
Dependency Propagation:
A Unified Theory of Sentence Comprehension and Generation

Koiti Hasida and Syun Isizaki

Machine Inference Section, Information Sciences Division,
Electrotechnical Laboratory

1-1-4, Umezono Sakura-mura Niihari-gun Ibaraki 305, JAPAN
Tel: 298-54-5423, E-mail: hasida@etl.junet

ABSTRACT
The possibility is pursued that a single mental program
underlies both sentence comprehension and generation. The
Horn-logic formalism is exploited here to modelize the men­
tal representation of the linguistic knowledge, as a bundle of
constraints rather than as a patchwork of procedures. A
notion of dependency in a Horn program is defined so that
eliminating dependency amounts to solving the problem (of
sentence comprehension or generation) represented in terms
of that program. Thus, formulated is a problem-solving
paradigm called Dependency Propagation (DP): Local
dependency in some parts of the program invokes execution,
which may cause dependency again in some neighboring
parts, which in turn invokes further execution, and so on.
DP subsumes both sentence comprehension and generation,
because, under DP, no heuristics are necessary about when
and how to use most efficiently which piece of linguistic
knowledge; The major difference between the two processes
is in such alleged heuristics, whereas the declarative
knowledge is largely shared. Another advantage of DP is
that it captures not only short-term execution but also long-
term transformation of programs. Some light is thus shed
upon the evolution or acquisition of the mental grammar and
lexicon.

1. Introduction
Some systematic relationship must hold between sentence
comprehension and generation by humans, as suggested by
the following phenomena, among others. First, most
naively, the language one speaks and that one hears have
similar structures. Second, there is an affinity between the
process of comprehension and that of generation. For
instance, we often literally guess how others' speech could
continue, or detect grammatical errors and semantic incon­
sistencies in our own speech. Third, the two processes
become equally difficult in the case of, say, deep center-
embedding constructions.

In order to account for these phenomena, one might
hypothesize some relationship between sentence comprehen­
sion and generation; i.e., between the two (maybe the same)
grammars and between the two (maybe the same, too) pro­
grams for comprehension and generation. Here we adopt the
strongest hypothesis:
(1) A single mental program underlies both sentence

comprehension and generation.
Let us call this the Common Program Hypothesis (CPH
for short), and the mental program mentioned therein the
Common Program (CP). The challenge of the current
work is to figure out how CP operates, as well as to what
extent CPH can be supported.

CP must be a coherent system of instructions (and/or
constraints, as it wil l in fact turn out) rather than a patch-
work of subroutines independent of each other. As an
extreme instance, CP must not consist of two modules, one
for comprehension and the other for generation. More pre­
cisely, CP is defined to be the maximum domain of the mind
every part of which is potentially exploited in both sentence
comprehension and generation. This definition ensures the
existence of CP without saying anything about its coverage,
whereas CPH claims that the coverage encompasses some
crucial part of both sentence comprehension and generation.
Another point to be drawn from this definition is that CP
contains grammar rules and lexical entries as long as they
have chance to be exploited in both comprehension and pro­
duction.

In the following discussion, we shall formulate CP as
consisting of two components. One is a declarative
representation of linguistic knowledge. This representation
is modelized in terms of a logic-programming formalism,
and biased in favor of neither sentence comprehension nor
generation. The other component of our model of CP is an
interpreter of this knowledge. It is the operation of this
interpreter that is called Dependency Propagation. This
interpreter is exempt from language-specific aspects, not to
speak of comprehension-specific or generation-specific
aspects.

This model of CP is based upon the observation that
sentence comprehension and generation make access to the
same linguistic knowledge, but in different ways. For exam­
ple, consider the syntactic rule about English topicalization
as in: Mary, Tom doesn't like to see. Put declaratively, this
rule might look like (2), details being omitted.
(2) A sentence S may consist of any constituent X plus a

following sentence S/X which lacks X somewhere.
Here X is semantically focused on.

This rule is exploited in different ways between sentence
comprehension and generation. In comprehension, perhaps
this rule is fully activated only when the beginning of S/X is
detected. At that time X would get focused on. In typical
cases of generation, on the other hand, the rule could be
activated by a focused semantic element, whereby this ele­
ment is first put into a linguistic expression X.

The common linguistic knowledge such as (2) would be
modeled in terms of declarative rules, constraints, or the
like. The apparent difference between comprehension and
generation is in the manners of access to such knowledge.
In the former models of language faculty (and in application
programs such as those of machine translation), this
difference has been stipulated in terms of comprehension- or
generation-specific heuristics about when and how to
activate most efficiently which piece of linguistic knowledge.
For instance, a generation-oriented heuristic rule to exploit

664 NATURAL LANGUAGE

(2) might state:
(3) If a verbalization into a sentence is currently attempted,

and the topical focus is upon a part of the input seman­
tic content, then first translate the focused part into a
language expression X, and next attempt to verbalize
the remaining content as a sentence in which X is miss­
ing somewhere.

The major task in our pursuit of CPH is to substitute the
heuristics of this sort with a general nonbiased paradigm of
problem-solving to interpret the common declarative
knowledge. That is, such a paradigm should control the tim­
ing of and data-flow in the exploitation of linguistic
knowledge, just the same way as those heuristics do. For
instance, Prolog interpreter does not provide such a para­
digm. In fact, the existing implementations of DCG (Pereira
and Warren, 1980) cannot deal with sentence comprehension
and generation equally efficiently; they must be biased (by
virtue of procedure attachments, etc.) in favor of one or the
other task, in order to work efficiency. DP wil l be proposed
later as a candidate for the desired paradigm.

Such a pursuit of CPH should be qualified, however,
because there are some good reasons to conclude that some
of those heuristics should survive for the sake of processing
efficiency, and hence that CP does not encompass the entire
language processing. For example, typical cases of Broca's
aphasia exhibit so-called telegraphic speech (i.e., one which
lacks grammatical markers such as inflections, conjugations,
prepositions, etc.), the comprehension ability remaining
fairly normal. Despite the apparent inconsistency, this
phenomenon is compatible with CPH. A consistent interpre­
tation is that the function of retrieving words from meaning
(plus syntactic features) do not belong to CP, and therefore
may be lost without reducing the ability to listen. Other evi­
dences, including aphasic symptoms contrasted with tele­
graphic speech, suggest that CP should also exclude the
function of retrieving meaning from words, thus totally
excluding search in the lexicon.

That CP excludes lexical retrieval is predicted a priori,
by taking into account the vastness of the lexicon. In the
case of comprehension, a lexical entry is considered to be
retrieved with its phonological form as the key. There must
be some access paths which you traverse by using phonolog­
ical keys to reach desired words. These paths are not likely
to be exploited in generation. Similarly, the access paths
through which you find words from semantic keys need not
be activated in comprehension. That is, the access paths of
either direction must be out of CP. To retrieve grammar
rules like (2), on the other hand, is quite another story. As
is demonstrated in HG (Polloard, 1984), HPSG (Pollard,
1985), etc., the inventory of grammar rules is regarded as
very small (i.e., complementation, adjunction, coordination,
topicalization, and few more), when the lexicon is maxim­
ized. Such a demarcation between grammar and lexicon
renders trivial the search of grammar rules. Hence the
(perhaps simplifying) assumption that the access paths to
grammar rules are shared between comprehension and gen­
eration would not separate the resulting model very far from
the reality.

To summarize, our assumption is that CP subsumes the
grammar rules, the access paths to them, and the lexicon, but
not the access paths to the lexicon. The rest of the paper is
concerned with how the information included in CP is put to
use.

2. Constrained Patterns
Sentence comprehension is a task to figure out semantic
structures of given strings of words, and sentence generation

is a task in which, contrariwise, strings of words are worked
out of given semantic structures. Among the currently avail­
able programming paradigms, unification seems to be most
promising in order to capture this bi-directionality of data-
flow in CP.

Another reason for the employment of unification in
describing the flow of linguistic information is that there
have been developed several unification-based grammar for­
malisms, such as GPSG (Gazdar, Klein, Pullum, and Sag,
1985), LFG (Bresnan, 1982), HG, HPSG, FUG (Kay, 1985),
and CUG (Uszkoreit, 1986). These theories provide a basis
for a representation of linguistic knowledge shared between
comprehension and generation. The reader may consider
that the description of the grammar and the lexicon in our
model exploits the techniques in the unification-based gram­
mars mentioned above, unless stipulated otherwise.

Here we introduce a scheme for representing linguistic
information. This scheme exploits the Horn-logic program­
ming formalism (i.e., that of Prolog), so that information
could flow back and forth via unification. Ordinary patterns
as in Prolog in which variables are simply indeterminate,
however, are problematic in that they are lacking in expres­
sive power. To remedy this, our scheme incorporates con­
straints on variables appearing in patterns; thus such pat­
terns are called constrained patterns (formerly called
conditioned patterns in Hasida (1986)).

A constrained pattern is a pair of a pattern (of Prolog)
and a constraint. A constraint is a sequence of atomic for­
mulas (again, of Prolog), where all the predicates heading
those atomic formulas (e.g., p of an atomic formula
p(X, Y)) are defined by Horn clauses; that is, every predi­
cate considered here must not be system-defined. For
instance,
(4) a(f(X,Y),A,B) > p(X, A), q(Y, B).
is a constrained pattern with pattern a(f (Xy Y)> A, B) and
constraint [p(X, A)y q(Yy B)\y provided that predicates p
and q are defined in terms of Horn clauses. Note that a con­
strained pattern looks just like a Horn clause, except that the
pattern and the constraint arc separated by \> rather than :-.

The semantic difference between a Horn clause and a
constrained pattern is that the former expresses a scheme of
logical inference, while the latter denotes a set of patterns.
For example, (4) represents the set exhibited in (5), in the
case where predicates p and q are defined by (6).
(5) {a(f(\, a), 2, b),a[f(\% c) , 2,d), a(f(3, a) , 4, b),

a(f(3,c),4,d)}
(6) p (l , 2) . />(3,4). q(a,b). q(c,d).
When some predicate in the constraint has a recursive
definition, a constrained pattern may represent a set which
cannot be denoted by a finite set of patterns possibly con­
taining variables. For instance, the constrained pattern (7)
represents the set of all the lists ending with the null list
(i.e., []) , where predicate list is defined as in (8).
(7) X t>Hst(X).
(8) l ist([]) . list([A\X]):- list(X).

A number of problems can be represented as a con­
strained pattern; i.e., a constrained pattern is regarded as
denoting the set (or a subset) of the solutions of a problem.
The problem for CP to solve, for example, is represented by
a constrained pattern such as shown in (9), where the predi­
cate constituent is defined as in (10).
(9) struct (Category , X , Y) \> constituent (Category ,X, Y).

Hasida and Isizaki 665

In short, this is a sort of DCG. The predicates lexicon and
phrase structure rule are also defined by Horn clauses, and,
as is indicated by their names, represent the access paths to
the mental lexicon and the mental grammar. Variables X,
Y, and Z in (10) denote some portions of the terminal
string, whereby the last two arguments of constituent consti­
tute the differential list representing the part of the terminal
string which the constituent in question exhaustively dom­
inates, as in:
(11) constituent (sentence, [tom, loves, mary \ X], X)

3. Dependency Propagation
This section is devoted to a formulation of a problem-soling
paradigm under the representation scheme just illustrated
above. In this paradigm, the logical structure of the problem
to be solved determines the ordering of execution to process
the information represented as constraints. In contrast, the
existing Prolog interpreters carry out execution simply
according to the ordering in which atomic formulas happen
to appear in source programs.

3.1. Dependency versus Modularity
Let us say that there is a dependency between two atomic
formulas sharing some variable, in the sense that the instan­
tiation of the shared variable can be licensed only through
some possibly nontrivial interaction between the two formu­
las. For instance, and are dependent on
each other; there does not necessarily exist a pattern y satis­
fying for every a and B satisfying p (a , P). An
atomic formula some of whose arguments is not a variable
involves dependency as well; i.e., the dependency between
that argument and the predicate of the atomic formula. For
example, there is a dependency in in the sense that
there does not necessarily exist a pattern p such that
a for every a satisfying p (a).

Let us say that a constraint is modular when it con­
tains no dependency at all in such a sense. In order to put it
more formal, let us define the notion of superficial modu­
larity. A superficially modular constraint is one in which
all the arguments of all the atomic formula are variables and
no variable occurs twice. A constraint is modular iff all the
relevant constraints are superficially modular; all the relevant
constraints being defined to be the constraint itself, the
bodies of the Horn clauses defining the predicates in the
constraint (note that the body of a Horn clause is looked
upon as a constraint), the bodies of the Horn clauses
defining the predicates in those bodies, and so on. A con­
strained pattern is said to be modular when its constraint is
modular. A predicate is modular when it is defined in terms
of only Horn clauses whose bodies are modular constraints.
For example, (4) and (7) are modular constrained patterns,
when the predicates exploited there are modular, for instance
being defined by (6) and (8), respectively.

3.2. A View of Problem Solving
As demonstrated above, a constrained pattern represents a
solution set of a problem. As a matter of course, however,
to represent does not necessarily imply to solve. Granted
that the solution should also be represented in terms of a
constrained pattern, that constrained pattern would be of

what might be called a 'resolved form.'
A modular constrained pattern is looked upon as

'resolved.' That is, it is an almost extensional enumeration
of patterns, as typically seen in (4), thus conforming to the
intuition that, in general, a resolved form should enable you
to enumerate the solutions in time proportional to the sum of
their complexity. Consequently, a problem represented as a
constrained pattern is resolved by modularizing that con­
strained pattern; i.e., transforming it into a modular
equivalent. The modularization is regarded as driven by
dependency: Dependency in some parts of a constraint
invokes execution which in turn gives rise to dependency in
the neighboring parts of the constraint, which invokes further
execution, and so on until dependency disappears. We refer
to this problem-solving paradigm as Dependency Propaga­
tion (DP).

For example, if a problem is represented by (12), then
(13) is a resolved representation, where p is an arbitrary
unary modular predicate and member and mp are defined as
in (14).

A constraint is modularized by means of an algorithm simi­
lar to fold/unfold program transformation. In the above
example, the dependency (i.e., the double occurrence of £)
in the constraint-part of (12) invokes unfolding of
member (E, S), and then folding the resulting constraint into
mp(E, S). For further details of the algorithm, see Hasida
(1986) or Hasida and Sirai (1986).

Note two aspects of DP here. First, DP is optimized in
the sense that it responds only to 'pressing needs'
represented as dependency, thus minimizing the waste of
processing. Second, according to DP, the procedure to inter­
pret a given representation of a problem reflects more of the
logical structure of that problem rather than artifacts in the
representation. Compare this with Prolog interpreters, which
tend to indulge in investigation of top-down hypotheses
which happened to be activated on the way of the execution
ordering predetermined by the ordering in the source pro­
gram. Some proposals such as freeze (Colmerauer, 1982)
are made to overcome this defect of Prolog, but they are
partial solutions unlike DP.

The current problem, represented by (9) together with
(10), may generally be solved by modularizing (9) after
instantiating the variables Category, X and Y according to
the given information. Put more precise, in the case of pars­
ing, Category is first left indeterminate, X is set to be the
given sentence, such as [torn, loves, mary]. In the case of
sentence generation, the semantic part of Category is first
instantiated to be the given semantic content (e.g.,
love (torn, mary)) of the target sentence, X being left unin-
stantiated. Y is initially set to nil (i.e., []) in both cases.

3.3. Compilation as Partial Computation
One might expect that (9) could be modularized in advance,
so that the amount of computation is greatly saved in indivi­
dual cases of comprehension and generation; a sort of
precompilation in terms of partial computation. This expec­
tation fails, however, in almost every nontrivial case. In
fact, (9) has a modular equivalent only when the language in
question is regular, detailed mathematical account being
omitted.

666 NATURAL LANQUAQE

Nevertheless, one can consider instead an equivalent
constrained pattern which is semi-modular: modular except
that a variable may occur more than once in a constraint iff
the instantiation of that variable is influenced at most one
occurrence. A variable representing a part of the terminal
string is a typical example of such a variable; it appears first
as the latter component of a differential list, and second as
the first component of another differential list, as Y does in
(10). Such a semi-modular description of a language is
available through precompilation in great many significant
cases; i.e., for the class of languages including all the
context-free languages, such repetition languages as

(n is an arbitrary natural number, and I an
arbitrary finite set of alphabets), etc.

For instance, when the language in question is deter­
mined by (15) (i.e., the grammar given in (16)), a semi-
modular equivalent cO of constituent, is obtained simply as
in (17).

Note here that the bodies of the two Horn clauses in (17) are
modular except that Y appears twice in the second.

4. A Cognitive Model
Parsing and generation by modularizing (10) or (9) in a sin­
gle stroke, however, fails to fit the reality with respect to the
following two aspects. First, humans process sentences from
left to right, not necessarily having in mind the global view
of what the sentence eventually turns out to be. Second,
presumably on account of the limitation on STM capacity,
humans do not pay attention to every possible solution; oth­
erwise such phenomena as garden-path sentences and
resumptive pronouns would not take any place.

4.1. Left-to-Right Processing
Sentences may be formulated as processed (i.e.,
comprehended or generated) little by little from left to right,
so that the first aspect is incorporated in the model. To
illustrate this, a sentence Tom loves Mary is parsed as fol­
lows.

In general, parsing proceeds by successively semi-
modularizing the constraint [c^Category, [at{\ X], Y)] to

Generation goes similarly:

That is, at first the constraint , v . ,. WI m. rm is semi-
modularized to yield a constraint on variables A0, X, and Y.
The variables contained in a is concealed in the definition of

Under this formulation of sentence generation, the
whole constraint on the entire sentence should at the very
beginning be fit with the semantic structure embedded in a.
This result should be rejected, since it is not always possible
to have the complete meaning of the entire sentence before
generation begins. A further investigation presented later
wi l l overcome this weakness.

4.2. Memory Limitation
In order to capture the limitation on the STM capacity, let us
assume that there is a finite bound on the amount of working
memory in which to store the Horn clauses produced
dynamically during comprehension and generation. Follow­
ing this assumption, Horn clauses whose activation inten­
sity is weaker than others are pruned off so that the remain­
ing Horn clauses should fall together within the limited
storage.

The activation intensity of a Horn clause is mentioned
here as a neurophysiological metaphor. A Horn clause
activates or deactivates some other Horn clauses. The
strength of this (de)activation is positively correlated with
the activation intensity of that Horn clause. Horn clauses
competing with each other should be inhibitory against each
other. For instance, different clauses defining the same
predicate should tend to deactivate one another.

This paper does not go any further into the question of
what activation intensity should be like. A fuller account
would require something like the connectionist approach
(Waltz and Pollack, 1985). In the current computer imple­
mentation, the intensity is simulated by an integer assigned
to a Horn clause.

It must be emphasized that the memory limitation is
crucial in our present approach to CPH. For instance, the
fluency of generation follows from the memory limitation.
In (19), the constraint on A ; ' s instantiation can be retained
for only a few j such that due to the memory
limitation. Hence the determined value of A; should have
been emitted as a part of utterance except for j very near to
i. Incidentally, therefore, in practice we come up with

for some k close to i, instead of

4.3. The Head-Driven Propagation
The currently assumed DP (i.e., the exhaustive semi-
modularization in precompilation and execution) eliminates
every non-vacuous dependency. This is problematic, how­
ever, for several reasons that follow. First, (semi-) modular­
ization as currently conceived tend to consume too much
memory. For example, the amount of memory occupied by
the constraint of any modular equivalent of the constrained
pattern (20) is O (m xn) , where m and n are prime to each
other, and listm and listn are defined as in (21).

Since the memory requirement of the given representation
(20) with (21) is 0{m+n\ the coding efficiency of the
representation is deemed as often reduced by modularization.

Second, the current formulation tend to waste process­
ing time, in the sense that predicates are often generated
which are never referenced. For instance, if (semi-) modu­
larization takes place when two constrained patterns

are unified with each
other, then a new constrained pattern is
yielded together with the new predicate r. If an unsuccess-

Hasida and lslzaki 667

ful unification between g(Z) and is
attempted next, is simply discarded without being
exploited at all.

Third, there are many important predicates which have
no semi-modular equivalents. Mathematical details being
omitted, those predicates include permutation (a binary
predicate to the effect that the two arguments are lists which
are permutations of each other), subset (a binary predicate to
the effect that the two arguments are lists and that the
former represents a subset of the latter), etc.

To avoid these problems, let revise DP by relaxing the
present requirement that DP semi-modularizes given
constraints. To overcome the defects discussed above, DP
should instead operate selectively on the parts of the given
constraint which are likely to be referenced more often than
others.

A typical bias of reference likelihood is found between
the head and nonhead daughters in a local tree. Consider a
local tree shown below, for example.

(22)

NonHeadDaughter HeadDaughter

This local tree may be regarded as an instantiation of a rule
such as S NP VP and NP Det N, in a familiar nota­
tion. When one of Mother and HeadDaughter is refer­
enced, then it is nearly certain that the other is also refer­
enced, because these two nodes share almost the same infor­
mation. Mother and HeadDaughter, than to dependency
that NonHeadDaughter has with Mother or HeadDaughter.
Let us tentatively formulate this as the following extremely
simplified form.
(23) In both sentence comprehension and generation, DP

operates so that:
a. the constraint on every node is modular which

dominates an exhaustively processed part of the
terminal string, and

b. there is no remaining dependency between any
node and its grammatical head.

Let us call this the Head-Driven Propagation (HDP, for
short).

Due to (23a), HDP roughly amounts to a parallel exe­
cution of what Hasida (1985) calls the Canonical Pro­
cedure. The Canonical Procedure is a nondeterministic pro­
cedure to handle a coherent substructure of a sentence at a
time. In general, the partial structure regarded as resolved
(i.e., modularized, in our current terminology) at any stage
during the execution of the Canonical Procedure looks like
the one enclosed in the curve of (24) below, where the
categories • • • a n d a are memorized i n the
working storage.

On account of (23b), the modular domain in the case of
HDP may be a little wider than the area enclosed in the
curve; That is, the former also includes the path from
down to its lexical head. For example, when terminal string
A dog which is just processed, a maximal coherent structure
dynamically generated would look like (25), provided that
VP is a head of S and S is a head of 3.

Since a node and its heads greatly share information, the
substantial difference between (24) and (25) is smaller than
it appears.

An advantage of adopting principle-based grammars
such as GB (Chomsky, 1981, 1986) and HPSG is that one
can remove much of artifact in the grammar by controlling
the precompilation. Such a control is possible because
principle-based grammars are of the 'least precompiled'
form. In HPSG, for instance, the phrase-structure rules have
been abstracted away from information in the lexicon, and
also from general properties of local trees, which are fac­
tored out as general principles like the Binding Inheritance
Principle, the Head Feature Principle, etc. If a grammar of a
more precompiled form such as GPSG were adopted, the
distribution of the reference likelihood in compiled represen­
tation of grammar would be less controllable.

4.4. An Example
Now let us look at some concrete cases of DP as presently
conceived in sentence processing. Since it would be too
complicated as an example to precisely demonstrate how an
actual natural language sentence is processed, first we exam­
ine here the language defined by (15). Several more
linguistically real instances wi l l be considered later.

Shown below is how a sentence aaa ■ • • of the
language in question is parsed, following the procedure illus­
trated in (18).
(26)

668 NATURAL LANGUAGE

Horn clauses have not been pruned off here. To see
what a pruning is, let us simulate the memory limitation by
a simplistic requirement that the number of Horn clauses in
the working memory should be no more than, say, seven,
according to Miller (1958). After a possible pruning, we
might be left with, for instance, the Horn clauses listed in
(27):

(27)

The Hom clauses defining c0 are not discarded dynamically,
because they have been yielded by precompilation and thus
are regarded as stored in the long-term memory.

Note that every atomic formula in the bodies of the
remaining Horn clauses are solvable by finite patterns, based
only upon the remaining Horn clauses; e.g., _ ~ ~" " is
solvable with This is impor­
tant because a mental representation must be finite. So for
instance the first Horn clause defining cl must be retained;
otherwise no finite pattern could solve c1(B,X,Y). In
order for pruning to take care of this, smaller intensity
values should be assigned to Horn clauses (e.g., the second
clause defining taking part in recursive definitions of
predicates.

Incidentally, if a predicate is defined by only one Horn
clause, it is usually more efficient (with regard to both
memory and time) to unfold that predicate at all its
occurrences and discard it. For instance, in (27) there
remains only one clause defining Thus we obtain (28)
by unfolding and eliminating
(28)

This example of DP amounts to a parallel execution of
the Canonical Procedure. For instance, the four Horn
clauses in (29) extracted from (28) represent together the
tentative partial structure depicted in (30).
(29) " " -

Here the node labeled is on the left corner
of A0t being possibly identical to it. These two nodes are
related through the second clause defining c3 in (29), and
the distance between them in a potential completion of (30)
is equal to the number of times that this clause is exploited,

i stands in the same sort of relationship with Bx
through the second clause defining . (30) amounts to a
snapshot just before (24) with d ' That is, a1 pl, a2,
and in (24) correspond to
and B 2 , respectively; a in (24) has no counterpart in (30).
As exemplified here, the amount of memory occupied by
Horn clauses representing together the partial structure in
(24) is proportional to d.

4.5. Accounts of Some Linguistic Phenomena
HDP provides a measure of transient memory load

(TML; i.e., the load on STM) which is finer-grained than
left-branching (Yngve, 1960), center-embedding (Church,
1980), self-embedding (Miller and Chomsky, 1963), etc.

First, the complexity of a single coherent structure of a
sentence is measured in terms of the memory requirement by
Horn clauses needed to represent a coherent substructure of
that structure at a given stage of processing. That is, TML
of a maximal coherent structure is estimated to be 0(d)
with respect to the moment depicted in (24). This measure
amounts to a refinement of center-embedding; we have

where 8 is the depth of center-embedding.
Moreover, the entire memory requirement at a stage of

processing in HDP captures also local structural ambiguity.
Some authors have attempted to measure local ambiguity by
means of the degree of lookahead (Marcus, 1980;
McDonald, 1980), but the defect of such a measure is that it
is not by itself sensitive to static complexity of sentences.
The present framework lays a basis for talking about static
complexity and local ambiguity at the same time.

HDP seems to approximate the reference likelihood of
the actual mental representation of grammar. Let us con­
sider two examples.

First, HDP is compatible with the observation that
humans can predict' the relationship between a category
and its left-corner. In English, for instance, a sentence often
begins with a determiner, in constructions like (31).

(31)

HDP is enough to ' predict' the relationship between S and
Det, because, the moment Det is processed, the information
that VP takes NP and NP in turn takes Det as complements
(or maybe as specifiers), is exploited. It is also enough to
deal with agreements of gender, number, etc. For example,
the information about the agreement between the head N and
Det (and AP) in (32) is incorporated in precompilation.

Second, HDP does not modularize too much. Consider
resumptive pronouns, for instance. A typical context where
a resumptive pronoun is found is something like (33).

(33) the man who I wonder whether he is wise

Hasida and lsizakl 669

Here, he is a resumptive pronoun coreferring with the man.
HDP accounts for why such an apparently ungrammatical
utterance is generated. Let us take a look at (34), the struc­
ture of (33).

the man who I wonder whether he is wise

HDP leaves unresolved the relationship between S0 and NP2
and the one between S1 and NP3. Therefore, it is impossible
to detect the grammatical inconsistency until generation of
Sj is attempted.

McDonald (1980) proposes a different explanation of
the same phenomenon, based on a deterministic model of
sentence generation: a generation version of Marcus' (1980)
parser. McDonald draws upon the limited lookahead presup­
posed in the determinism doctrine. His discussion is wrong
or at best incomplete, because he fails to pay attention to
how far the coming structure can be predicted via HDP
rather than lookahead.

5. Final Remarks
A model has been proposed which describes both sentence
comprehension and production as a single program. This
program is a system of constraint rather than a sequence of
instructions, and the procedure CP to interpret given infor­
mation is derived from the computational structure of the
task to be performed. This model exploited a problem-
solving paradigm called Dependency Propagation: Depen­
dency in the given constraint invokes execution, which
proceeds so that the likelihood of reference becomes homo­
geneous over the whole constraint.

If we note that the likelihood of reference is related
with the density of some sort of information, some part of
the discussion suggests a general principle that linguistic
information should be homogeneously distributed over the
entire representation of the mental grammar: A principle
perhaps stemming out of the more ubiquitous principle that
evolution optimizes the resulting system. In the light of this,
Dependency Propagation lays a promising basis upon which
to talk about how cerebral coding of knowledge is reformed
as new information comes in; more specifically, how an
accumulation of concrete instances gives rise to abstract
rules of the mental grammar.

References

Bresnan, J. (ed.) (1982) The Mental Repesentation of Gram-
matical Relations, MIT Press, Cambridge, Mas­
sachusetts.

Chomsky, N. (1981) Lectures on Government and Binding,
Foris, Dordrecht.

Chomsky, N. (1986) Barriers, M IT Press, Cambridge, Mas­
sachusetts.

Church, K. (1981) On Memory Limitations in Natural
Language Processing, MIT/LCS/TR-245, Laboratory
for Computer Science, MIT.

Colmerauer, A. (1982) Prolog II Reference Manual and
Theoretical Model, ERA CNRS 363, Groupe
d'Intelligence Artificicllc, Universite de Marselle, Mar-
selle.

Gazdar, G., Klein, K., Pullum, G., and Sag, I. (1985) Gen­
eralized Phrase Structure Grammar, Basil Blackwell,
Oxford.

Hasida, K. (1985) Bounded Parallelism: A Theory of
Linguistic Performance, Doctoral Dissertation, Univer­
sity of Tokyo.

Hasida, K. (1986) 'Conditioned Unification for Natural
Language Processing,' Proceedings of the llth COL-
1NG, pp. 85-87.

Hasida, K. and Sirai, H. (1986) 'Zyookentuki Tan-ituka
(Conditioned Unification; in Japanese),' Computer
Software, Vol. 3, pp. 28-38.

Kay, M. (1985) 'Parsing in Functional Unification Gram­
mar,' in Dowty, D., Kartunnen, L., and Zwicky A.
Natural Language Parsing, pp. 251-278.

Langendoen, T. (1975) 'Finite State Parsing of Phrase Struc­
ture Languages and the Status of Readjustment Rules in
Grammar,' Linguistic Inquiry, Vol. 6, pp. 533-554.

McDonald, D. (1981) Natural Language Production as a
Process of Decision Making under Constraint, Doctoral
Dissertation, Laboratory of Computer Science, MIT.

Miller, G. (1958) 'Magical Number Seven Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information,' The Psychological Review, Vol. 63, pp.
81-97.

Miller, G. and Chomsky, N. (1963) 'Finitary Models of
Language Users,' in Luce, R., Bush, R., and Galanter,
E. (eds.) Handbook of Mathematical Psychology, Vol.
II, pp. 419-491, John Wiley and Sons, New York.

Pereira, F., and Warren, D. (1980) 'Definite Clause Gram­
mar for Language Analysis - A Survey and a Com­
parison with Augmented Transition Networks,'
Artificial Intelligence, Vol. 13, pp. 231-278.

Pollard, C. (1984) Generalized Phrase-Structure Grammar,
Head Gramamrs, and Natural Languages, Doctoral
Dissertation, Stanford University, Stanford, California.

Pollard, C. (1985) Lecture Notes on Head-Driven Phrase-
Structure Grammar, Center for the Study of Language
and Information, Stanford University, Stanford, Califor­
nia.

Uszkoreit, H. (1986) 'Categorial Unification Grammars,'
Proceedings of the llth COL1NG, pp. 187-194.

Waltz, D., and Pollack, J. (1985) 'Massively Parallel Pars­
ing: A Strongly Interactive Model of Natural Language
Interpretation,' Cognitive Science, Vol. 9, pp. 51-74.

Yngve, V. (1960) 'A Model and an Hypothesis for
Language Structure,' in Ferguson, D. and Slobin, D.
(eds.) Proceedings of the American Psychological
Society, Vol. 104, pp. 444-466.

670 NATURAL LANGUAGE

