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Abstract

The problem of specifying, constructing, and understand-
ing specialized, limited inference systems arises in many areas
of Al. As a first step towards solving this problem this paper
recommends the development of an inference engine that is
limited by its inability to chain together two pieces of a
representation in order to derive a third. A method for using
model theory to specify limited inference is introduced and
then used to specify an inference engine via a three valued
logic. This inference engine is proved to be the strongest one
that does no chaining, modulo the way that it divides the
representation into pieces. Thus, the specification captures the
set of all inferences that require no chaining. This paper also
surveys and compares a number of systems that do no chain-
ing as well as some that allow only selected forms of chaining.

1. The Problem

A serious problem confronting much work in artificial
intelligence is that of identifying a limited set of inferences
that a program can perform efficiently. The problem is cen-
tral to the design of a knowledge retrieval system. A retriever
that accesses a knowledge base should be able to perform cer-
tain useful inferences in order to respond to a query. Since the
retrieval process must be guaranteed not only to terminate but
to terminate quickly, the set of inferences must be efficient to
perform.

An efficient system of limited inference would also be use-
ful for reasoning by default. Many default reasoning systems
allow one to jump to a conclusion provided that the conclusion
is consistent with what is already known. The problem is that
consistency may not be decidable, and, even if it is, it may not
be easily decided. One can hardly be said to jump to a conclu-
sion if its consistency must first be established. Rather than
throwing all caution to the wind, the agent should perform a
limited set of efficient inferences in order to avoid jumping to
conclusions that are obviously inconsistent with what is
known.

A similar problem arises in reasoning about the beliefs of
another agent. We may want to reason that the agent
automatically makes certain inferences that if he has certain
beliefs then he has other beliefs. So the agent's beliefs are
closed under a certain limited set of inferences: but what infer-
ences?

Underlying all these uses of limited inference is the notion
of an obvious inference. This notion also pervades linguistic
communication. A speaker often makes statements that are
slightly stronger, and hence more informative, than the state-
ment that communicates the required information.

Underlying this practice is the assumption that the hearer can
make the obvious inference that is necessary. For example, in
response to the question "Will John be here?" you may reply
"He and Mary will be here late." John and Mary's being here
late entails John's being here; this is obvious to you and you
know that it is obvious to the listener.

Of course the solution of these problems does not merely
involve picking a limited set of inferences; one must first find a
criterion or guiding principle to motivate ones choices. Until
recently, little work has been done on identifying sets of infer-
ences and even less on motivating useful criteria for perform-
ing this task. Witness the dissatisfaction that Brachman, Gil-
bert and Levesque (1985) express because this state of affairs
has forced them to build a complete (unlimited) inference
mechanism into the KRYPTON knowledge representation sys-
tem:

We would no doubt have used a more computa-
tionally tractable inference framework than full
first-order logic if an appropriate one were avail-
able... the full first-order resolution mechanism is,
in a sense, too powerful for our needs.

This paper introduces the no-chaining restriction and
proposes that it be used to limit inference in a systematic,
principled way. The consequences of embracing the no-
chaining restriction are then investigated by designing and
studying a propositional logic whose inference system does no
chaining.

2. The No-Chaining Restriction

Imagine a representation divided into quanta, which [
shall call "facts." Then, any inference that combines two or
mare facta in order to derive another is said to perform chain-
ing. The archetypal form of chaining otcurs in applying the
rule of modus ponens o infer @ from P and P—@Q.

The eflect of the no—chaining restriction depends criti-
caily an the granularity at which knowledge is quantized. For
instance, the no-chaining restriction prohibits inferring @
from PA{P—@) only if PA{P—@Q) is quantized into twa
facts, P and P—@. At one extreme, il the entire representa-
tion is considered to be a single fact, the no-chaining restrie-
tion becomes vacuous; there can't be any chaining because
there aren't two facts to be chained together. At the other
extreme, if each fact is merely an atomic sentence then nothing
new can be inferred; the only atomic sentence entailed by an
atomic sentence is the sentence itsell.

It is the elimination of modus ponens that motivates the
development of the inference system put forward in this paper.
In patticular, we shall focus on the disjunctive form of modus
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ponens—cthe derivation of @ from PA{=FPVv@Q). For this to be
regarded a9 & form of chaining, PA(~FPv Q) must be divided
into two facts: P and —=Pv Q. Accordingly, a fact is defined
to be a disjunction of literals.!

Inference without chaining can be thought of as local
inference; a given fact can be inferred from a corpus of facts
only if it can be inferred from a single fact in the corpus.
Hence, whether a target fact is inferable from a corpus of facts
can be determined on a purely local basis. This is reminiscent
of associative memories, which also operate locally. Each fact
in the corpus can be stored with a separate process. A target
fact is broadcast to all processes, each of which then deter-
mines if the target fact is inferable from the fact that it has
stored. Because no chaining is performed the processes can
reach their decisions independently; no communication is
required between them.

The elimination of all chaining is a radical approach to
limiting inference. In any practical situation that calls for a
limited inference system, it is reasonable to expect that it is
necessary to perform some prescribed set of efficiently-
performed inferences that require chaining. An inference sys-
tem that performs no chaining forms an excellent basis to
which such specialized chaining can be added. This approach
of first eliminating ail chaining and then introducing special-
ised chaining has been pursued by Frisch (1988) in work that
is described later in this paper.

The remainder of this paper closely examines inference
without chaining. The following section presents a method of
adapting the tools of model theory to the task of formally
specifying a limited inference system. Section 4 uses this tech-
nique to specify the most powerful inference system without
chaining for propositional logic. In Section 5 the formal
specification is then used to prove that the inference system
has certain properties, properties that lead directly to the
inference algorithm discussed in Section 6. Finally, Section 7
compares this work to a number of related logical systems.

S. An Approach to Specifying Limited Inference

A methodology that has been pursued successfully
throughout computer science is that of separating what a pro-
gram computes from how it computes it. On one hand there
are descriptions of a program's input/output behavior and on
the other descriptions of its internal modules, processes, states
and data structures.

This paper concentrates on what an inference system
without chaining computes, or, in other words, on what sen-
tences can be inferred without chaining from what sets of sen-
tences. Thus the problem of specifying the inference system
comes down to one of specifying an inferability relation, a
binary relation that says what is inferable from what without
chaining.

The inference system operates in a standard propositional
language whose semantics is given by the standard Tarskian
model theory, which shall be referred to as T. This model
theory yields an entailment relation, written rf*, that deter-
mines what can validly be inferred from what. A limited
inference system, however, is incomplete; it does not make all

' Recall that a literal is either an atomic sertence or its nega-
tion.
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valid inferences, only a (proper) subset of them. How then can
a limited inference system be specified?

The approach used here for specifying limited inference is
to produce another model theory whose entailment relation is
weakened® in such a way that the inference system is sound
and complete with respect to it. In other words, the limited
inference system is specified by producing a model theory
whose entailment relation is taken to be the inferability rela-
tion for the limited inference system. Model theories are
well-suited for use in specifications because they are precise,
often have simple definitions, and abstract away from all
issues of formal syntactic operations.

Many people initially find this approach quite odd. They
are accustomed to thinking of a model theory as specifying
what can be concluded validly from what—in some sense, as a
competence theory of inference. | suggest that those who are
comfortable with this viewpoint consider the weaker model
theory as a performance theory of inference. Other people are
accustomed to thinking of a model theory as a way of assign-
ing meaning to symbols and are skeptical of producing a new
meaning assignment. But | am not suggesting that the origi-
nal model theory be discarded; on the contrary, it is still a
valuable device in the study of meaning. The new model
theory can be thought of as providing an additional meaning
assignment. If the inference engine is working under this alter-
native meaning then it is complete. Hence, the symbols mean
one thing to us and ancther to the inference engine. According
to our theory of meaning the inference engine is incomplete
but according to its weaker theory of meaning it is complete.

How can these new, weaker model theories be produced
snd what is their relationship to the unweakened model
theory! To answer the question consider & model theory as
laying down a set of constrainta on what constitutes s madel.
Of ail (mathematical) objects, only those that satialy the con-
straints qualify as models. A model theory also sssociates
with each model a valuation, a total function from sentences
to their truth vaiues. Hence, a model theory constraing the
range of valuations that can be generated. In a standard pro-
positional logic, for example, these constraints ensure that any
valuation that asaigns two sentences True. also assigns their
eonjunction True, The entailment relation associated with a
model theory is a product solely of the range of valuations
that the model theory generates. Relaxing the constrainta pro-
duces a new model theory, one that may generate additional
valuations. No matter how the constraints are relozed, the nen
model theory mual Aave o weaker entailment relation than the
ongmm' That is, if 5 and |5 are entailment relations and

is obtsined hy relaxing the model theory for |, then
a1‘ Aimplies o lﬂ To see this, obeetve that s valuation can
setve only as & counterexample to & claim that one sentence
entails another; hence if none of the valustions from the
relaxed model theory sre counterexamples then certainly none
from the original model theory are.

3 Ore entailment relation is weaker than ancther if the infer-
ences sanctioned by the first are a subset of those sanctioned by the
second.



4. Defining Inferability

The no—chaining inferability relation specified in this aec-
tion is the entailment relation of RP. & model theory obtained
by relaxing the Tarskian model theory, T.

Tarskisn model theory places no constrainta on how a
model assigns truth values to the atomif formulas of the
language; they can be assigned ony combination of the two
truth values. So we cannot generate additional valuations by
giving the atomic wentences more combinations of the two
truth values. This leaves two oplions: either allow atomic sen-
tences to be mapped to values other than True and False, or
modily the way values are amsigned to molecular formulas.
This paper pursues the first strategy. Elsewhere (Frisch, 1985)
1 have specified a nearly identical inference engine using the
second strategy.

Exsmination of why P and =PV T-entails @ provides
the insight used to derive the new model theory, RP. Consider
thie three-step argument that P, «Pv @ |=;~ Q:

{1} Assume that P and =PV @ are both satisfied by
a certain model.
{2) Since P is satisfied, =P isn’t.
(3) Consequently, if the model is to satisfy ~Pv@,
as assumed, it must satisfy Q.
As far as chaining is concerned, step (2) in the crucial one; it
connects P and —~Pv Q. The validity of the step rests on the
assumption that a model satisfies onily one of £ and ~P—a
justified assumption in T where a model sssigna each sentence
either True or False, but never hoth. RP relaxes the restric-
tion that the asaignments of True and False are exclusive by
allowing each sentence to be assigned a non-emply subset of
\True, Falee!. Hence, RP has three truth values: [Truel,
'False! and |True, False!. We will see that thia modification
admits models that satisfy both £ and —P, thus eliminating
moadua ponens as a sound rule of inference. In comparing RP
to T the diference between True and |True) and between
Falae and !False] always will be ignored.

The exclusivity of True and False ia built implicitly into
the usual semantic equations that determine how T recursively
assigna values to moiecular formulas. Consider, for example,
(1) the semantic equation for disjunction. Here, ¢} is the
truth value that model M assigns to formula ¢.

IIt:luVBl]"'lr =True if ﬂa]]“ =True or II;ﬁ]]M =True {1)

=False otherwise

[-al™ =True if [a]¥ =False (2)
=F alse otherwine

Notice that in these equations the assignment of Fulse is
based on the non-assignment of True. Let us now assume that
formuias can be assigned a set of values— True| and {False]
in the Tarskian case—and define the assignment of True and
False independently of each other. (1) and {2) can be written
equivalently an (3) and (4).

True € [avA]™ iff True € [od¥ or Truec[8]¥  (3)

False € [avA]™ iff False € [a]" and False < [4]¥

True € [-a] iff Faise € [V (4)
False € [~a]™ iff True ¢ [o¥

The semantic equations for the other logical connectives
can be rewritten in a similar fashion, or, equivajently, they can
be defined in terms of disjunction and negation. For example.
define

A = Az, p. ~{=zVv=y)
ar, if you prefer,
True € ﬂa/\ﬁ]]u iff True& ﬂQEM and Truec ﬂﬁ]]” {5)
False € [aAS]Y iff False € [a]™ or False ¢ [[3]¥
Figure 1 displays the truth tables for negation, disjunc-
tion and copjunction in this three-valued logic. "T." "F," and

“TF" abbreviate the names of the truth values in the obvious
way.

- A T F TF v
T P T T F TF T
F T F F F F F
™ TF TF TF F TF TF

Figure 1;: Truth Tables for RP

It now should be clear that these semantic equations—
{3), (4), and (8)—can be used to asmign values to formulas in
RP-modeis as well as in T-models. [t also should be clear
that T-models are precisely those RP-models where no atomic
sentence is assigned !True, False!. Hence, as one would
expect, each three—valued truth table contains the truth table
for the two-valued Tarskian logic.

We say that model M safisfies sentence o if, and onty if,
Trueeﬂuu”; otherwine M falsifies o. As usual, a set of sen-
tences A RP-entails sentence 5 (also written as A ﬁp 3 i
there is no model that satisfies every sentence of A and
falsifies 4. In an entailment such as A &!P 3, A is called the
entecedent and  is called the consequent.

Let us now return to the example that motivated this
definition of RP and ask, "Do P and -FPvQ RP-entall @*"
The answer is "no”, because there are RP-models that satisfy
both P and =P. For example, consider model M, which
sssigns | True, False, to P and |False| to @. According ro the
definitions of the connectives, M assigns ‘True, False] to both
=P and -Pv@. So, M satisfies both P and —-Pv@ but
falsifies @, and therefore is & counterexample to the claim that
P, -PvQ k., Q.

6. Properties of RP

Now that RP is defined, this section examines some of ita
propertiea. These resulta lead directly to a decision procedure
for RP-entailment (i.e., the limited inference engine}, which is
discussed in the next section.

The No-Chaining Theorem snd the Strength Theorem,

which are presented below without proof.® together state that
RP-entailment is the strongest inferability relation that does
no chaining, modulo the method of quantization. [Recall that

? All theorems of this section are proved in Frisch {1958),
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a fact is a disjunction of literals.)

No-Chaining Theorem
Let ® be & set of sentences and o be » fact. Then ® Kpa iff
for some ¢=d ¢ l—‘ﬁp o.

Strength Theorem
if ¢ is a fact and v is a sentence then & |=Rp yiff ¢ |=T Y.

We have now established that RP-entailment can be
decided on a fact-by-fact basis. However, the elimination of
chaining does not necessarily lead to efficient inference since it
may atill be difficult to infer & single fact from a single fact.
The following theorem assures us that this difficulty does not
arise.

RP-Decision Theorem for Facta
For any facts, ¢, and ¢,, ¢, ﬁp @ il either
(1} ¢, has complementary literals,* or
{2) the literals occurring in ¢; are a subset of those
oCcurring in é,.

The two syntactic conditions for RP-entailment can be
easily computed. Even il lacts are encoded as unordered lists,
thiz decision can be made in Ofn log n] time, where n is the
sum of the lengths of the facts. This could be reduced further
by a better encoding of facts.

Let us now consider some of the logical equivalences of
RP. In some multi-valued logics, including RP, thete are two
similar, though distinet, notions that one could eall "logical
equivalenes.” In what [ollows, two sentences shall be con-
sidered logically equivalent {written =) just in case they have
the same truth value in every model. Hence, a formula may
be substituted for a logizally equivalent one.

RP-Equivalence Theorem

If @, 8, and v are sentences then
(1) a—d=pla—IA(d—a)
(2} a—3=zpp~avd
3] avaTpgea
{4) ara=gpe
{3} —ma=zpa
(8)  aA{IvY) e landV(aAw)
(7} av(IAy) Zgp (avBlAlaVy)
[8} ClV,j TRpP —l(ﬂaﬂﬂj:l
{9) ard =pp ~{nav-d)

Formulas that are conjunctions of disjunctions of literais
are traditionaily said to be in conjunctive normal form (CNF).
The conjunctive normal transformation (CNT} is a well-known
algorithm for ¢onverting any sentence to a T-equivalent CNF
sentence. The algorithm proceeds by performing a series of
rewrites. Each rewrite replaces a formula with a formula that
is RP-equivalent according 1o the RP-Equivalence Theorem.
Hence, we have the following:

Conjunctive—Normal-Transformation Theorem
Every sentence is RP-equivalent to its conjunctive normai
transform.

! An atomic sentence and its negation are said 1o be comple.
mentary. For example, P and —F are complementary literals.
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8. Deciding RP-Entallment

It is now simple to see how HP-entailment can be
decided. The Fact Decision Theorem for RP provides a
method for deciding whether or not a single fact in inferable
from a single fact. The No-Chaining Theorem extends the
method to the case where the antecedent contains any finite
number of facts. The semantica of conjunetion, which says
that an RP-model satisfies a conjunction iff it satisfies each
conjunct, provides for the case where the antecedent contains
conjunctions of facts and the consequent is a conjunction of
facts. Finally, the CNT Theorem tells us that the CNT can be
used to replace any inference problem with an equivalent one
where the sentences are in CNF.

The algorithm operates by reducing all inference prob-
lems to trivial ones, as just outlined. Rather than present the
algotithm, [ present the trace of its execution on a sample
problem. Each step of the execution is justified by a theorem
of the preceding section, thus proving the correctness of the
computed reault.

Referring to Figure 2, consider the problem of deciding
whether the entailment at node {1} hoids. By the Conjunctive
Normal Transform Theorem, (1] halds iff (2} does. By the
semantics of conjunction as given in equation (5}, PAQ is
satisfied by precisely the same models that satisfy both P and
@. Therefore the entailment at node {2) holds iff that at node
{3) does. By the same argument, the entailment at {3) holds iff
those at both {4) and (5]} do. By the RP. Decision Theorem far
Facts the entailment at {4) holds since its consequent has com-
plementary literals. By the No-Chaining Theorem node (5)
holds iff either (6) or (7) does. Finally, by the RP-Derision
Theorem for Farte the entailment at (6} holds since the literals
in its antecedent are a subset of those in its consequent (i.e.,
P C PR ). So, the algorithm concludes that the entail-
ment at (1) holds and we have justification for believing that
this conclusion is correct.

(1) PrQ Fp R ~{P—R)

(2} PAQ My {PVRIA[RV—R)

(3) P,Q 5, [PvRIARV-R)

(4) P.Q "y Rv-R (5) P.Q e PR

Figure 2: Execution of the [nference Algorithm



7. Survey of Related Work

In this section I briefly survey and compare a number of
logics that disallow chaining as well as some that allow oniy
selected forma of chaining. ln addition to my own work, |
review the work of Belnap, Levesque, Patel-Schneider and
Lakemeysr. though none of these authors have presented their
work from the atandpoint of the elimination of chaining.

Belnap (1975; 1977) uaed the idea of a multi- valued logic
whose truth values are subsets of {True, False]. His logic,
which T shall call "B.” differs from RP in that it admits the
empty set as a Jourth truth value. B uses the aame semantic
rules a8 RP to assign truth values to molecular sentences.
Thus, just as the T-models are a proper subset of the RP-
models, the RP-models are a proper subset of the B-models.
Consequently, B-entailment is weaker than RP-entailment.
Clearly then, B is aiso a logic without chaining, but it is net
the strongest such logic.

Let us briefly consider the inferences sanctioned by RP
but oot by B. Consider a mode! M in which the atomic sen-
tence P is assigned {. Then {~P]* =.! and [Pv-P]¥ - !
and therefore Pv—P is not a tautology. Indeed, there are no
tautologies in B. The model that assigns || to every atomic
formula also assigns || to every molecular formula, {!! is a
fixed point of all the logical tonnectlives) and therefore fails to
satisfy any formula.

This observation provides the insighl necessary 1o relate
the inferences sanctioned by B to those sanctioned by RP. Let
¥ be an arbitrary set of formulas containing enly the proposi-
tion letters P,,...,P, and let ¢ be the sentence
[PV—PIA - - AP, v—P,). Then, a sentence is RP-entailed
by ¢ ilf it is B-entailed by ¥J¢. This is the case because the
B-models that satisly ¢ are precizely the RP -models.

There has been considerable recent activity in extending
both RP and B in various directions. Though each of the
extensions discussed below was made to only one of the two
logics. they apply equally well te both logics.

Levesque (1984} has propased a prupositional medal logic
of explicit beliel in which the possible worlds are B-models
rather than the usual T- models. As a result, we are commit-
ted not to the claim thal agents believe all Tarskian conse-
quences of their beliefs. but to the weaker claini that they
believe all B-con~equences of their beliefs. lakemever {1986}
extended Levesque's propnsitional legic of explicit belief to a
first order logic.

The introduction of quantifiers into B under the standard
interpretation results in an undecidable entzilment relation.
Patel-Schneider ({1985} introduced a weaker, though more
complex, model theory that agrees with B on propositional
entailment but remains decidable when guantifiers are intro-
duced. It may appear surprising that the introduction of stan-
dard quantification inte B, and also into RP, yields an unde-
cidable logic; after all, these logics allow no chaining. Frisch
{1998) has shown how this introduction of quantifiers aliows
chaining to subtly slip in through the back door. He intro-
duced a property, called the Strong Herbrand Property, which
guarantees that a propoaitional logic that allows no rhaining
will not aliow any chaining when quantifiers are intreduced.

As previously claimed, an inference system without
chaining forms ati excellent base to which certain specialized
torms of chaining can be integrated. Frisch {1986) has demon-
strated thia by extending a firat—order version of RP with Lhe

ability to chain as necessary to reason completely with taxo-
nomic information, though the system remains incapable of
doing any other form of chaining. For example, the system
can chain together "Clyde is an elephant," "All elephants are
mammals" and "All mammals are warmblooded" in order to
conclude that "Clyde is warmblooded." The key to this
system's ability to chain lies in treating "elephant” and "mam-
mal" as special taxonomic predicates, which are distinct from
the ordinary predicates. An atomic formula formed with a
taxonomic predicate can only be assigned True or False by a
model, never jTrue, False,. Thus, taxonomic information is
given a Tarskian interpretation, which sanctions complete rea-
soning, while all other information is given a weakened 3-
valued interpretation, which disallows all chaining.

8. Conclusion

The problem of specifying, constructing, and understand-
ing specialized, limited inference systems arises in many areas
of Al. The development of inference systems that do no chain-
ing is an important first step to solving this problem. In this
respect the inference system presented in this paper is of par-
ticular interest because it is the strongest such system that
does no chaining, modulo the quantization method used.
Furthermore, the model theoretic specification technique
employed here may prove to be an important tool in the study
of limited inference; it certainly proved invaluable here in
specifying the inference engine, proving that it had certain
properties, and comparing it to other systems.
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