according to the definition 
of the verb in the system's dictionary. A selectional 
restriction based algorithm is used to traverse the hierarchy. 

.This research was partially supported by Office of Naval Research 
grant N00014-82-K-0256. 

The restrictions on the arguments of the verb are based on the 
sentence noun features. Furthermore, in certain cases the 
noun features can be used directly in order to derive certain 
facts. 

With a natural language interface, a user may volunteer 
information at any point; either at the beginning of a session 
or as an answer to any question posed by the expert system. 
The expert system must be able to use this information to 
arrive at a solution quickly, avoiding inferencing and 
associated questions that are irrelevant to the user specified 
goal and information. Director has been designed 
specifically to support the construction of expert system 
with natural language interfaces. It allows for facts entered 
through natural language to be taken into account by using an 
efficient combination of forward and backward chaining. 
Forward chaining is used to ensure that full consideration is 
eiven to each fact asserted by the natural language module on 
behalf of the user. Backward chaining is controlled by 
heuristics that ensure a focused interaction. These heuristics 
are based on descriptions of how and when data has been 
entered and guide the selection of rules to be evaluated. 
Director also provides ready access to portions of its internal 
structure. This feature allows the system to answer certain 
types of queries with a minimal number of searches of the 
rule base. The interpreter is designed to come to a solution 
quickly, with the minimal number of questions posed to the 
user and is therefore useful not only for systems with natural 
language interfaces, but also for systems whose problem 
domains involve data from hostile environments, such as 
nuclear reactors. 

2 Background 
In order for a human expert to be able to answer a person's 

question he often has to carry out extensive dialogs with that 
person to gather information about his needs. Extensive 
interaction and clarification is also needed for expert 
systems. One way expert systems communicate with their 
users is via a menu interface [Shortliffe 76] [Clancey 79]. 
Unfortunately, these interfaces are often tedious or awkward 
[Datskovsky 84] and may even limit the capabilities of 

associated expert systems [Pollack et. al. 82]. 
A natural language interface can relieve some of the 

A typical rule-based expert system is constructed as a knowledge 
base and an associated interpreter (inference engine) [Hayes Roth 85]. 
The knowledge base is a collection of facts and production rules. A fact is 
a (name value) pair indicating the value of the object name; and a 
production rule is a statement of the form IF premise THEN action. Such 
a rule stores the knowledge that if the premise (left-hand-side) is true then 
the action (right-hand-side) should be performed The interpreter controls 
the execution of the expert system by selecting and evaluating rules. As 
these rules are evaluated, they alter the values of the facts and generate 
input and output 
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problems associated with the menu interface by allowing the 
user to receive advice in the most informative and least time 
consuming way. That is, overall session length should be 
shorter using natural language since the system wi l l have to 
pose fewer questions. This is possible because natural 
language allows the user to volunteer more than just the 
requested information whenever the expert system presents a 
question to the user. 

The natural language module is responsible for interpreting 
incoming statements as facts. Although natural language 
interfaces to data base systems have been successfully 
constructed [Kaplan 79] [Woods et. al. 72] [Grosz ct al. 85], 
the task is more difficult in the expert systems domain. A 
semantic interpreter for a data base system usually relies on 
the regular structure of the data base as encoded in the 
schema describing it No such regularity or description is 
available in the expert systems' case. The lack of existing 
system structure makes the construction of domain 
independent semantics for expert systems difficult and means 
that some sort of structure that can be used as the basis for 
semantics must be built on top of the underlying rule base. 

The semantics and control strategy we present in this paper 
is aimed at exactly this problem: interpretations of natural 
language responses to system questions, deriving and making 
use of any additional facts volunteered by the user. Since 
question asking is normally determined by the sequence of 
rule firings in expert systems, a control strategy was 
developed and fully implemented in Director that determines 
which rules to fire so as to minimize the number of questions 
and to ensure that they are asked in a focused and coherent 
order. 

We are testing our ideas in the domain of tax and financial 
advising and using a small expert system called Taxpert 
[Ensor et al. 85], which deals with personal income tax 

matters as our experimental environment Taxpert consists 
of a number of agents that cooperate to solve an assortment 
of tax problems. Director, embodying our control strategy, 
serves as the control mechanism for the Dependency 
agent that helps the user determine whether someone 
qualifies as his dependent 

A hypothetical example from the tax domain illustrating 
these issues is shown in Figure 2. Here the user is trying to 
determine whether an individual, Fred, can claim another 
individual, John. The system must determine whether 5 
requirements are met in order to answer. These include the 
type of support given, relationship between the individuals, 
citizenship, income, and the type of return filed. The system 
asks whether Fred is the only supporter of John. The user not 
only supplies a yes as the answer to this question, but also 
volunteers extra information, John is Fred's father. 

Since the user can enter any amount of information at 
arbitrary times with a natural language interface, the 
underlying expert system must be able to make use of 

***The Dependency agent contains over 80 rules and is implemented in 
Zetalisp on the the Symbolics Lisp Machine. 

System: Is Fred the only supporter of John? [ Y/N] 
User: Yes, Fred is the only supporter of his father John. 
Facts derived: (?user is only supporter of ?dependent) 

(?dependent is parent_of ?user) 

Figure 2: User - System Interaction 

volunteered information to avoid asking unnecessary 
questions. Without any volunteered information, Taxpert 
normally must ask questions about each of the five 
requirements for dependency. In the example of Figure 2, 
note that Taxpert need not ask any questions about the 
relationship between the individuals since this information 
was volunteered in response to an earlier question. 

In this paper, we focus on the interpretations of natural 
language responses to system questions. Ultimately, we plan 
to replace the menu system with a full natural language 
interface. In such a system, the user could indicate what goal 
he would like the system to solve by asking questions (e.g., 
"Can Fred claim John as a dependent?") as well as 
providing facts through natural language statements. While 
Director does currently support the setting of expert system 
goals through user input, the semantic translation of user 
queries to goals is still under consideration. 

3 Semantic Interpreter 
Our semantic mechanism relies on categorization of verbs. 

We have looked at over 90 verbs from the tax code and 
classified them into 12 categories. Analysis of categories of 
verbs have been done by researchers before [Osgood 
79] [Ballmer et al. 81]; however, the analysis is generally 
done for one category only, such as verbs of motion [Miller 
72]. In real world domains, like tax advising, many such 
categories are necessary. 

Each verb category is organized hierarchically where each 
node of the hierarchies is derived from the meanings of one 
or more verbs. The leaves of the hierarchies contain either 
expert system facts or pointers to other hierarchies. Thus, the 
hierarchies form a connected forest A selectional restriction 
algorithm is encoded into each hierarchy. The restrictions on 
the arguments of the verbs rely on the noun features which 
are based on Roget's thesaurus. During parsing, the 
restrictions on the agent, patient, object and modifier of the 
verb help guide the parse down the hierarchy and derive the 
appropriate facts. Although the verb hierarchies are the 
primary source of facts, some facts are derived directly from 
the noun features. 

The deep syntactic structure of the sentence, which is 
derived by an ATN parse, also influences semantic 
interpretations. In particular, it influences semantic 
disambiguation, the number of facts derived from a given 
sentence, instantiation of variables and relationships between 
facts. Interaction between syntax and semantics is not the 
main focus of this paper. 

Figure 1: Natural Language - Expert System Interaction 
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Figure 3: Partial Tree formed for the Transfer of possession 
category**** 

As an example, consider one of the largest categories in 
our domain, Transfer of possession. It contains many verbs, 
such as give, get, receive, provide etc.. Figure 3 shows a 
partial hierarchy formed for this category. A dictionary entry 
for a verb contains the category or categories to which the 
verb belongs; a plus or a minus, which indicates whether the 
subject of a sentence is the semantic agent or patient; and 
sometimes a lower level node from the parse tree. For 
example, the verb to get has a dictionary entry of Transfer of 
possession indicating that the underlying subject is 
generally the patient in a sentence with this verb. In the 
sentence John gets $500, John is the recipient or the patient 
The verbs to pay and to earn have more specific meanings 
and therefore have lower level tree nodes as entries in the 
dictionary nodes. The verb to pay is defined as Transfer of 
possession monetary, because the verb generally 
indicates the transfer of monetary amounts, and the verb to 
earn as Transfer of possession <+>, Taxable, because it 
generally indicates the existence of a taxable income. 

More specific information can come from cither the verb, 
the arguments of the verb in the sentence, or both. The 
arguments in square brackets indicate the restrictions 
comming from the agent, patient, object and modifier of the 
verb, which yield more specific meanings. Consider a 
typical input sentence John gets 500 dollars of support from 
Fred The verb gets is defined in the dictionary as Transfer 
of possession Thus, during the parse the Transfer of 
possession hierarchy is chosen based on the definition of the 
verb in the dictionary. Next, the parser has a choice of 
proceeding down to either Physical Object or HonJ>hysical 
Object. It selects Physical Object because 500 dollars, 
which is the object of the sentence, fits the concrete 
restriction. At the next level, concrete is further restricted to 
monetary. Now, the choice is between Donation and Income. 
Here Income is selected based on the feature human of the. 

•••*In the figure, * stands for wild card, and - meam that the feature is 
inherited from the parent node. 

a^ent (John), because in our domain a monetary amount 
given to a human generally implies the money was earned, 
while a monetary amount given to an organization implies 
donation. At the next level, the choice is between Taxable 
and Non Taxable. Here the additional information comes 
from the modifier instead of the case roles as before and Non 
Taxable is selected because support has the payment/given 
feature in the dictionary. Finally, the fact (?depcndent is 
amountofsupport ?support) is added to the data base (or 
working memory) of the expert system. 

Not all facts are derived from verb hierarchies. Some facts 
are implied directly by noun features. The tax code contains 
a large number of tests that deal with family relationships. 
Thus, features such as relative, child, parent etc.. are 
assigned to some of the nouns. For example, the feature 
child is assigned to words such as son, daughter, step-son, 
step-daughter, foster-son, etc., and in turn has a more general 
feature of relative. The feature child directly implies the fact 
(?dependent is child of ?user). 

3.2 Cur ren t Direct ions 
Our semantic approach specifies how to derive expert 

system facts from user statements, but there are several other 
functions that it should have. It should be able to derive 
expert system goals from user queries and handle partial 
matches (i.e. deal with data that matches only a part of a 
fact), as well as deal with semantically incomplete input and 
anaphoric reference. The exact algorithm for instantiating 
the variables in the facts still has to be formalized. These 
issues are currently being investigated and the semantics is 
being fully implemented and integrated as part of Taxpert. 

4 Director 
The natural language interface described presents facts to 

the underlying expert system in a more or less unconstrained 
fashion. Director is an interpreter for rule-based expert 
systems that was specifically designed to be able to handle 
such input. The two major requirements for the interpreter 
are to efficiently utilize information volunteered by the user, 
while maintaining a focused and coherent interaction. 

A rule-based system executes via the evaluation of its 
rules. These evaluations are controlled by the system's 
interpreter, which chooses which rules to evaluate according 
to some strategy. System queries to the user are generated as 
the rules attempt to determine the values of various data. 
Therefore, in these systems the goal of minimizing the 
number of questions and providing a focused interaction can 
be realized through suitable control of rule firings, i.e., 
through an appropriate interpreter. Many common 
interpreters for rule-based systems are based on sequential 
statement evaluation (e.g., [Bobrow et. al. 83]), forward 
chaining (e.g., [Forgy 81]), or backward chaining (e.g., [Van 
Melle 81]). Sequential control, often used as the basis for 
specialized user-programmed control structures, is of little 
direct assistance in building rule-based systems. Systems 
that are restricted to forward chaining inference violate the 
coherence requirement because they focus on deriving 
inferences from a set of facts, rather than investigating 
hypotheses. Systems restricted to backward chaining often 
do not allow a user to volunteer information, ignoring 
inferences from new information. More than a simple 
combination of forward and backward chaining is necessary, 
thus Director is based on a heuristically controlled 
combination of the two strategies, and so is able to efficiently 
utilize the facts entered by the natural language module. 
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4.1 Implementation 
Since each rule is selected according to the selection 

procedure contained within the interpreter, this procedure 
influences the structure of the rules and the control 
information that must be explicitly encoded into the system. 
Indeed there is probably no major expert system in which the 
rules are independent of their interpreter [Duda 84]. In 
Director, each rule is invoked as a function, whose body is an 
if-then form in which the premise and the action are 
restricted Lisp s-expressions. 

Each rule premise is restricted to data base (working 
memory) queries, i.e., the examination of the values of facts. 
The value of a fact may be added to the data base in only two 
ways: either through the action of a rule or through user 
input. Any fact that is not added by the action of a rule has 
an associated query procedure so that the user can supply its 
values. This query procedure is invoked if the premise of a 
rule tries to examine the fact's value, and the value is not 
present in the data base. Director automatically maintains the 
mappings between the rules and the query procedures for 
their associated facts. 

The action of a rule is restricted to a single data base 
assignment The value to be asserted may be a constant, the 
value of a datum, or the result of a function evaluation. 
However, any input/output performed by such a function is 
beyond the control of Director. No query procedure is 
automatically associated with the fact mentioned in the action 
of a rule. 

4.1.1 Interpreter 
Director uses both forward and backward chaining. When 

a fact is given to the system, all possible inferences from the 
data in the current data base of facts are made using forward 
chaining. This means that full consideration is given to 
newly entered facts. Thus, forward chaining promotes a 
focus of attention according to the facts offered to the system 
by its user. When a user query is received, Director 
establishes a goal, a hypothesis, to confirm or reject. If the 
coal is not satisfied by simply examining the data base, 
backward chaining occurs. Backward chaining is guided by 
heuristics that try to maintain focus of attention according to 
both the user query and the facts recently mentioned (see 
Section 4.2.1). During backward chaining additional data 
may be entered, and forward chaining is performed to 
determine all inferences of this new information. This 
control structure allows Director to shift focus and goals in 
response to the user's change of focus and goals. See figure 
4 for the algorithm used by Director. 

4.2 Queries and Focus. 
Director must select rules for evaluation in a way that tries 

to minimize the number of queries posed to the user. This is 
done through the use of heuristics, as well as by carefully 
recording information about user inputs. The heuristics 
determine which rule is most appropriate for evaluation 
based on the number of known facts in that rule as well as on 
focus considerations. 

Given a fact or facts entered by the user; 
1. Forward chain making all possible 

inferences without asking any questions. 
2. If Goal is not found - Backward Chain. 
3. Forward chain on all additional data. 

Figure 4: Algorithm Used by the Inference Engine 

4.2.1 Heuristics for Backward Chaining. 

l . I f (?dependent is parent_of ?user)) Then 
(Relationshiptest is met) 

2. If (Relationshiptest is met) (?dependent gets 
multiple-support) (?User alone gives over 
10%)) Then (Supportjest is met) 

3. If (Relationship-test is met) (?User is the only 
supporter of ?depcndent) (?User gives over 
50%))) Then (Support-test is met) 

4. If (Relationship-test is met) (Supportjest is 
met))) Then (?dependent is claimable) 

Figure 5: A set of rules from the Dependency Agent 

Consider the set of rules in figure 5, which come from the 
Dependency agent of Taxpert. Suppose the user enters the 
following statements: John gets $500 of support from Fred. 
Fred is the only one supporting John who, is his father. Can 
Fred claim John?. These sentences add facts (?dependent is 
parent of ?user)y (?User is the only supporter of ?dependent) 
and (?dependent is amount of support ?support) to the data 
base and states that the goal is to know whether (?dependent 
is claimable). Director first forward chains to make all the 
possible inferences given the contents of the data base. In 
this case rule 1 is evaluated, adding (Relationship-test is met) 
to the data base. Now the system backward chains starting at 
rule 4. It then determines that in order to prove (? dependent 
is claimable), it must first prove (Supportjest is met), so the 
system backward chains again with the new goal. We want 
Director to pick the next rule in such a way as to guarantee 
the most focused conversation. To promote this behavior, 
Director tries to select the rule with both the goal in its right-
hand-side and the greatest number of facts most recently 
added by the user in its left-hand-side. This implies that 
Director must differentiate those facts derived by rules and 
those entered by the user. Furthermore, Director must assign 
a time-stamp to each fact added by the user. In this example 
Director would try rule 3 first, because it contains (?User is 
the only supporter of ?dependent) which was entered by the 
user. Now the system has to ask only one question, to 
determine whether (?User gives 50%) is true before 
answering the user's question. However, if (?User is only 
supporter of ?dependent) were unknown, the system would 
choose arbitrarily between the rules 2 and 3. If rule 2 were 
chosen first, the user might have had to answer two 
additional queries, namely whether (?User alone gives over 
10%) is true and whether (?dependent gets multiple-support) 
is true, before going on to consider rule 3 and answering the 

questions associated with the facts in that rule as well. 
The heuristics are guided by the facts entered recently and 

thus do not always give optimal behavior. However, if the 
user mentions relevant facts as he issues queries (as would be 
expected if the user understood the problem domain), the 
behavior should be quite natural, giving a focused 
conversation, and minimizing the number of system 
questions. 

4.2.2 User Control of Backward Chaining. 
Sometimes the user has semantic knowledge of the queries 

and can, therefore, better direct the selection of rules. 
Forward chaining can be controlled simply by the facts that 
are added to the data base. Backward chaining can be 
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controlled by the facts and the queries issued to Director. An 
optional mechanism is provided in Director to allow the user 
to help direct the rule selection process. Normally, expert 
systems use only information in the right-hand-sides of their 
rules to initiate backward chaining. Director can also use 
information in the left-hand-side of rules when selecting rules 
to use as a starting point of the backward chaining process. 
If the user supplies this left-hand-side information when 
making a request, it wi l l be used in the initial rule selection. 
For example, consider the following set of rules: 

1. If (?dependent is a child) (?dependent is a 
student)) Then (Gross_income_test is met) 

2. If (?dependent is a child) (?dependent is ?age < 
19)) Then (Grossincometest is met) 

Suppose a user issues the following query: Do students 
automatically meet the income test? 

The fact (?dependent is a student) and the goal 
(Gross income test is met) are derived from the question 
above and added to the data base. Using the maps, Director 
identifies that the general goal is implied by rules 1 and 2. 
The system now selects a rule as the starting point of the 
backward chaining process, choosing rule 1 according to user 
control. If this information was not available, or if the 
system did not take it into account, rule 2 may have been 
selected first and additional questions may have been 
generated. 

4.23 Maps 
During rule selection the interpreter must know which 

facts are contained in the left- and right-hand sides of the 
rules. This information can be obtained by searching the rule 
set Naive searches, however, could be expensive 
computationally and could make the response time of the 
system unreasonable. To make this searching efficient, 
Director maintains two maps. These maps are the rules-add-

fact map (RF), and the facts-used-by-rule map (FR). The RF 
map provides pointers from each fact to the rules that can add 
it to the data base. The FR map provides pointers between 
each rule and the facts contained in its left-hand-side, thus 
specifying which facts have to be true in order for that rule to 
fire. The maps are built up during a preprocessing stage, 
which has to be performed only once for a given set of rules. 

First, let us look at the RF man. Sunpose that fact C is in 
the right-hand-side of rule r : i t h e n C). The RF map 
entry for this fact would be indicating that rule r 
adds fact C to the data base. The information in this map is 
used during the rule selection portion of the backward 
chaining phase. For example, if Director is trying to solve 
goal C, then the RF map provides efficient access to r. This 
map also allows Director to suppress the firing of certain 
rules: After a value is assigned to a fact, the system checks 
the RF map and tries to mark those rules that would assert the 
same value of this fact (Rules are not evaluated during the 
marking process, hence the only rules marked are those that 
reference this fact by a constant name and assert the same 
value as a constant.) The marked rules are not evaluated, 
thus avoiding rule evaluation and the superfluous queries to 
the user that these evaluations might cause. 

Similarly, the facts-used-by-rule map would contain an 
entry for rule r, indicating that rule r depends on 
facts A and B. Tne map would also contain entries for A and 
B showing that rule r requires their values in order to be 
evaluated. When some fact A is added to the data base, all 
those rules that use A in a forward chaining inference are 
readily found. In the present example, if A and B are in the 

data base, rule r is found in the FR map to be usable for 
forward chaining. This map is also used in the rule selection 
process of backward chaining. Having determined that rule r 
wi l l be used to infer a needed fact C, the system readily 
determines that facts A and B need to be known. 

4.2.4 Self Description. 
So far, we have described what we call Director's 

inferencing function. The system has another function, 
called Display. There are many instances when a user wants 
the system to provide information without providing 
infcrencing. For example, a user may want to see everything 
the system knows about a certain fact A and issue the 
following request: "Tell me about A." Our system can 
handle a query of this sort by using the maps. Al l the rules 
that contain A in the left-hand-sides are found with the help 
of the FR map. Similarly, all the rules containing A in the 
right-hand-side are found with the help of the RF map. Al l 
rules containing A are returned as a response to the above 
query to the semantic module that translates user questions 
into requests to Director. Providing this information is done 
quickly because Director does not perform inferences, but 
rather only references the maps. 

5 Conclusions 
In this paper we described two important issues that must 

be addressed when constructing natural language interfaces 
to expert systems. First we described the semantic 
mechanism that is powerful enough to translate user 
statements into facts of the underlying expert system. This 
semantic approach is based on verb categorization. Each 
category is structured hierarchically, and the parsing 
algorithm is directly encoded into each hierarchy. Some 
issues in the construction of the complete semantic module 
are still being investigated. These are partial matching, i.e. 
what to do with inputs that only match part of a fact, 
instantiation of variables in the facts, as well as derivation of 
goals from user queries. The semantics presented is not only 
useful in the expert systems domain, but also in any domain 
where the underlying system is not well structured. 

The natural language module adds facts to the data base of 
the underlying expert system in an unconstrained manner, 
thus placing extra requirements on the underlying expert 
system. We discussed Director, an inference engine that uses 
a combination of forward chaining and backward chaining so 
as to efficiently utilize facts entered by the natural language 
interface. It makes available descriptions of its rule base and 
allows for a limited form of user control over its backward 
chaining mechanism. This facility allows the user to ask 
questions about the information contained in the rules but not 
normally supplied by expert systems. These attributes of 
Director allow a knowledgeable user to arrive at a solution to 
his query in the most efficient and least time consuming way, 
while maintaining a focused dialogue. Director is also useful 
in domains where the decisions have to be made quickly, or 
where user queries are expensive, such as expert systems 
designed for use by busy professionals, such as accountants 
and doctors, as well as systems that work in hazardous 
environments, such as nuclear reactors. 

The two approaches presented here mark an important step 
toward the construction of a full natural language interface 
for rule-based expert systems. 
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