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ABSTRACT 
The possibility is pursued that a single mental program 
underlies both sentence comprehension and generation. The 
Horn-logic formalism is exploited here to modelize the men­
tal representation of the linguistic knowledge, as a bundle of 
constraints rather than as a patchwork of procedures. A 
notion of dependency in a Horn program is defined so that 
eliminating dependency amounts to solving the problem (of 
sentence comprehension or generation) represented in terms 
of that program. Thus, formulated is a problem-solving 
paradigm called Dependency Propagation (DP): Local 
dependency in some parts of the program invokes execution, 
which may cause dependency again in some neighboring 
parts, which in turn invokes further execution, and so on. 
DP subsumes both sentence comprehension and generation, 
because, under DP, no heuristics are necessary about when 
and how to use most efficiently which piece of linguistic 
knowledge; The major difference between the two processes 
is in such alleged heuristics, whereas the declarative 
knowledge is largely shared. Another advantage of DP is 
that it captures not only short-term execution but also long-
term transformation of programs. Some light is thus shed 
upon the evolution or acquisition of the mental grammar and 
lexicon. 

1. Introduction 
Some systematic relationship must hold between sentence 
comprehension and generation by humans, as suggested by 
the following phenomena, among others. First, most 
naively, the language one speaks and that one hears have 
similar structures. Second, there is an affinity between the 
process of comprehension and that of generation. For 
instance, we often literally guess how others' speech could 
continue, or detect grammatical errors and semantic incon­
sistencies in our own speech. Third, the two processes 
become equally difficult in the case of, say, deep center-
embedding constructions. 

In order to account for these phenomena, one might 
hypothesize some relationship between sentence comprehen­
sion and generation; i.e., between the two (maybe the same) 
grammars and between the two (maybe the same, too) pro­
grams for comprehension and generation. Here we adopt the 
strongest hypothesis: 
(1) A single mental program underlies both sentence 

comprehension and generation. 
Let us call this the Common Program Hypothesis (CPH 
for short), and the mental program mentioned therein the 
Common Program (CP). The challenge of the current 
work is to figure out how CP operates, as well as to what 
extent CPH can be supported. 

CP must be a coherent system of instructions (and/or 
constraints, as it wil l in fact turn out) rather than a patch-
work of subroutines independent of each other. As an 
extreme instance, CP must not consist of two modules, one 
for comprehension and the other for generation. More pre­
cisely, CP is defined to be the maximum domain of the mind 
every part of which is potentially exploited in both sentence 
comprehension and generation. This definition ensures the 
existence of CP without saying anything about its coverage, 
whereas CPH claims that the coverage encompasses some 
crucial part of both sentence comprehension and generation. 
Another point to be drawn from this definition is that CP 
contains grammar rules and lexical entries as long as they 
have chance to be exploited in both comprehension and pro­
duction. 

In the following discussion, we shall formulate CP as 
consisting of two components. One is a declarative 
representation of linguistic knowledge. This representation 
is modelized in terms of a logic-programming formalism, 
and biased in favor of neither sentence comprehension nor 
generation. The other component of our model of CP is an 
interpreter of this knowledge. It is the operation of this 
interpreter that is called Dependency Propagation. This 
interpreter is exempt from language-specific aspects, not to 
speak of comprehension-specific or generation-specific 
aspects. 

This model of CP is based upon the observation that 
sentence comprehension and generation make access to the 
same linguistic knowledge, but in different ways. For exam­
ple, consider the syntactic rule about English topicalization 
as in: Mary, Tom doesn't like to see. Put declaratively, this 
rule might look like (2), details being omitted. 
(2) A sentence S may consist of any constituent X plus a 

following sentence S/X which lacks X somewhere. 
Here X is semantically focused on. 

This rule is exploited in different ways between sentence 
comprehension and generation. In comprehension, perhaps 
this rule is fully activated only when the beginning of S/X is 
detected. At that time X would get focused on. In typical 
cases of generation, on the other hand, the rule could be 
activated by a focused semantic element, whereby this ele­
ment is first put into a linguistic expression X. 

The common linguistic knowledge such as (2) would be 
modeled in terms of declarative rules, constraints, or the 
like. The apparent difference between comprehension and 
generation is in the manners of access to such knowledge. 
In the former models of language faculty (and in application 
programs such as those of machine translation), this 
difference has been stipulated in terms of comprehension- or 
generation-specific heuristics about when and how to 
activate most efficiently which piece of linguistic knowledge. 
For instance, a generation-oriented heuristic rule to exploit 
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(2) might state: 
(3) If a verbalization into a sentence is currently attempted, 

and the topical focus is upon a part of the input seman­
tic content, then first translate the focused part into a 
language expression X, and next attempt to verbalize 
the remaining content as a sentence in which X is miss­
ing somewhere. 

The major task in our pursuit of CPH is to substitute the 
heuristics of this sort with a general nonbiased paradigm of 
problem-solving to interpret the common declarative 
knowledge. That is, such a paradigm should control the tim­
ing of and data-flow in the exploitation of linguistic 
knowledge, just the same way as those heuristics do. For 
instance, Prolog interpreter does not provide such a para­
digm. In fact, the existing implementations of DCG (Pereira 
and Warren, 1980) cannot deal with sentence comprehension 
and generation equally efficiently; they must be biased (by 
virtue of procedure attachments, etc.) in favor of one or the 
other task, in order to work efficiency. DP wil l be proposed 
later as a candidate for the desired paradigm. 

Such a pursuit of CPH should be qualified, however, 
because there are some good reasons to conclude that some 
of those heuristics should survive for the sake of processing 
efficiency, and hence that CP does not encompass the entire 
language processing. For example, typical cases of Broca's 
aphasia exhibit so-called telegraphic speech (i.e., one which 
lacks grammatical markers such as inflections, conjugations, 
prepositions, etc.), the comprehension ability remaining 
fairly normal. Despite the apparent inconsistency, this 
phenomenon is compatible with CPH. A consistent interpre­
tation is that the function of retrieving words from meaning 
(plus syntactic features) do not belong to CP, and therefore 
may be lost without reducing the ability to listen. Other evi­
dences, including aphasic symptoms contrasted with tele­
graphic speech, suggest that CP should also exclude the 
function of retrieving meaning from words, thus totally 
excluding search in the lexicon. 

That CP excludes lexical retrieval is predicted a priori, 
by taking into account the vastness of the lexicon. In the 
case of comprehension, a lexical entry is considered to be 
retrieved with its phonological form as the key. There must 
be some access paths which you traverse by using phonolog­
ical keys to reach desired words. These paths are not likely 
to be exploited in generation. Similarly, the access paths 
through which you find words from semantic keys need not 
be activated in comprehension. That is, the access paths of 
either direction must be out of CP. To retrieve grammar 
rules like (2), on the other hand, is quite another story. As 
is demonstrated in HG (Polloard, 1984), HPSG (Pollard, 
1985), etc., the inventory of grammar rules is regarded as 
very small (i.e., complementation, adjunction, coordination, 
topicalization, and few more), when the lexicon is maxim­
ized. Such a demarcation between grammar and lexicon 
renders trivial the search of grammar rules. Hence the 
(perhaps simplifying) assumption that the access paths to 
grammar rules are shared between comprehension and gen­
eration would not separate the resulting model very far from 
the reality. 

To summarize, our assumption is that CP subsumes the 
grammar rules, the access paths to them, and the lexicon, but 
not the access paths to the lexicon. The rest of the paper is 
concerned with how the information included in CP is put to 
use. 

2. Constrained Patterns 
Sentence comprehension is a task to figure out semantic 
structures of given strings of words, and sentence generation 

is a task in which, contrariwise, strings of words are worked 
out of given semantic structures. Among the currently avail­
able programming paradigms, unification seems to be most 
promising in order to capture this bi-directionality of data-
flow in CP. 

Another reason for the employment of unification in 
describing the flow of linguistic information is that there 
have been developed several unification-based grammar for­
malisms, such as GPSG (Gazdar, Klein, Pullum, and Sag, 
1985), LFG (Bresnan, 1982), HG, HPSG, FUG (Kay, 1985), 
and CUG (Uszkoreit, 1986). These theories provide a basis 
for a representation of linguistic knowledge shared between 
comprehension and generation. The reader may consider 
that the description of the grammar and the lexicon in our 
model exploits the techniques in the unification-based gram­
mars mentioned above, unless stipulated otherwise. 

Here we introduce a scheme for representing linguistic 
information. This scheme exploits the Horn-logic program­
ming formalism (i.e., that of Prolog), so that information 
could flow back and forth via unification. Ordinary patterns 
as in Prolog in which variables are simply indeterminate, 
however, are problematic in that they are lacking in expres­
sive power. To remedy this, our scheme incorporates con­
straints on variables appearing in patterns; thus such pat­
terns are called constrained patterns (formerly called 
conditioned patterns in Hasida (1986)). 

A constrained pattern is a pair of a pattern (of Prolog) 
and a constraint. A constraint is a sequence of atomic for­
mulas (again, of Prolog), where all the predicates heading 
those atomic formulas (e.g., p of an atomic formula 
p(X, Y)) are defined by Horn clauses; that is, every predi­
cate considered here must not be system-defined. For 
instance, 
(4) a(f(X,Y),A,B) > p(X, A), q(Y, B). 
is a constrained pattern with pattern a(f (Xy Y)> A, B) and 
constraint [p(X, A)y q(Yy B)\y provided that predicates p 
and q are defined in terms of Horn clauses. Note that a con­
strained pattern looks just like a Horn clause, except that the 
pattern and the constraint arc separated by \> rather than :-. 

The semantic difference between a Horn clause and a 
constrained pattern is that the former expresses a scheme of 
logical inference, while the latter denotes a set of patterns. 
For example, (4) represents the set exhibited in (5), in the 
case where predicates p and q are defined by (6). 
(5) {a(f(\, a), 2, b),a[f(\% c ) , 2,d), a(f(3, a) , 4, b), 

a(f(3,c),4,d)} 
(6) p ( l , 2 ) . />(3,4). q(a,b). q(c,d). 
When some predicate in the constraint has a recursive 
definition, a constrained pattern may represent a set which 
cannot be denoted by a finite set of patterns possibly con­
taining variables. For instance, the constrained pattern (7) 
represents the set of all the lists ending with the null list 
(i.e., [ ] ) , where predicate list is defined as in (8). 
(7) X t>Hst(X). 
(8) l ist( [ ] ) . list([A\X]):- list(X). 

A number of problems can be represented as a con­
strained pattern; i.e., a constrained pattern is regarded as 
denoting the set (or a subset) of the solutions of a problem. 
The problem for CP to solve, for example, is represented by 
a constrained pattern such as shown in (9), where the predi­
cate constituent is defined as in (10). 
(9) struct (Category , X , Y ) \> constituent (Category ,X, Y). 
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In short, this is a sort of DCG. The predicates lexicon and 
phrase structure rule are also defined by Horn clauses, and, 
as is indicated by their names, represent the access paths to 
the mental lexicon and the mental grammar. Variables X, 
Y, and Z in (10) denote some portions of the terminal 
string, whereby the last two arguments of constituent consti­
tute the differential list representing the part of the terminal 
string which the constituent in question exhaustively dom­
inates, as in: 
(11) constituent (sentence, [tom, loves, mary \ X], X) 

3. Dependency Propagation 
This section is devoted to a formulation of a problem-soling 
paradigm under the representation scheme just illustrated 
above. In this paradigm, the logical structure of the problem 
to be solved determines the ordering of execution to process 
the information represented as constraints. In contrast, the 
existing Prolog interpreters carry out execution simply 
according to the ordering in which atomic formulas happen 
to appear in source programs. 

3.1. Dependency versus Modularity 
Let us say that there is a dependency between two atomic 
formulas sharing some variable, in the sense that the instan­
tiation of the shared variable can be licensed only through 
some possibly nontrivial interaction between the two formu­
las. For instance, and are dependent on 
each other; there does not necessarily exist a pattern y satis­
fying for every a and B satisfying p ( a , P). An 
atomic formula some of whose arguments is not a variable 
involves dependency as well; i.e., the dependency between 
that argument and the predicate of the atomic formula. For 
example, there is a dependency in in the sense that 
there does not necessarily exist a pattern p such that 
a for every a satisfying p (a). 

Let us say that a constraint is modular when it con­
tains no dependency at all in such a sense. In order to put it 
more formal, let us define the notion of superficial modu­
larity. A superficially modular constraint is one in which 
all the arguments of all the atomic formula are variables and 
no variable occurs twice. A constraint is modular iff all the 
relevant constraints are superficially modular; all the relevant 
constraints being defined to be the constraint itself, the 
bodies of the Horn clauses defining the predicates in the 
constraint (note that the body of a Horn clause is looked 
upon as a constraint), the bodies of the Horn clauses 
defining the predicates in those bodies, and so on. A con­
strained pattern is said to be modular when its constraint is 
modular. A predicate is modular when it is defined in terms 
of only Horn clauses whose bodies are modular constraints. 
For example, (4) and (7) are modular constrained patterns, 
when the predicates exploited there are modular, for instance 
being defined by (6) and (8), respectively. 

3.2. A View of Problem Solving 
As demonstrated above, a constrained pattern represents a 
solution set of a problem. As a matter of course, however, 
to represent does not necessarily imply to solve. Granted 
that the solution should also be represented in terms of a 
constrained pattern, that constrained pattern would be of 

what might be called a 'resolved form.' 
A modular constrained pattern is looked upon as 

'resolved.' That is, it is an almost extensional enumeration 
of patterns, as typically seen in (4), thus conforming to the 
intuition that, in general, a resolved form should enable you 
to enumerate the solutions in time proportional to the sum of 
their complexity. Consequently, a problem represented as a 
constrained pattern is resolved by modularizing that con­
strained pattern; i.e., transforming it into a modular 
equivalent. The modularization is regarded as driven by 
dependency: Dependency in some parts of a constraint 
invokes execution which in turn gives rise to dependency in 
the neighboring parts of the constraint, which invokes further 
execution, and so on until dependency disappears. We refer 
to this problem-solving paradigm as Dependency Propaga­
tion (DP). 

For example, if a problem is represented by (12), then 
(13) is a resolved representation, where p is an arbitrary 
unary modular predicate and member and mp are defined as 
in (14). 

A constraint is modularized by means of an algorithm simi­
lar to fold/unfold program transformation. In the above 
example, the dependency (i.e., the double occurrence of £) 
in the constraint-part of (12) invokes unfolding of 
member (E, S), and then folding the resulting constraint into 
mp(E, S). For further details of the algorithm, see Hasida 
(1986) or Hasida and Sirai (1986). 

Note two aspects of DP here. First, DP is optimized in 
the sense that it responds only to 'pressing needs' 
represented as dependency, thus minimizing the waste of 
processing. Second, according to DP, the procedure to inter­
pret a given representation of a problem reflects more of the 
logical structure of that problem rather than artifacts in the 
representation. Compare this with Prolog interpreters, which 
tend to indulge in investigation of top-down hypotheses 
which happened to be activated on the way of the execution 
ordering predetermined by the ordering in the source pro­
gram. Some proposals such as freeze (Colmerauer, 1982) 
are made to overcome this defect of Prolog, but they are 
partial solutions unlike DP. 

The current problem, represented by (9) together with 
(10), may generally be solved by modularizing (9) after 
instantiating the variables Category, X and Y according to 
the given information. Put more precise, in the case of pars­
ing, Category is first left indeterminate, X is set to be the 
given sentence, such as [torn, loves, mary]. In the case of 
sentence generation, the semantic part of Category is first 
instantiated to be the given semantic content (e.g., 
love (torn, mary)) of the target sentence, X being left unin-
stantiated. Y is initially set to nil (i.e., [ ]) in both cases. 

3.3. Compilation as Partial Computation 
One might expect that (9) could be modularized in advance, 
so that the amount of computation is greatly saved in indivi­
dual cases of comprehension and generation; a sort of 
precompilation in terms of partial computation. This expec­
tation fails, however, in almost every nontrivial case. In 
fact, (9) has a modular equivalent only when the language in 
question is regular, detailed mathematical account being 
omitted. 
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Nevertheless, one can consider instead an equivalent 
constrained pattern which is semi-modular: modular except 
that a variable may occur more than once in a constraint iff 
the instantiation of that variable is influenced at most one 
occurrence. A variable representing a part of the terminal 
string is a typical example of such a variable; it appears first 
as the latter component of a differential list, and second as 
the first component of another differential list, as Y does in 
(10). Such a semi-modular description of a language is 
available through precompilation in great many significant 
cases; i.e., for the class of languages including all the 
context-free languages, such repetition languages as 

(n is an arbitrary natural number, and I an 
arbitrary finite set of alphabets), etc. 

For instance, when the language in question is deter­
mined by (15) (i.e., the grammar given in (16)), a semi-
modular equivalent cO of constituent, is obtained simply as 
in (17). 

Note here that the bodies of the two Horn clauses in (17) are 
modular except that Y appears twice in the second. 

4. A Cognitive Model 
Parsing and generation by modularizing (10) or (9) in a sin­
gle stroke, however, fails to fit the reality with respect to the 
following two aspects. First, humans process sentences from 
left to right, not necessarily having in mind the global view 
of what the sentence eventually turns out to be. Second, 
presumably on account of the limitation on STM capacity, 
humans do not pay attention to every possible solution; oth­
erwise such phenomena as garden-path sentences and 
resumptive pronouns would not take any place. 

4.1. Left-to-Right Processing 
Sentences may be formulated as processed (i.e., 
comprehended or generated) little by little from left to right, 
so that the first aspect is incorporated in the model. To 
illustrate this, a sentence Tom loves Mary is parsed as fol­
lows. 

In general, parsing proceeds by successively semi-
modularizing the constraint [c^Category, [at{\ X], Y)] to 

Generation goes similarly: 

That is, at first the constraint , v . ,. WI m. rm is semi-
modularized to yield a constraint on variables A0, X, and Y. 
The variables contained in a is concealed in the definition of 

Under this formulation of sentence generation, the 
whole constraint on the entire sentence should at the very 
beginning be fit with the semantic structure embedded in a. 
This result should be rejected, since it is not always possible 
to have the complete meaning of the entire sentence before 
generation begins. A further investigation presented later 
wi l l overcome this weakness. 

4.2. Memory Limitation 
In order to capture the limitation on the STM capacity, let us 
assume that there is a finite bound on the amount of working 
memory in which to store the Horn clauses produced 
dynamically during comprehension and generation. Follow­
ing this assumption, Horn clauses whose activation inten­
sity is weaker than others are pruned off so that the remain­
ing Horn clauses should fall together within the limited 
storage. 

The activation intensity of a Horn clause is mentioned 
here as a neurophysiological metaphor. A Horn clause 
activates or deactivates some other Horn clauses. The 
strength of this (de)activation is positively correlated with 
the activation intensity of that Horn clause. Horn clauses 
competing with each other should be inhibitory against each 
other. For instance, different clauses defining the same 
predicate should tend to deactivate one another. 

This paper does not go any further into the question of 
what activation intensity should be like. A fuller account 
would require something like the connectionist approach 
(Waltz and Pollack, 1985). In the current computer imple­
mentation, the intensity is simulated by an integer assigned 
to a Horn clause. 

It must be emphasized that the memory limitation is 
crucial in our present approach to CPH. For instance, the 
fluency of generation follows from the memory limitation. 
In (19), the constraint on A ; ' s instantiation can be retained 
for only a few j such that due to the memory 
limitation. Hence the determined value of A; should have 
been emitted as a part of utterance except for j very near to 
i. Incidentally, therefore, in practice we come up with 

for some k close to i, instead of 

4.3. The Head-Driven Propagation 
The currently assumed DP (i.e., the exhaustive semi-
modularization in precompilation and execution) eliminates 
every non-vacuous dependency. This is problematic, how­
ever, for several reasons that follow. First, (semi-) modular­
ization as currently conceived tend to consume too much 
memory. For example, the amount of memory occupied by 
the constraint of any modular equivalent of the constrained 
pattern (20) is O (m xn) , where m and n are prime to each 
other, and listm and listn are defined as in (21). 

Since the memory requirement of the given representation 
(20) with (21) is 0{m+n\ the coding efficiency of the 
representation is deemed as often reduced by modularization. 

Second, the current formulation tend to waste process­
ing time, in the sense that predicates are often generated 
which are never referenced. For instance, if (semi-) modu­
larization takes place when two constrained patterns 

are unified with each 
other, then a new constrained pattern is 
yielded together with the new predicate r. If an unsuccess-
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ful unification between g(Z) and is 
attempted next, is simply discarded without being 
exploited at all. 

Third, there are many important predicates which have 
no semi-modular equivalents. Mathematical details being 
omitted, those predicates include permutation (a binary 
predicate to the effect that the two arguments are lists which 
are permutations of each other), subset (a binary predicate to 
the effect that the two arguments are lists and that the 
former represents a subset of the latter), etc. 

To avoid these problems, let revise DP by relaxing the 
present requirement that DP semi-modularizes given 
constraints. To overcome the defects discussed above, DP 
should instead operate selectively on the parts of the given 
constraint which are likely to be referenced more often than 
others. 

A typical bias of reference likelihood is found between 
the head and nonhead daughters in a local tree. Consider a 
local tree shown below, for example. 

(22) 

NonHeadDaughter HeadDaughter 

This local tree may be regarded as an instantiation of a rule 
such as S NP VP and NP Det N, in a familiar nota­
tion. When one of Mother and HeadDaughter is refer­
enced, then it is nearly certain that the other is also refer­
enced, because these two nodes share almost the same infor­
mation. Mother and HeadDaughter, than to dependency 
that NonHeadDaughter has with Mother or HeadDaughter. 
Let us tentatively formulate this as the following extremely 
simplified form. 
(23) In both sentence comprehension and generation, DP 

operates so that: 
a. the constraint on every node is modular which 

dominates an exhaustively processed part of the 
terminal string, and 

b. there is no remaining dependency between any 
node and its grammatical head. 

Let us call this the Head-Driven Propagation (HDP, for 
short). 

Due to (23a), HDP roughly amounts to a parallel exe­
cution of what Hasida (1985) calls the Canonical Pro­
cedure. The Canonical Procedure is a nondeterministic pro­
cedure to handle a coherent substructure of a sentence at a 
time. In general, the partial structure regarded as resolved 
(i.e., modularized, in our current terminology) at any stage 
during the execution of the Canonical Procedure looks like 
the one enclosed in the curve of (24) below, where the 
categories • • • a n d a are memorized i n the 
working storage. 

On account of (23b), the modular domain in the case of 
HDP may be a little wider than the area enclosed in the 
curve; That is, the former also includes the path from 
down to its lexical head. For example, when terminal string 
A dog which is just processed, a maximal coherent structure 
dynamically generated would look like (25), provided that 
VP is a head of S and S is a head of 3. 

Since a node and its heads greatly share information, the 
substantial difference between (24) and (25) is smaller than 
it appears. 

An advantage of adopting principle-based grammars 
such as GB (Chomsky, 1981, 1986) and HPSG is that one 
can remove much of artifact in the grammar by controlling 
the precompilation. Such a control is possible because 
principle-based grammars are of the 'least precompiled' 
form. In HPSG, for instance, the phrase-structure rules have 
been abstracted away from information in the lexicon, and 
also from general properties of local trees, which are fac­
tored out as general principles like the Binding Inheritance 
Principle, the Head Feature Principle, etc. If a grammar of a 
more precompiled form such as GPSG were adopted, the 
distribution of the reference likelihood in compiled represen­
tation of grammar would be less controllable. 

4.4. An Example 
Now let us look at some concrete cases of DP as presently 
conceived in sentence processing. Since it would be too 
complicated as an example to precisely demonstrate how an 
actual natural language sentence is processed, first we exam­
ine here the language defined by (15). Several more 
linguistically real instances wi l l be considered later. 

Shown below is how a sentence aaa ■ • • of the 
language in question is parsed, following the procedure illus­
trated in (18). 
(26) 
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Horn clauses have not been pruned off here. To see 
what a pruning is, let us simulate the memory limitation by 
a simplistic requirement that the number of Horn clauses in 
the working memory should be no more than, say, seven, 
according to Miller (1958). After a possible pruning, we 
might be left with, for instance, the Horn clauses listed in 
(27): 

(27) 

The Hom clauses defining c0 are not discarded dynamically, 
because they have been yielded by precompilation and thus 
are regarded as stored in the long-term memory. 

Note that every atomic formula in the bodies of the 
remaining Horn clauses are solvable by finite patterns, based 
only upon the remaining Horn clauses; e.g., _ ~ ~" " is 
solvable with This is impor­
tant because a mental representation must be finite. So for 
instance the first Horn clause defining cl must be retained; 
otherwise no finite pattern could solve c1(B,X,Y). In 
order for pruning to take care of this, smaller intensity 
values should be assigned to Horn clauses (e.g., the second 
clause defining taking part in recursive definitions of 
predicates. 

Incidentally, if a predicate is defined by only one Horn 
clause, it is usually more efficient (with regard to both 
memory and time) to unfold that predicate at all its 
occurrences and discard it. For instance, in (27) there 
remains only one clause defining Thus we obtain (28) 
by unfolding and eliminating 
(28) 

This example of DP amounts to a parallel execution of 
the Canonical Procedure. For instance, the four Horn 
clauses in (29) extracted from (28) represent together the 
tentative partial structure depicted in (30). 
(29) " " -

Here the node labeled is on the left corner 
of A0t being possibly identical to it. These two nodes are 
related through the second clause defining c3 in (29), and 
the distance between them in a potential completion of (30) 
is equal to the number of times that this clause is exploited, 

i stands in the same sort of relationship with Bx 
through the second clause defining . (30) amounts to a 
snapshot just before (24) with d ' That is, a1 pl, a2, 
and in (24) correspond to 
and B 2 , respectively; a in (24) has no counterpart in (30). 
As exemplified here, the amount of memory occupied by 
Horn clauses representing together the partial structure in 
(24) is proportional to d. 

4.5. Accounts of Some Linguistic Phenomena 
HDP provides a measure of transient memory load 

(TML; i.e., the load on STM) which is finer-grained than 
left-branching (Yngve, 1960), center-embedding (Church, 
1980), self-embedding (Miller and Chomsky, 1963), etc. 

First, the complexity of a single coherent structure of a 
sentence is measured in terms of the memory requirement by 
Horn clauses needed to represent a coherent substructure of 
that structure at a given stage of processing. That is, TML 
of a maximal coherent structure is estimated to be 0(d) 
with respect to the moment depicted in (24). This measure 
amounts to a refinement of center-embedding; we have 

where 8 is the depth of center-embedding. 
Moreover, the entire memory requirement at a stage of 

processing in HDP captures also local structural ambiguity. 
Some authors have attempted to measure local ambiguity by 
means of the degree of lookahead (Marcus, 1980; 
McDonald, 1980), but the defect of such a measure is that it 
is not by itself sensitive to static complexity of sentences. 
The present framework lays a basis for talking about static 
complexity and local ambiguity at the same time. 

HDP seems to approximate the reference likelihood of 
the actual mental representation of grammar. Let us con­
sider two examples. 

First, HDP is compatible with the observation that 
humans can predict' the relationship between a category 
and its left-corner. In English, for instance, a sentence often 
begins with a determiner, in constructions like (31). 

(31) 

HDP is enough to ' predict' the relationship between S and 
Det, because, the moment Det is processed, the information 
that VP takes NP and NP in turn takes Det as complements 
(or maybe as specifiers), is exploited. It is also enough to 
deal with agreements of gender, number, etc. For example, 
the information about the agreement between the head N and 
Det (and AP) in (32) is incorporated in precompilation. 

Second, HDP does not modularize too much. Consider 
resumptive pronouns, for instance. A typical context where 
a resumptive pronoun is found is something like (33). 

(33) the man who I wonder whether he is wise 
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Here, he is a resumptive pronoun coreferring with the man. 
HDP accounts for why such an apparently ungrammatical 
utterance is generated. Let us take a look at (34), the struc­
ture of (33). 

the man who I wonder whether he is wise 

HDP leaves unresolved the relationship between S0 and NP2 
and the one between S1 and NP3. Therefore, it is impossible 
to detect the grammatical inconsistency until generation of 
Sj is attempted. 

McDonald (1980) proposes a different explanation of 
the same phenomenon, based on a deterministic model of 
sentence generation: a generation version of Marcus' (1980) 
parser. McDonald draws upon the limited lookahead presup­
posed in the determinism doctrine. His discussion is wrong 
or at best incomplete, because he fails to pay attention to 
how far the coming structure can be predicted via HDP 
rather than lookahead. 

5. Final Remarks 
A model has been proposed which describes both sentence 
comprehension and production as a single program. This 
program is a system of constraint rather than a sequence of 
instructions, and the procedure CP to interpret given infor­
mation is derived from the computational structure of the 
task to be performed. This model exploited a problem-
solving paradigm called Dependency Propagation: Depen­
dency in the given constraint invokes execution, which 
proceeds so that the likelihood of reference becomes homo­
geneous over the whole constraint. 

If we note that the likelihood of reference is related 
with the density of some sort of information, some part of 
the discussion suggests a general principle that linguistic 
information should be homogeneously distributed over the 
entire representation of the mental grammar: A principle 
perhaps stemming out of the more ubiquitous principle that 
evolution optimizes the resulting system. In the light of this, 
Dependency Propagation lays a promising basis upon which 
to talk about how cerebral coding of knowledge is reformed 
as new information comes in; more specifically, how an 
accumulation of concrete instances gives rise to abstract 
rules of the mental grammar. 

References 

Bresnan, J. (ed.) (1982) The Mental Repesentation of Gram-
matical Relations, MIT Press, Cambridge, Mas­
sachusetts. 

Chomsky, N. (1981) Lectures on Government and Binding, 
Foris, Dordrecht. 

Chomsky, N. (1986) Barriers, M IT Press, Cambridge, Mas­
sachusetts. 

Church, K. (1981) On Memory Limitations in Natural 
Language Processing, MIT/LCS/TR-245, Laboratory 
for Computer Science, MIT. 

Colmerauer, A. (1982) Prolog II Reference Manual and 
Theoretical Model, ERA CNRS 363, Groupe 
d'Intelligence Artificicllc, Universite de Marselle, Mar-
selle. 

Gazdar, G., Klein, K., Pullum, G., and Sag, I. (1985) Gen­
eralized Phrase Structure Grammar, Basil Blackwell, 
Oxford. 

Hasida, K. (1985) Bounded Parallelism: A Theory of 
Linguistic Performance, Doctoral Dissertation, Univer­
sity of Tokyo. 

Hasida, K. (1986) 'Conditioned Unification for Natural 
Language Processing,' Proceedings of the llth COL-
1NG, pp. 85-87. 

Hasida, K. and Sirai, H. (1986) 'Zyookentuki Tan-ituka 
(Conditioned Unification; in Japanese),' Computer 
Software, Vol. 3, pp. 28-38. 

Kay, M. (1985) 'Parsing in Functional Unification Gram­
mar,' in Dowty, D., Kartunnen, L., and Zwicky A. 
Natural Language Parsing, pp. 251-278. 

Langendoen, T. (1975) 'Finite State Parsing of Phrase Struc­
ture Languages and the Status of Readjustment Rules in 
Grammar,' Linguistic Inquiry, Vol. 6, pp. 533-554. 

McDonald, D. (1981) Natural Language Production as a 
Process of Decision Making under Constraint, Doctoral 
Dissertation, Laboratory of Computer Science, MIT. 

Miller, G. (1958) 'Magical Number Seven Plus or Minus 
Two: Some Limits on Our Capacity for Processing 
Information,' The Psychological Review, Vol. 63, pp. 
81-97. 

Miller, G. and Chomsky, N. (1963) 'Finitary Models of 
Language Users,' in Luce, R., Bush, R., and Galanter, 
E. (eds.) Handbook of Mathematical Psychology, Vol. 
II, pp. 419-491, John Wiley and Sons, New York. 

Pereira, F., and Warren, D. (1980) 'Definite Clause Gram­
mar for Language Analysis - A Survey and a Com­
parison with Augmented Transition Networks,' 
Artificial Intelligence, Vol. 13, pp. 231-278. 

Pollard, C. (1984) Generalized Phrase-Structure Grammar, 
Head Gramamrs, and Natural Languages, Doctoral 
Dissertation, Stanford University, Stanford, California. 

Pollard, C. (1985) Lecture Notes on Head-Driven Phrase-
Structure Grammar, Center for the Study of Language 
and Information, Stanford University, Stanford, Califor­
nia. 

Uszkoreit, H. (1986) 'Categorial Unification Grammars,' 
Proceedings of the llth COL1NG, pp. 187-194. 

Waltz, D., and Pollack, J. (1985) 'Massively Parallel Pars­
ing: A Strongly Interactive Model of Natural Language 
Interpretation,' Cognitive Science, Vol. 9, pp. 51-74. 

Yngve, V. (1960) 'A Model and an Hypothesis for 
Language Structure,' in Ferguson, D. and Slobin, D. 
(eds.) Proceedings of the American Psychological 
Society, Vol. 104, pp. 444-466. 

670 NATURAL LANGUAGE 


